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Abstract

We examine the efficiency of sports wagering markets in a betting exchange and

find that they serve as good predictors of true outcomes, but do have a bias in which

favorites are undervalued and longshots are overvalued. We consider work on the bias

spanning behavioral and structural justifications for its existence, and focus on access

to information as well as prospect theory in our analysis. The results from sports

betting exchanges in this paper suggest that the existence of the bias is not due to

information or transaction costs, implying that work involving sportsbook structure

may not accurately reflect market behavior. Further, we show that the bias is not

present in bets that were taken prior to the start of a sporting event but is prevalent

in bets that take place after it begins. We conclude that more informed bets may be

reacting suboptimally to information, and that individuals may be making irrational

weighting decisions akin to results found in analysis of prospect theory.
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1 Introduction

The traditional hypothesis of efficient markets suggests that the market price for a security

incorporates all potential information available, and thus it is not possible to predict what

will happen better than the market. As such, in the long run one cannot consistently beat

the market. Analysis of efficiency frequently revolves around showing that the values of a

security follow a stochastic process, to suggest that the information added to the market is

random. The sports markets have potential to be useful due to the fact that each wager has

a true and observable value following the conclusion of an event. Whereas it is unclear how

much a security should truly be worth, a sport bet either wins or loses, and following the

event the result is known. In effect, sports bets are similar to binary options, and examining

their behavior can give insight on other financial markets. As a result, sportsbook lines have

been previously used to test efficiency. However, sportsbooks are controlled by casinos, who

adjust lines at their will and can accept or reject any given bet based on business needs.

Instead, the recent rise of betting exchanges is much more representative of a financial

market as they allow customers to exchange freely with others as well as close or add to

their positions at any time in any amount. Crucially, the use of an exchange allows bettors

to choose either side of any given bet.

A sports betting exchange operates much like a financial exchange, and consists of two

primary actors, ‘backers’ and ‘layers’. Backers pay to take on a bet at certain odds, and

layers would take the opposite end of that bet. For instance, suppose a layer is offering a

$10 bet at odds of 3 (European Style Odds) that team X will win its match against team

Y . A backer, can then choose to take this bet for up to $10. In the case that team X does

win, the backer wins their bet, and the layer would pay out $30 to the backer who would

also recieve their originally wagered $10 (Total return of $40). If instead, X does not win,

the layer gets the $10 that the backer placed their bet with. The role of the exchange is

simply to facilitate this transaction as well as to show both backers and layers the best bids

and offers that exist in the market. For this service, exchanges charge a commission, in the
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case of Betfair, the world’s largest betting exchange, this commission is up to 5% of the total

profit, an edge that is significantly smaller than traditional sportsbooks.

As a result, sports exchanges can serve as a better avenue to test efficiency than sports-

books since they more closely resemble a financial market and examining these markets can

give more insight on analogous exchanges in financial products. The data used in this paper

comes from Betfair, and contains a one-week cross section of all bets placed through the

exchange over a variety of sports. It contains details on the odds at which a bet was traded,

as well as the final outcome of the bet, either a win or a loss. It also has details for trades

that occurred before a sporting event started, as well as in play betting which takes place

during the event, a concept known as live-betting.

The aim of this paper is to determine whether or not these markets are efficient. More

specifically, our test of efficiency, is really a test of whether or not a classifier based on market

probabilities is calibrated. That is for an outcome, Y ∈ {0, 1}, and a market probability of

an event X, for every r ∈ [0, 1]

P (Y = 1|X = r) = r . (1)

If this condition is satisified, the probabilities implied by the odds at which events are trading,

match the observed probability of an event occurring after the event concludes. This would

mean that odds produced by the market reflected their true value and are efficient. Our

hypothesis is that sports exchange markets will tend to be efficient and this paper will

seek to discover why this hypothesis does or does not hold and try to provide rationale for

potential deviations.

2 Literature Review

Markets on sports have become a focus for economists primarily due to the unique fact that

the outcome of a sports event is known after its conclusion, and therefore, the true value of
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the wager can be found. As Sauer (1998) explains, betting markets are simple versions of

financial markets that exhibit similar properties but are easier to examine. Sauer extensively

analyzes horse racing markets and ultimately finds that these markets are mostly efficient,

and that they effectively predict the probability of a horse winning a race. In fact, the

general consensus in the literature is that markets are good predictors of true probabilities

and as a result, this statement is often just assumed as fact in literature.

However, Sauer (1998) shows that there is a notable anomaly that exists, known as the

favorite-longshot bias, in which the prices of favorites are undervalued, while longshots are

overpriced. That is, for events that tend to be unlikely to happen, the market suggests that

they would happen more frequently than they do in actuality, with the reverse being true

for events that are likely to occur. This bias has become the focus of a lot of the research

in the realm of market efficiency. Two major schools of thought on the root of the favorite-

longshot bias have emerged. The first regarding risk preferences of bettors, and the second

considering institutional forces.

