
1 

 

Ride or Die? 
 

Metropolitan Bikeshare Systems and Pollution 
 
 

 

Sean Furuta 
 

 

University of California, Berkeley 
 

ECON 195B 
 

Fall 2020 
 
 
 

 

Abstract 
 

This paper tries to establish causality between particulate matter 2.5 concentration 

and bikeshare quantity demanded, by applying the instrumental variable framework, 

on a panel of United States cities with bikeshares from 2017 through 2019. The results 

are statistically significant, showing evidence of increasing bikeshare rides per 1000 

residents as pollution concentration increase. These findings are robust to test of 

endogeneity and instrument strength. From the results, I estimate that a microgram per 

cubic meter increase in PM2.5 increase rides per 1000 resident by 0.215. This 

translates to 215 rides for a city population of 1 million. 
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1 Introduction 

 

As an automotive centric society, the United States and its major cities suffer from many problems 

ranging from traffic congestion and lack of parking. It also contributes to macro environmental 

problems like climate change and air pollution by burning fossil fuels which produce greenhouse 

gases. According to the EPA, almost 27% of greenhouse gas emissions originate from automobile 

tailpipes (Hamilton and Wichman, 2015). Although automobiles in conjunction with a well-

connected highway system are effective in long distance travel, they fail miserably in short 

distances or “last mile” travel within dense cities. “This ‘last-mile’ problem is thought to deter 

transit use among riders with auto access, even when high quality transit service is provided for 

the majority of the trip distance” (Zellener et al., 2016).  

 

Local governments have enacted policies to reduce these problems like highway tolls, carpool 

lanes, and robust public transport system. Also, consumers in major cities around the world have 

embraced ride sharing schemes like Uber or Lyft to get access to transportation without owning 

an automobile. The combination of public and private options has led to major cities building 

bikesharing systems. For example, the city of San Francisco partnered with Ford and Lyft to create 

a bikesharing system that spans a large portion of the Bay area. Bikeshares do not require fossil 

fuels to transport individuals across the city and can lower street congestion by taking up less space 

than a full-size automobile. Bikes smaller size allows them to take paths through cities that may 

not be available to conventional automobiles making them more versatile in cities. According to 

the Center of Disease Control, 38% of United States adult population is affected by obesity which 

makes bikeshares a healthy alternative to automobile transport. Thus, bikeshares can help solve 
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some of the critical pain points of an automotive society and with growing city population in the 

U.S., city government must be able to shift transportation options away from personal automobiles. 

 

Also, recent technological innovations have made adoption of bikeshare systems more fluid. The 

most impactful of these technologies are smartphones and their associated application that enable 

the many sensors on the bikes. Smaller and lighter batteries have also enabled bikeshare systems 

to incorporate e-bikes to allow for quicker motorized trips. Further technological advancements 

like dockless bikes will only improve capacity for these bikeshare systems across the world and 

attract more consumers away from automobile transportation for commutes.  

 

Despite many of these technological advancements being available in the U.S., American cities 

are relatively slow to bikeshare adoption compared to Europe and China. Some cities to note 

are London, Paris, Copenhagen, Amsterdam, and Goyang (Nair et al., 2013). More extensive 

research on implementation and consumer behavior has been conducted in these regions. Two 

articles that closely relate to my paper are Li and Kamargianni [2018] which explores the 

relationship between pollution and bikeshare demand in the Chinese city of Taiyuan and 

Woodcock et al. [2014], which explores health effects on riders. There are concerns surrounding 

exposure to pollution while utilizing open air transport systems like bikeshare. Both papers found 

significant effects on consumer due to pollution in the air which I will later discuss in my literature 

review. Paradoxically, the pollution and congestion problem bikeshares were intended to solve 

may be a deterrent to using them. However, such interaction between pollution and bikeshare 

demand has not been thoroughly explored on U.S. cities. Thus, my hypothesis is as pollution 

concentration increases in cities with bikeshare systems, riders will be discouraged from using the 

system to protect themselves from pollutant exposure, decreasing demand for bikeshare rides. 
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Alternatively, as pollution concentration increases, bikeshare demand may increase as a result of 

environmentally conscious consumers taking into account the need to reduce emissions and choose 

to use bikeshares in place of automotive transportation.  

 

In the next section, I will outline the relevant literature as it relates to bikeshare and my choice of 

methodology. In section 3 I outline the choice of data and data sources used. I describe my 

empirical strategy and its implications in section 4 and in section 5, I discuss my results and its 

impacts. Section 6 contains my robustness check of my empirical strategy and finally, I conclude 

my paper in section 7 by summarizing my results. 