Quandt (1986) explores the risk preferences of bettors and suggests that the fact that

bettors are willing to make decisions that they know are negative in expectation implies that

they must be risk seeking individuals. He then suggests that because these bettors are risk

seeking, they should simply bet on whichever horse has the highest variance. However, in

practice this doesn’t occur, otherwise all but one horse would have zero bets placed on it.

As such, Quandt suggests that it is necessary for some bias to exist in order to reach an

equilibrium in the markets.

Thaler and Ziemba (1988) suggested a variety of behavioral reasons such a deviation

from expectation may exist at the horse racing tracks they examined. They argue that there

is more enjoyment that comes from betting on a longshot than a favorite, as winning on a

longshot simply gives bettors a better story to tell than winning on a favorite. They also

suggest that some bettors just make decisions on an irrational basis, based on something like

the name of a horse. Finally, they suggest an effect similar to observations in Tversky and
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Kahneman (1992), which finds that decision weights are not linear with true probabilities,

and that individuals underweight high probability events and overweight low probability

events. Further, Tversky and Fox (1995) expands on this by explaining that jumps in

probability from an event being highly likely to becoming certain are more impactful than

equivalent jumps from the event being likely to slightly more likely.

Alternatively, other research has founnd explanations using empirical models for the bias

by examining institutional effects, such as the differing access to information the bettors

have, as well as transaction costs and the response of sportsbooks to informed bettors. Shin

(1992) writes of the existence of insiders in the markets, and concludes that bookmakers

create the favorite-longshot bias intentionally to pass on the losses of informed bettors to

those who are uninformed. Shin assumes that without the existence of insider trading, the

market’s probability of a horse winning would be identical to the true probability (i.e. the

markets are efficient). He then conducts an optimization for the bookmaker profit, and finds

that given that insiders do exist, it is most profitable for bookmakers to have prices that

undervalue favorites and overvalue longshots. Sobel and Raines (2003) construct models of

both risk preferences and information, and ultimately find that there is little variation in

the bias over bets with different risk profiles, but that variation of information does in fact

create a differing level of bias in deviations from expectation.

Meanwhile, Hurley and McDonough (1995) consider an experimental approach examin-

ing transaction costs, and how they impact the decisions that bettors make. They assert

that without these costs, bettors could calculate the true probabilities, and that the costs at-

tached to betting by the sportsbook create a deviation between the subjective and objective

probabilities. They take this a step further and suggest that in the case where bettors are en-

tirely uninformed they should bet with equal probability on each event, creating a situation

in which they over-bet on longshots, and under-bet on favorites. Then, as the transaction

costs inhibit access to information, higher transaction costs mean fewer informed bettors and

therefore more of a bias. They further this analysis with two experiments that test behaviors
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of bettors in an environment with and without transaction costs, but actually find against

their hypothesis.

While the Hurley and McDonough (1995) experiment did not support their hypothesis,

it did emphasize the need of better analysis in the literature. While their experiment may

very well be an accurate model of true betting behavior, it only had 18 participants. The

empirical analyses also tend to focus on smaller data sets, limiting themselves to horse racing

at a small selection of tracks.

This paper will allow for deeper analysis of the favorite-longshot bias as we improve on

the existing literature in several key ways. First, we utilize a dataset containing data on more

than 1.3 million betting events across a variety of sports, compared to the existing literature’s

focus on horse racing markets and thus provides a broader look at sports markets and a more

robust data set with many more observations. Second, this paper is different in that there

is no bookmaker involved. As Betfair is an exchange, existing arguments may need to be

updated. For instance, Shin’s work relies on bookmaker’s setting profitable prices. In an

exchange, where bookmakers don’t play a role in setting prices, this argument will be less

likely to explain the bias. Further, transaction costs on an exchange are significantly lower

than traditional sportsbooks, so the use of an exchange can further test how easy access

to information impacts the favorite-longshot bias. Finally, the use of a betting exchange

simply provides a more accurate reflection of market activity than previous works do. An

online exchange can be accessed by people from all around the world, and is not limited

to an analysis of the people who physically show up to a racing track. Ultimately, existing

literature has been unable to concretely explain why the favorite-longshot bias exits, and this

paper has an opportunity to add to the analysis from both a behavioral and institutional

view through an in depth empirical review.
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3 Data

The data that we will be utilizing in this paper is a cross-section of bets placed on the betting

exchange ‘Betfair’ over the course of one week in April, 2014. Each row of data represents

a wager for a certain event at a given price (odds). It also includes how many individual

people made each wager, as well as the total volume traded. Thus, it does not count each

individual’s bet separately, but rather aggregates all bets placed on one event at one price

into one row. The data has a sample size of about 1.3 million and for the purposes of the

analysis, we will operate under an assumption that this one week of data is a represen-

tative sample of Betfair’s exchange. The primary variables we will be utilizing are ODDS,

WIN FLAG, NUMBER BETS, VOLUME MATCHED, IN PLAY, and SPORTS ID. ODDS

is represented in European style odds format, such that the value represents the amount a

$1 wager would win plus the original investment (i.e. ODDS of 1.5 means that a $1 wager

would win $0.50 as well as return the original $1 invested). WIN FLAG is a binary value

that is 1 when the wager won, and 0 otherwise.