 

 

2 Literature Review 

 

My paper will focus on the effects of pollution on the quantity demanded for bikeshare rides. The 

growing concern around pollution and last mile transportation has given rise to bikeshare systems 

popping up in nearly 800 major cities around the world (Fishman, 1). Bikeshares serve as a green 

alternative to personal automobiles and can efficiently navigate the dense cityscape. However, “the 

majority of scheme users are substituting from sustainable modes of transport rather than the car” 

(Fishman et al, 1). Thus, these subscribed users may already be quite environmentally conscious 

or interested in using cheaper forms of public transportation to get around. The former captures 

one hypothesis that as pollution worsens in cities with bikeshares, environmentally conscious 

citizens may choose to use bikeshares to lower their carbon footprint, thus increasing bikeshare 

demand as pollution increases. Alternatively, potential bikeshare users may be discouraged from 

using bikeshare systems over enclosed auto transport like trains, buses, or cars due to an increased 

level of pollution and potential health risks associated. Woodcock et al found that Particulate 



5 

 

Matter 2.5 exposure from average bikeshare rides in London were similar to that of the London 

underground. Overall, the health benefits for bikeshare systems including less injuries, more 

exercise, etc. outweigh harms like pollution exposure (Woodcock et al, 2014). My research will 

explore how the negative health effects of pollution exposure drives decision making around 

bikeshares. 

 

Such analysis has been conducted in the Chinese city of Taiyuan, which operates one of the most 

in demand bike-sharing schemes in China, and it was discovered that pollution had negative effects 

on bikeshare demand (Li and Kamargianni, 2018). My research will focus on American cities and 

their bikeshare systems, and thus, preferences amongst consumers may be different from Chinese 

consumers. In China, pollution levels are higher in metropolitan areas than compared to US cities 

and thus, an increased awareness of potential negative health effects may alter Chinese consumers 

decisions. Li and Kamargianni used stated preference surveys to analyze consumer transportation 

choices and constructed a nested logit model. In contrast, my research will used realized quantity 

demanded data and a 2-stage instrumental variable regression to capture the causal effect of 

increase pollution concentration on quantity demanded.  

 

Another key aspect in bikeshare system is convince and consumers consider many aspects when 

choosing to use a bikeshare. For example the use “‘personal credit’ rather than money if they do 

not return public bikes within the free use hours) and universal cards (integrating bikesharing 

systems into other urban transit systems through the use of a rechargeable smart card that can cover 

a range of payments and trips) can significantly raise bikesharing daily use and turnover rate” 

(Zhao et al., 2014). As a result, I choose to use fixed entity effects for each city and its respective 

bikeshare system to capture the unique characteristics of each system. In future research, one 
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should explore the impacts of each of these characteristics on rider demand, but that is outside the 

scope of this paper. 

 

Another key factor in bikeshare demand and overall transportation demand is weather effects. 

Martinez [2017] conducted a simple OLS regression on ride counts in the New York City’s Citi 

bikeshare system against several weather factors including precipitation, temperature, snowfall, 

etc. from 2013 to 2015. Obviously, Martinez’s coefficients may be bias due to factors covarying 

with error terms in the OLS, but they may inform us about general trends. In summary, ride counts 

decreased with precipitation and snowfall and increased with temperature (Martinez, 2017). 

Martinez also used simple ride counts to quantify demand which makes it difficult to compare to 

other cities and does not control for changing populations. However, other research has found that 

extremely high temperature decreases overall ridership and trip duration which is to be expected 

given possible health repercussions due to extremely heat like heat stroke (Gebhart and Noland, 

2013). Also, rain can have varying effects on quantity of rides demanded depending on its 

proximity to other forms of transportation like subway stations (Gebhart and Noland, 2014). 