NUMBER BETS is the total number of unique users that made the bet, and VOL-

UME MATCHED is the total volume traded (bought or sold). IN PLAY has a value of 0

when the bet was taken before the start of an event, and 1 when taken during the event as

a ‘live-bet’. Finally, SPORTS ID is a unique identifier for each sport. For the purposes of

analysis of efficiency, ODDS will be converted to a percentage form

PERCENT CHANCE = 1/ODDS , (2)

and this will serve as an independent variable while WIN FLAG will serve as a dependent

variable in our initial test of efficiency.

To examine deviations from expectation, we calculate the returns on a $1 investment:

r =
WIN FLAG− PERCENT CHANCE

PERCENT CHANCE
. (3)
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In a perfectly efficient market, the returns should be zero on average,

1

n

n∑
i=1

ri = 0 . (4)

These returns will be the dependent variables with NUMBER BETS, VOLUME MATCHED,

and IN PLAY as independent variables. SPORTS ID will be used as a control to consider

variations across markets for individual sports. Descriptive statistics of the data are pre-

sented in Table 7 of the Appendix.

Analysis is conducted in R, and tables are displayed with the assistance of Hlavak (2018)

4 Methodology

This paper will first test the original hypothesis of efficiency, followed by an analysis of

deviations from expectation that occur. The model we use to test for efficiency follows Sauer

(1998) and is of the form:

PW = αH + βPC + ε (5)

where H is a vector of ones, PW refers to observed proportion of wins, PC refers to the

percentage chance given by the odds in the market and ε is an error term. The joint null

hypothesis is that α = 0 and β = 1.

In practice, because the data refers to one realization of an event, we cannot gather the

true proportion of wins from one data point. Similar to the procedure in Tompkins et al.

(2003), we choose to create pools of 75 bets, all having the same ODDS, SPORTS ID, and

IN PLAY values. We then calculate the expected proportion of wins PC for each pool, and

can compare to the realized proportion of wins in the data set PW. Descriptive statistics of

the pooled bets are presented in Table 8 of the Appendix.

A slope of the regression line that is different from one (β 6= 1) would indicate a bias of

some sort. β > 1 would indicate that the favorites are undervalued while the longshots are
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overvalued, while β < 1 would indicate the reverse.

The plot in Figure 1 shows a clear linear trend in the pooled data, and as a result suggests

that the Sauer model we use to test efficiency appears to be a reasonable one.
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Figure 1: Expected proportion versus true proportion plotted for each group of pooled bets.

5 Initial Results

We test the original model (PW = αH + βPC + ε) and get the results displayed in Table

1. From the initial regression, despite the fact that the market is close to efficiency (Figure

1 shows a linear relationship), we reject the original null hypothesis that α = 0 and β = 1.

Following a realization that the data looks linear, and is nearly efficient, it becomes the
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mission of this paper to determine where the inefficiencies lie, and why deviations (or bias)

from the expected outcomes may exist. As β > 1, the data does appear to support the

existence of the favorite-longshot bias. This bias in the data is also visualized in Figure 2.

The plot shows the mean returns (r̄) for each percentage point implied by the odds. These

average returns (deviations) seem to have a linear and positive trend, despite some noise.

As such, the original null hypothesis is rejected, and we conclude that the favorite-longshot

bias is in fact present in the betting exchanges, seemingly in line with the vast majority of

the literature on the subject. This bias now becomes the primary focus of the analysis in

the remainder of this paper.

Table 1

Dependent variable:

PW

PC 1.006∗∗∗

(0.001)

Constant −0.005∗∗∗

(0.001)

Observations 13,231
R2 0.976
Adjusted R2 0.976

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

6 Information Model

6.1 Approach

In order to examine the information approach of the favorite-longshot bias we extend our

measure of deviations from the expected value of wins (returns) to the pooled data. The

expected wins of a pool of data is calculated by taking the mean of the percent chances of
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Figure 2: Returns plotted over market probability (PC).

each bet in the pool, as each bet has equal weight. The true fraction of wins comes from the

number of observed wins divided by number of bets in the pool, such that our new equation

for returns is as follows:

r =
frac wins− expected wins

expected wins
(6)

We can now test the factors that cause changes in the value of returns. Hurley and

McDonough (1995) hypothesized that the favorite-longshot bias’s existence is due to an

incomplete set of information for bettors. They argue that as information becomes accesible,

this bias decreases. As they did not have data with which they could observe and test the

effect of information, they conducted their own experiment with a small sample of bettors.