Gebhart and Noland used log ride counts to quantify demand to control for outliers, but I will use 

ride count per 1000 residents in a city to control for population variation across cities. Few research 

papers compare several different cities and weather effects across each city like my research. I will 

also be including other weather factors that are not included in past literature like humidity, 

pressure, and dew point. In conjunction with weather effects, most literature relating to bikeshare 

demand includes seasonal dummies and also day of the week dummies to capture seasonal and 

weekday commute effects in the regression. Thus, I integrate fixed time effects in my instrumental 

variable regression as well as weekday dummies.  
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Finally, my 2 stage least square instrumental variable regression is based on Angrist and Imbens 

research to estimate average casual effect of variable treatment. The instrument must be valid or 

does not directly affect the potential outcomes and must monotone with respect to the treatment 

and outcome (Angrist and Imbens, 1995). Since my endogenous variable is pollution, I selected 

wind speed to be my instrument given that increased wind speed clear out particulate matter in a 

location, decreasing concentration of pollutants, and similar analysis has been conducted by 

Schwartz et al. [2017] in mortality rates in relation to pollution concentration. Similar to Card 

[1993], I use an interaction between wind speeds and day of week for my instrument to isolate 

variation in wind speed that do not direct effect ride quantity by multiplying a variable that does 

not vary with this direct effect. 

 

 

3 Data 

The empirical analysis is based on a city-by-day panel dataset built from multiple publicly 

available sources, from 2017-2019. Each city requires rideshare companies to publish ridership 

data including variables such as rides duration, start and end time, and rider type (casual or 

subscriber). The dataset is comprised of 5664 city-day-usertype observations from San Francisco, 

Los Angeles, Boston, and Washington DC. User type describes wether the users are subscriber or 

casual. 
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3.1 Quantity Demanded 

By using ridership data from each rideshare organization for each city, I was able to aggregate 

daily ride count for the past 3 years. However, rides differ in duration as well as product type 

because some rides are for one time use while others are subscription based.  

 

3.2 Treatment - Pollution 

I acquired pollution data through the EPA’s outdoor air quality database. I used a category of 

pollutant called Particulate Matter 2.5(PM2.5) which are tiny particles smaller than two and half 

microns and is produced from burning fuels in cars, buses, trains, etc. These particles can also be 

produced from burning wood in forest fires. In each city, there are multiple sensor sites dispersed 

across the city and I took an average for over each day-site observation to get an averaged PM2.5 

concentration (ug/m3). 

 

3.3 Weather Control 

It is clear by looking at Figure 1 that the ride counts data is very seasonal and this may be a result 

of changes in temperature, humidity, pressure, precipitation and my instrument, wind speed. To 

account for this, I pulled daily weather data for each city from OpenWeatherMaps and merged it 

will the ridership data for each city-day observation. 
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3.4 Population 

I was able to acquire projected total population for each city in 2018 from the United States Census 

Bureau. These projections are based on the 2010 national census and historical growth in each city. 

I was unable to find projections for 2017 and 2019 and in future analysis, I would use these 

population data points to properly calculate the ride count per 1000 residents. 

 

3.5 Summary Statistics 

Table 1 presents the means, standard deviations, quantiles, minimum, and maximum of the 

variables used in the empirical analysis. 

 

Table 1: Summary Statistics Table for All Cities 
Variables Obs. Mean Std. Dev. Min 25% 50% 75% Max 

Count 2764 6489.196093 4199.35859 21 3062.75 5997 9612.25 19113 

Daily Mean 
PM2.5 
Concentration 

2764 8.084515 8.06006 -2.9 4.4 6.8 10.1 172.6 

Temperature 2764 57.865449 15.834352 5.9 46.9 59.6 70.125 94.2 

Dew Point 2764 45.48987 17.356372 -12.3 34.575 48.6 57.8 76.9 

Humidity 2764 66.47424 15.30103 9.7 55.9 67.5 78 99.9 

Wind Speed 2764 9.868017 4.065388 1.2 7 9.3 12.2 37.9 

Pressure 2764 29.975796 0.277593 27.5 29.9 30 30.1 30.7 

Precipitation 2764 0.10415 0.31466 0 0 0 0.02 4 

Count per 1000 2764 9.051215 6.097057 0.030238 4.070916 8.224996 13.745631 27.210991 

Year 2764 2017.81259 0.762143 2017 2017 2018 2018 2019 
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4 Empirical Strategy 

4.1 Model 

The proposed empirical strategy aims to capture the effects of pollution on the quantity of rides 

per 1000 residents.   

𝑅𝑖𝑑𝑒𝑠𝑖,𝑡 = 𝜌 ∗ 𝑝𝑜𝑙𝑖,𝑡 + 𝑋𝑖,𝑡
′ ∗ 𝜔 + 𝛼𝑖 + 𝜃𝑡 + 𝜀𝑖,𝑡 

𝑝𝑜𝑙𝑖,𝑡 = 𝛽 ∗ 𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑖,𝑡 ∗ 𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘𝑡 +  𝑋𝑖,𝑡
′ ∗ 𝛿 + 𝛼𝑖 + 𝜃𝑡 + 𝜂𝑖,𝑡 

Where quantity 𝑅𝑖𝑑𝑒𝑠𝑖,𝑡 is the number of rides per 1000 residents in city i on day t. The two 

equations above describe and 2 stage least squares instrumental variable regression with wind 

speed as the instrument for pollution concentration.  𝑝𝑜𝑙𝑖,𝑡 is the variable for pollution 

concentration and 𝜌 is the approximate change from an unit increase in PM2.5 concentration. 𝑋𝑖,𝑡
′   

are the controls for temperature, humidity, pressure, and precipitation, accounting for variation in 

weather. 𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑖,𝑡 ∗ 𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘𝑡 is the instrumental variable for pollution concentration and 

𝛽 is the instrumental variable estimator.  𝛿 are the coefficients associated with the weather controls 

in the second equation. Also, a city dummy, 𝛼𝑖, is included to serve as a fixed entity effect to 

account for the different intercepts of each bikeshare’s demand curve and a seasonal dummy, 𝜃𝑡, 

is included to account for time variation and seasonal effects. Finally, 𝜀𝑖,𝑡 term is the city-day error 

in the first equation and 𝜂𝑖,𝑡 is the city-day error in the second equation. 
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4.2 Identifying assumption 

As I mentioned in my model section, I will be using instrumental variable framework to find an 

estimator for the treatment of pollution. There are two fundamental assumption in instrumental 

variable regression: 

1) The instrument must be uncorrelated with the error term, 𝜀𝑖,𝑡 

2) The instrument must be correlated with the casual term, 𝑝𝑜𝑙𝑖,𝑡 

Wind speed-day of week interaction satisfies the first condition because it is most likely unrelated 

to ride counts because riders are not taking into consideration general wind patterns on a particular 

day when deciding to ride, so it cannot explain any of the variation in the error term. Although a 

rider might consider wind speeds in their decision, the direct effect of wind speeds on the decision 

to ride or not does not vary by day of the week. After all the direct effects of wind speed and day 

of the week are controlled for, we do not expect the interaction to explain any variability in rides 

demanded and its error term. As a result, both wind speed and day of the week indicators can be 

used as an instrument for rides demanded.  

The second condition is satisfied because wind speeds are inversely related to pollution 

concentration. Higher wind speeds prevent the particulate matter from staying in one place, 

decreasing concentration. In the simple case which wind speed is an indicator and we have 

weekend indicator (𝑊, 𝑆) for the instrument, we get the following equation for 𝛽: 

𝛽 = 𝐸[𝑝𝑜𝑙|𝑊 = 1, 𝑆 = 1] − 𝐸[𝑝𝑜𝑙|𝑊 = 1, 𝑆 = 0] − {𝐸[𝑝𝑜𝑙 | 𝑊 = 0, 𝑆 = 1] − 𝐸[𝑝𝑜𝑙|𝑊 = 0, 𝑆 = 0]} 

This equation can be interpreted as the difference-in-difference of windy days on weekdays and 

weekends. Weekends will have a lower level of pollution due to traffic and windy days should 

have a lower concentration of pollution. Thus, the difference of pollution on windy days on a 
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weekday and weekend, the first two terms, is negative and the difference of pollution on a non-

windy days on a weekday and weekend, is also negative but slightly different due wind being more 

effective in clearing pollution concentration when congestion levels differ. Thus, 𝛽 should be non-

zero and our instrument and pollution must be highly correlated. This can be seen in Figure 2 from 

the peaks and trough of each line illustrate the negative correlation.  

Figure 2: Wind Speed and Pollution Comparison over Time in DC 

 

 

 

5 Results 

Table 2 provides the estimated coefficients of the daily mean PM2.5. concentration and weather 

controls. Each column utilized different combination of fixed effects including day of week, year-

month, and city. 
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Column 1 has none of the three controls. Columns 2, 3, and 4 include city, year-month and day of 

the week, respectively. Column 5 includes city and year-month dummies. Column 6 includes city 

and day of week dummies. Column 7 includes day of week and year-month dummy. Finally, 

column 8 controls for all fixed effects. 

Column 8 is the preferred specification because it uses all the controls. These results are 

inconsistent with my hypothesis of the effects of pollution on ride demand. In all of the columns 

𝜌 is estimated to be positive, meaning a unit increase in pollution concentration will result in an 

increase in rides. Looking at column 8, 𝜌 is 0.215, meaning a unit increase in pollution 

concentration will approximately increase rides per million residents by 0.215.   