However, an experiment such as this cannot be as good of a marker of the workings of a

market as the market itself. The study found against their hypothesis, and that ultimately

information is not a contributor to this bias.

Following Hurley and McDonough (1995) paper, the information theory has become a
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popular metric in subsequent work. Sobel and Raines (2003) modeled information at a

sports betting track by comparing the number of bettors, suggesting that more bettors

means more casual bettors, and thus a less informed betting pool. Their results found that

this information effect is real. Meanwhile Smith et al. (2006) suggests that bets with more

trading volume are more informed and also found similar results.

As such, we test the effects of volume and number of bets on returns. We also include

our own metric of information, that of bets being placed after the event begins versus those

placed before. We have in play serving as an indicator variable representing whether or not

a given pool of bets was placed during the course of a sporting event. We suggest that on

average a bet taken after a sporting event begins is more informed than a bet taken before the

sporting event begins. This is due to the fact thast as the game begins, any injuries, special

abilities, etc. of a participant become apparent, allowing for more information available to

bettors simply as a function of time. Thus we expect a pool of in-game bets to be more

informed than a pool of pre-event bets.

Before conducting our tests on the causes of deviations, we justify the use of the in play

indicator by conducting the following regression on the pooled data:

PW = αH + βEPC + βIP in play + ε (7)

The results of this regression are available in Table 10 of the Appendix, both in its original

form and with sport fixed effects. In either case, we see a significant coefficient on in play,

suggesting that the fact that a bet was placed during the game is informative to predicting

the outcome of the game, and thus we determine that in play is a valid metric of level of

information.
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We conduct the following tests:

r = αH + βEPC + ε (8)

r = αH + βEPC + βV V olume+ βbias vol(PC ∗ V olume) + ε (9)

r = αH + βEPC + βNnum bets+ βbias num(PC ∗ num bets) + ε (10)

r = αH + βEPC + βIP in play + βbias ip(PC ∗ in play) + ε (11)

where H is a vector of ones, r = PW−PC
PC

and ε is an error term. We also add a fixed

effects model, r = αi + βtXt + ε for i = (1, ...., n) where i represents each SPORTS ID, and

for t = (1, ....,m) where m is the number of independent variables in the regression for the

analysis of effects on the bias. This is used to control for any effects that may be attributed

to one sport but not another. This follows Cain et al. (2003) which suggests some sports

have differing degrees of the favorite-longshot bias.

In order to see the effects of these factors on the bias we choose to examine how these

factors affect the slope of this favorite-longshot relationship. As we have shown the existence

of a favorite-longshot bias above, we expect βE, the coefficient on expected probability to

be positive in equation (8). Meanwhile, to test the impact on the favorite-longshot bias, we

test how the relationship between market probability and returns changes based on these

factors, hence the interaction terms in equations (9) - (11).

6.2 Results

The results of the regressions from the previous section are visible in Tables 2 and 3. Regres-

sions were conducted only on events with a market probability greater than 10% as lower

probabilities had high noise in returns. The regression in Table 2 verifies the existence of the

favorite-longshot bias, as there is a positive coefficient on PC, indicating a trend as shown

in Figure 2.

Regressions (1)-(3) in Table 3 allow the analysis of the severity of the favorite-longshot
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bias. However, the interaction terms for volume and market probability, as well as num bets

and market probability show absolutely no significance. This suggests that perhaps the

conclusions of Sobel and Raines (2003) and Smith et al. (2006) simply do not scale, and no

longer apply when considering a large betting exchange, thus failing to explain the whole

of the bias. Meanwhile, The interaction term for in play and market probability actually

suggests that more informed bets have a stronger case of the favorite-longshot bias as being

an in play bet makes average returns increase by 0.080 more per percentage point increase

in expected probability than a pre-event bet. The addition of sport fixed effects does not

seem to change the significance of any of these results.

As a check on the robustness of the analysis, we also consider the non-pooled, original

data, specifically events that have odds both pre-game and in-game. The descriptive statistics

for this data are available in Table 9 of the Appendix. Here we conduct the following analysis:

|r| = αH + βEPC + βIP in play + ε (12)

r = αH + βEPC + βIP in play + βbias ip(PC ∗ in play) + ε (13)

This examination should show on an individual event basis, whether or not the in-game

odds will yield less deviation from the expected value and whether or not it will lower the

degree of bias. We also use fixed effects for each sporting event, to account for any added

features that may be attributed to a particular event. As shown in Table 4, and much like

our analysis of equation (7), it does appear that the in play factor lowers overall deviation.

However, the interaction term acts to increase the level of deviation, and thus we still are

not able to conclude that more informed bets have a lower impact of the favorite-longshot

bias than do less informed bets.

Ultimately, these results resoundly reject the information cost explanation for the favorite-

longshot bias. Using three separate metrics for information this conclusion is achieved, so
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while the information costs may be an accurate representation of horse racing tracks and

smaller markets, it is unlikely to have explanatory power outside of these niche markets.

Table 2

Dependent variable:

returns

PC 0.058∗∗∗

(0.006)
Constant −0.043∗∗∗

(0.003)

Observations 10,684
R2 0.009
Adjusted R2 0.009

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3

Dependent variable:

returns

OLS felm

(1) (2) (3) (4) (5) (6)

PC 0.058∗∗∗ 0.061∗∗∗ −0.004 0.056∗∗∗ 0.046∗∗∗ −0.002
(0.006) (0.012) (0.012) (0.006) (0.012) (0.012)

volume 0.00000 0.00001∗∗∗

(0.00000) (0.00000)
num bets 0.001 0.002∗∗

(0.001) (0.001)
ip −0.064∗∗∗ −0.063∗∗∗

(0.008) (0.008)
interact −0.00000 −0.001 0.080∗∗∗ −0.00001∗∗∗ 0.0005 0.081∗∗∗

(0.00000) (0.001) (0.014) (0.00000) (0.001) (0.014)
Constant −0.044∗∗∗ −0.049∗∗∗ 0.006

(0.003) (0.007) (0.007)

Observations 10,684 10,684 10,684 10,684 10,684 10,684
R2 0.009 0.009 0.015 0.018 0.018 0.021
Adjusted R2 0.009 0.009 0.015 0.017 0.017 0.019

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4

Dependent variable:

abs returns returns

OLS OLS felm

PC −1.708∗∗∗ 0.215∗∗∗ 0.204∗∗∗

(0.009) (0.021) (0.024)
IP −0.094∗∗∗ −0.384∗∗∗ −0.394∗∗∗

(0.006) (0.022) (0.022)
interact 0.477∗∗∗ 0.493∗∗∗

(0.031) (0.031)
Constant 1.804∗∗∗ −0.262∗∗∗

(0.007) (0.015)

Observations 44,842 44,842 44,842
R2 0.429 0.024 0.065
Adjusted R2 0.429 0.024 0.039

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

6.3 Discussion

The results appear to be counter to the literature’s expectations in regards to the effect of a

more informed wager. It appears that the analysis from Sobel and Raines (2003) and Smith

et al. (2006) does not hold in the context of a betting exchange, and that our own metric of

more informed bets actually causes an increase in the bias. This leads to a conclusion that

information costs may not be the cause of a bias. Transaction costs, too, seem unimpactful

as all bets have the same commission charges, yet bets that were more informed had a greater

bias.

In fact, applying the original model (PW = αH + βPC + ε) on only bets that occured

pre-event, we find that we cannot reject the null hypothesis that the predicted probabilities

are unbiased estimators of the true proportion of wins (α = 0 and β = 1) at the 95 percent

confidence level. These results are in Table 5 with 95% confidence intervals displayed.

Consequentially, we find that the pre-event bets on Betfair’s service are in fact mostly

efficient, and any inefficiencies that occur, including the favorite-longshot bias, occur as a
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Table 5

Dependent variable:

PW

PC 0.997∗∗∗

(0.992, 1.002)
Constant 0.002∗

(−0.0004, 0.005)

Observations 2,964
R2 0.980
Adjusted R2 0.980

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

result of some feature of the in the in-game betting.

Perhaps, there are different forces that are at play that cause the bias instead. With the

more informed bets having a greater bias, it begs the question of how exactly information is

being utilized. Piccoli et al. (2017) suggests that markets tend to overreact when facing news

and events. In play bets would be more susceptible to this information overreaction as there is

simply more movement and change that could affect the outcome of a game once it begins,

than before it starts. It is possible for instance, that when a team’s key player becomes

injured the team’s odds of winning would decrease by more than they should, creating some

deviation from the expectation. It is not immediately clear why these deviations would be

in the form of a favorite-longshot bias, but it does raise interesting questions on how bettors

absorb information as it is changing.