I found these results odd, so I conducted on OLS regression and its results are in Table 3. In stark 

contrast to the IV regression’s coefficient for pollution concentration is -0.0106, meaning as 

pollution concentration increases, rides per 1000 residents decreases. The OLS coefficient is bias 

when the factor covaries with the error term, so in order to control for such covariance that may 

be caused by an omitted variable, economist use IV regression to acquire the true coefficient. In 

the simple univariate case, we have the following formula: 

𝜌 = 𝜌𝑜𝑙𝑠 +
𝑐𝑜𝑣(𝜀𝑖,𝑡, 𝑝𝑜𝑙)

𝑣𝑎𝑟(𝑝𝑜𝑙)
 

Plugging in our formula for 𝑝𝑜𝑙, we see that the second term becomes covariance between 𝜀 and 

𝜂. In this case, we see that the OLS coefficient is higher than the IV regression, so the covariant 

term between the error of the regression and pollution concentration must be negative. Thus, a 

possible omitted variable might covary negatively with pollution concentration and explain a 

positive increase in rides per 1000 resident. One possible candidate for such an effect is demand 

for automobile. Shocks in automobile demand could explain changes in pollution and effect 
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demand for bikeshares. For example, these shocks would negatively correlate with unobserved 

bikeshare demand effects in the error term satisfying the first requirement and it would also explain 

an increase in rides because commuters may be choosing to forgo their cars to use bikeshares. I 

even conducted a similar IV regression on each individual city and found similar results, strongly 

contradicting my hypothesis.  

 

 

6 Robustness Check 

I conducted to robustness checks, a test for endogeneity and instrument strength, to ensure the 

stability of my regression analysis. 

 

6.1 Endogeneity 

In order to check if my casual variable pollution concentration is truly endogenous, I test the null 

hypothesis of exogeneity through the Durbin and Wu-Hausmen scores. In both cases, each had a 

p-value less than 0.05 and are therefore statistically significant. Thus, I reject the null hypothesis 

that pollution concentration is exogenous with respects to rides per 1000 residents. 

 

6.2 Instrument Strength 

In order to check the strength of wind speed as an instrumental variable for pollution concentration, 

I conduct a Wald test at a 5% threshold and compare it to my F-statistic. The results show that my 

F-statistic 638.3 and my Wald test threshold is 15.4. Since my F-statistics is significantly higher 
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than the Wald test threshold, I can confidently say that wind speed is a strong instrument for 

pollution concentration. However, my partial r-squared statistics was low at 0.25. 

 

6.3 Limitations 

One explanation for this result may be that by not adjusting the population for year 2017 and 2019, 

I do not control for change in population and in major cities, population will most likely grow year 

over year. A high population and population density may result in higher pollution concentration 

and more rides. Also, wind speeds can affect rides per 1000 residents through the different weather 

controls and thus, the instrumental variable regression cannot properly control for pollution 

concentration. One way to solve this specific issue is to remove the weather controls that are 

affected by wind speed. Finally, day of the week may vary with the direct effect wind speed has 

on ride demand which would make the instrument invalid. 

 

7 Conclusion 

This paper provides evidence for positive effects of particulate matter 2.5 concentration on 

bikeshare quantity demanded. Rather than increased pollution concentration deterring individuals 

from utilizing the bikeshare service in order to protect their health, increased pollution 

concentration may encourage them to act and reduce emission by using bikeshares to decrease 

overall pollution that they may see in their cities. This research also contributes to the ongoing 

transportation literature relating to last mile commutes and possible alternatives to automobile 

transportation. 
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I implement a 2-stage instrumental variable regression with pollution concentration as my 

endogenous variable and wind speed in miles per hour and day of week indicators to establish a 

causal relationship between pollution concentration and bikeshare rides per 1000 resident in a city. 

To provide supporting evidence for my analysis, I conduct 2 robustness checks for endogeneity 

and instrument strength and each bolster my argument by providing statistically significant results. 

I also compared the IV regression results to that of an OLS to explain possible discrepancies. From 

the results, I estimate that a microgram per cubic meter increase in PM2.5 increase rides per 1000 

resident by 0.215. This translates to 215 rides for a city population of 1 million. 

These results should encourage wider adoption of bikeshare systems in cities across the United 

States. By creating bikeshare infrastructure, cities can allow commuters to have a green alternative 

to transportation as pollution in cities increases. In conjunction with Woodcock et al., this research 

shows that as pollution concentration increases more rides are taken, improving those riders’ 

overall health despite exposure to pollution.  