Beyond this, it is clear now that many conclusions on the causes of the favorite-longshot

bias seem doubtful in the context of a betting exchange. Conclusions relating to sportsbook

behavior don’t seem to hold when there is no one acting as a sportsbook, yet we still find

evidence of a bias without one. This study expands on the previous use of small samples of

bets from horse racing markets and utilizes many sports with many more data points, and

finds that many of the same trends still exist, therefore explanations that relied on features

specific to those markets simply don’t hold.
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Ultimately, this paper finds that markets do tend to be quite efficient, and even have

no significant deviations from expectation for pre-event bets. These conclusions can help

us understand broader market structure for other financial markets as well. For instance,

Tompkins et al. (2003), find evidence of this same favorite-longshot bias in some options

markets. The findings from this paper, suggesting that it is not transaction/information

costs, or risk preferences that affect prices that cause the bias, can then be extrapolated to

those markets as well, and suggest that deviations from expectations in options markets are

not due to a lack of information.

7 Further Analysis

We see from the results in this paper that markets behave differently for in-play and pre-event

wagers, and that deviations from expectations are not remedied with greater information

availability. In order to understand why such a difference exists, and why the in-game bets

exhibit a bias, we consider the population of bettors. Despite the fact that more information

is available, the in-game bets are exhibiting a bias that the less informed pre-game bets does

not. This leads to speculation that perhaps those that trade in the pre-event wagers are

more informed or professionals, while in-game bettors are not. This follows the analysis from

Osborne (1962) which suggests that depending on day of the week there was a remarkable

difference in the number of odd lots vs. round lots of stock traded. Round lots are more

likely to be traded by professionals, while orders of odd lots are likely to be made by non-

professional traders. Perhaps in the world of sports betting, the money of professionals is

on pre-event bets, with in-game betting being left to the non-professional bettor. In order

to test this hypothesis we consider bet size. By examining the average bet size of wagers on

each individual event, we compare the populations making pre-event and in-play bets.

After conducting a Wilcoxon Rank Sum Test, we reject the hypothesis that thes bets

come from the same distribution at a 99% confidence level, in support of the belief that
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these populations of bettors have some inherent differences. Specifically we find that the

bet sizes are larger pre-event than in-game, in line with conclusions from Osborne (1962)

on professional traders having different behavior than non-professionals when it comes to

the size of their trades. This could also suggest that although in-game bettors may have

access to more information, they may not necessarily be using it properly, leading them to

either under or overreact to new information, as was found in De Bondt and Thaler (1985)

in their analysis of the impacts of dramatic news events on stock prices and the Overreaction

Hypothesis.

By considering only events that had trading before and during the event, we examine

the difference in implied probability from the initial pre-event odds to the in-play odds.

A high difference in probability is likely to occur due to some drastic event such as the

injury of a key player, while mundane updates in score would result in negligible movement

of probabilities. we thus use these changes in odds as proxies for the value that traders

place on new information, hypothesizing that larger changes in percieved probabilities will

result in returns that deviate more from expectation, thus serving as a contributor to the

favorite-longshot bias.

For the analysis we consider all large changes in probability (shifts greater than 15 per-

centage points) as smaller changes can likely be attributed to noise, and conduct a regression

similar to the ones done to test the information model as presented in equation (??), where

H is a vector of ones, r = PW−PC
PC

and ε is an error term:

r = αH + βEPCIP + βδδPC + βbias δPC(PCIP ∗ δPC) + ε (14)

This regression is conducted twice, once for all wagers with positive changes in betting

odds, and once for all wagers with negative changes in betting odds. The results are shown

in Table 6, with (1) examining positive odds shifts, and (2) examining negative odds shifts.

These results show that for large positive odds increases, there is a significant positive

increase in the relationship between the theeoretical probability and returns, a sign of a
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Table 6

Dependent variable:

ip returns

(1) (2)

IP PC 0.508∗∗∗ 1.856∗∗∗

(0.104) (0.485)
odds change −1.364∗∗∗ −1.642∗∗∗

(0.296) (0.472)
interact 1.301∗∗∗ 4.335∗∗

(0.335) (1.714)
Constant −0.419∗∗∗ −0.938∗∗∗

(0.084) (0.160)

Observations 4,370 2,444
R2 0.064 0.009
Adjusted R2 0.063 0.008

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

strengthening favorite bias. Meanwhile, large negative changes, result in a sharp decline in

the returns, showing a strong longshot bias. Overall, we see evidence in line with the findings

of De Bondt and Thaler (1985), as it appears that higher changes in probability tend to have

a larger amount of bias in both the positive and negative case. Further, as in Piccoli et al.

(2017), the degree to which this occurs seems to be higher for negative news (decrease in

probability) than it does for positive news (increase in probability), as the coefficient on the

interaction between the implied probability and shift in odds is much higher for the negative

shifts (2).

7.1 Prospect Theory

Thus far, we have shown that although pre-event bets tend to be rather efficient, and do

not exhibit a bias, the more informed in-play bets tend to overvalue low probability events

and undervalue high probability events. We have also seen that these in play bets tend to

be made in smaller size, suggesting that they are not made by professionals, and that large
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news events tend to make the degree of bias higher. Next, we attempt to understand the

reason why such a phenomenon might occur for the lower volume traders.

In order to examine how these individuals make decisions, we consider prospect theory

which examines risky prospects in an experimental setting. In contrast to expected utility

theory which suggests that the utility of a prospect is equivalent to the sum of the utilities of

its potential outcomes multiplied by their respective probabilities of occuring, Tversky and

Kahneman (1992) suggests that the utility of a risky prospect should be a function of the

gain or loss from that prospect and a respective decision weight. They also provide updates

on the original prospect theory literature by suggesting a cumulative prospect theory in

which V (f), or the value of a prospect f is given by

V (f) =
n∑

−m

πiv(xi) . (15)

Further, they propose that for positive prospects, the value function is of the form

v(x) = xα (16)

where 0 ≤ α ≤ 1, and x is the outcome of a prospect. The weighting function is of the form

w(p) =
pγ

(pγ + (1− p)γ)
1
γ

. (17)

Finally, they conduct an experiment in which members of the study were asked a series

of questions, choosing between prospects and alternative guarantees of gain or loss. Tversky

and Kahneman (1992) then estimate the weighting function as c/x, where c is the certainty

equivalent of a prospect, and x is its non-zero outcome. As a result they conclude that the

weighting function follows an inverted S-Shape, where individuals tend to overweight low

probabilities, and underweight high probabilities. Expanding on this work, Tversky and Fox

(1995), shows that this same analysis applies not only to risky prospects in which probability
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of an outcome is known, but also uncertain prospects (such as sports betting or investing in

stocks), when using a judged probability.

Following this methodology, we consider the in-play bets. As these bettors place their

wagers during the match, the pre-event odds are available and serve as judged probabilities.

By our earlier findings that the pre-event bets are rather efficient, these judged probabilities

are likely good estimates of the true probabilities. As we are using a betting exchange, the

odds at which a trade takes place represents the highest value for which an individual would

exchange a guaranteed amount for a prospect, as well as the lowest amount for which another

individual would trade a prospect for a guaranteed return. As such, our odds themselves

represent the certainty equivalent. Importantly, since we assume a power value function in

equation (16), we suggest that the certainty equivalent is a linear function of the prize of

the prospect, just as in Tversky and Kahneman (1992). That is, for a certainty equivalent

function C(x)

C(λx) = λC(X) = λc (18)

for some constant λ. Thus, the size of a bet has no impact on c aside from scaling it, so

we are able to treat all prospects in our data the same regardless of bet size (c/x is not

dependent on bet size). In accordance with Tversky and Kahneman (1992), we model our

weighting function as c/x. As we have converted all odds to percentage form, the outcome

of each prospect is either 0 or 1, so x = 1 and thus our weighting function is represented by

c, where c is equal to the in-play odds.

We plot our weighting function against the judged probabilities in Figure 3, and use

a non-linear regression to fit the model in equation (17). This results in a fitted value

γ = 0.6991, very similar to results from Tversky and Kahneman (1992). Additionally, this

plot looks almost identical to their analogs presented in Tversky and Kahneman (1992) and

Tversky and Fox (1995). This is significant as it expands upon the experimental studies

done on small samples of students in both of those papers, by providing observational data

from over 1.3 million betting events. Thus, we arrive at a similar conclusion, that individuals
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Figure 3: Mean in-play implied probabilities plotted against pre-event implied probabilities.

tend to have a weighting function that is not linear with probability, but rather one that has

an inverted S-Shape, but using a vast data set that expands the previous work.

This also provides potential explanation for our findings on the favorite-longshot bias.

We discover that the pre-event bets do in fact have odds-implied probabilities that are linear

with true probabilities and that their differences are indistinguishable from zero. Based

on the above discussion of prospect theory, this is equivalent to having a linear weighting

function. We also find, that betting size is statistically larger in pre-event bets than in in-
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play bets, suggesting underlying differences in betting participants. As a result, we find that

the weighting function for pre-event bettors, which by their large betting size we suggest

are professionals, is linear, with decision weights as explained by expected utility theory.

Meanwhile for non-professionals, which we suggest populate the in-play betting field, the

weighting function is one that underweights high probability events, and overweights low

probability events, causing the favorite-longshot bias that we have observed.

8 Concluding Remarks

Sports betting markets provide for a clean way to view the manner in which markets price

events with a finite amount of outcomes. These outcomes can be measured and compared

to the prices at which they were traded. It is this ease of analysis that makes sports markets

so interesting for many looking to observe the efficiency of markets. This work follows the

likes of many others, primarily those in horse racing sportsbooks, and expands by utilizing

a betting exchange with a variety of sports and bets available to anyone in the world.

This paper seeks to discover if these markets are efficient. As a whole it finds that

markets do tend to be close to the true outcomes in their predictions, but do have significant

deviations from expectations using the model from Sauer (1998). Upon further review of

these deviations, we find evidence of the so called favorite-longshot bias, in which favorites

are under priced relative to their true outcomes, and longshots are overpriced. That is to say

that consistently betting on favorites will yield positive returns, and betting on longshots

will yield negative returns, a clear violation of efficiency.

We look to find the root of the deviation by studying how individuals gain and utilize

information. On information costs and access, we test the impact of volume and number

of bettors, similar to Sobel and Raines (2003) and find that the factors are insignificant to

the bias that is observed. We also use our own proxy for information, that of a flag for

bets taken after games begin, and still find that the information has no significant impact
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in decreasing the bias. Instead, our results show that in play bets are more biased than

pre-event bets, with pre-event bets being rather efficient. In search of an explanation why,

this paper considers differences between the bettors that participate in the types of bets,

and finds that overwhelmingly, the bet size in pre-event bets is larger than in in-game bets,

suggesting that the pre game bettors are more likely to be professionals than the in-game

bettors. Further, we see that as betting odds change during an event, larger changes lead to

a strengthening of the bias, suggesting that adjustments to new and influential information,

have large contributions to the favorite-longshot bias.

Finally, we consider prospect theory and find results consistent with Tversky and Fox

(1995), suggesting that behavioral reasons in the form of a non-linear weighting function

used in the calculation of individual’s utility may be the guiding principle for the cause of

the favorite-longshot bias. Ultimately, we reject the notion that the favorite-longshot bias is

caused by a lack of information available to bettors, and instead conclude that individuals

do not necessarily weight their decisions rationally based on the information they absorb,

and that this phenomenon is a likely reason for the bias we observe.

This paper was written during the COVID-19 pandemic, a time of great uncertainty in

markets, and in people’s lives. The manner in which individuals have difficulty handling

uncertainty has been on full display, whether it be politicians having difficulties closing and

reopening economies, consumers hoarding toilet paper, or markets behaving in seemingly

erratic ways. This pandemic, while certainly tragic, has been quite an opportunity to see

irrationality at work. Ultimately, whether it be in sports betting markets or otherwise,

decisions made by individuals seem to not be fully reflective of the information that guides

them. In this paper, we find that markets are in fact relatively efficient, yet they do exhibit a

significant favorite-longshot bias, which can be attributed at least in part to the mishandling

of significant probability altering information.
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Appendix

Table 7

Statistic N Mean Median Min Max St. Dev.

ODDS 1,306,746 21.322 2.980 1.010 1,000.000 91.004
WIN FLAG 1,306,747 0.379 0.000 0.000 2.050 0.485
NUMBER BETS 1,306,750 277.244 160 1 784 190.923
VOLUME MATCHED 1,306,750 48,336.890 51,170 1 107,801 31,941.740
IN PLAY 1,306,750 0.618 1 0 1 0.486
SPORTS ID 1,306,750 16,685.670 1 1 26,420,387 541,842.100
PERCENT CHANCE 1,306,746 0.382 0.336 0.001 0.990 0.290

Table 8

Statistic N Mean Median Min Max St. Dev.

deviations 13,231 −0.003 −0.002 −0.226 0.214 0.047
returns 13,231 0.007 −0.01 −1 12 0.584
PC 13,231 0.419 0.391 0.002 0.990 0.296
PW 13,231 0.416 0.4 0 1 0.301
volume 13,231 698.667 151.628 0.511 71,024.380 2,629.748
num bets 13,231 7.565 6.067 1.013 109.613 5.442
ip 13,231 0.776 1 0 1 0.417
sport 13,231 323.634 1 1 998,917 12,329.180
abs returns 13,231 0.231 0.1 0 12 0.536

Table 9

Statistic N Mean Median Min Max St. Dev.

X 68,476 49,113.380 49,648.5 10 86,507 21,238.630
ODDS 68,476 68.652 3.8 1 1,000 207.210
IP 68,476 0.500 0.5 0 1 0.500
PW 68,476 0.386 0 0 1 0.487
PC 68,476 0.424 0.267 0.001 0.990 0.393
deviations 68,476 −0.038 −0.011 −0.990 0.999 0.285
returns 68,476 −0.227 −1 −1 989 7.080
abs returns 68,476 1.001 1 0 989 7.013
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Table 10

Dependent variable:

PW

OLS felm

PC 1.013∗∗∗ 1.014∗∗∗

(1.009, 1.017) (1.010, 1.018)
ip −0.006∗∗∗ −0.006∗∗∗

(−0.009, −0.004) (−0.009, −0.004)
Constant −0.005∗∗∗

(−0.008, −0.002)

Observations 10,684 10,684
R2 0.964 0.964
Adjusted R2 0.964 0.964

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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