  

8 References 

Angrist, Joshua, and Guido Imbens. “Identification and Estimation of Local Average Treatment 

Effects.” Econometrica, Feb. 1995, doi:10.3386/t0118. 

Card, David. “Using Geographic Variation in College Proximity to Estimate the Return to 

Schooling.”  Aspects of Labour Economics, 1993, doi:10.3386/w4483. 

Fishman, Elliot, Simon Washington & Narelle Haworth (2013) Bike Share: A Synthesis of the 

Literature, Transport Reviews, 33:2, 148-165, DOI: 10.1080/01441647.2013.775612 



17 

 

Fishman, Elliot (2016) Bikeshare: A Review of Recent Literature, Transport Reviews, 36:1, 92-

113, DOI: 10.1080/01441647.2015.1033036 

Gebhart, Kyle, and Robert B. Noland. The impact of weather conditions on capital bikeshare trips. 

No. 13-0563. 2013. 

Gebhart, Kyle, and Robert B. Noland. The impact of weather conditions on bikeshare trips in 

Washington, DC. Transportation 41, 1205–1225 (2014) doi:10.1007/s11116-014-9540-7 

Hamilton, Timothy and Wichman, Casey, Bicycle Infrastructure and Traffic Congestion: Evidence 

from DC's Capital Bikeshare (August 20, 2015). Resources for the Future Discussion Paper 15-

20. Available at SSRN: https://ssrn.com/abstract=2649978 

Li, Weibo, and Maria Kamargianni. “Air Pollution and Seasonality Effects on Mode Choice in 

China.” Transportation Research Record: Journal of the Transportation Research Board, vol. 

2634, no. 1, 1 Jan. 2017, pp. 101–109., doi:10.3141/2634-15. 

Mitchell, W.J., Borroni-Bird, C.E., Burns, L.D., Reinventing the Automobile-Personal Urban 

Mobility for the 21st Century, The MIT Press, March 2010. 

Martinez, Mark (2017) "The Impact Weather Has on NYC Citi Bike Share Company Activity," 

Journal of Environmental and Resource Economics at Colby: Vol. 4: Issue 1, Article 12. 

Schwartz J, Bind MA, Koutrakis P. 2017. Estimating causal effects of local air pollution on daily 

deaths: effect of low levels. Environ Health Perspect 125:23–29 

Woodcock, J., et al. “Health Effects of the London Bicycle Sharing System: Health Impact 

Modelling Study.” Bmj, vol. 348, no. feb13 1, 2014, doi:10.1136/bmj.g425. 



18 

 

Zhao, Jinbao, et al. “Ridership and Effectiveness of Bikesharing: The Effects of Urban Features 

and System Characteristics on Daily Use and Turnover Rate of Public Bikes in China.” Transport 

Policy, vol. 35, Oct. 2014, pp. 253–264., doi:10.1016/j.tranpol.2014.06.008. 

9 Appendix 

9.1 Data – Variable construction and sources 

Cities were chosen based on data availability online and if the bikeshare system in each city had 

been operating during the time period between 2017-2019. 

 

9.1.1 Quantity Demanded 

Each dataset was similarly structured which made aggregation quite easy. Each row of the dataset 

was a particular trip with various additional information outlined in the data section. I grouped 

each trip by start date and counted each trip to obtain date-count observation for each city from 

2017-2019. Some of the bikeshare systems had data from years prior to 2017, but I choose not to 

use them because the system was not well developed. 

 

9.1.2 Pollution Concentration 

The EPA pollution concentration dataset included observations from multiple sensor station in 

each city and at multiple different times in the day. Each of these observations were again grouped 

by date and given equal weight when averaged and these averaged daily pollution concentrations 

were used in the IV regression. 
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9.1.3 Weather Control 

OpenWeatherMaps provides online datasets for daily averaged weather observations for many 

cities across the United States. I collected data for each city and day in the ridership dataset. Data 

was collected from a single sensor station. Further research should attempt to aggregate daily 

weather data across several stations in a city or stations close to bikeshare docks. 

 

9.2 Figures and Tables 

Figure 1: Counts of rides per day in San Francisco from July 2017 to December 2018 
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Table 2: Pollution IV Regression Results 

 

 

  (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES countper1000 countper1000 countper1000 countper1000 countper1000 countper1000 countper1000 countper1000 

                  

dailymeanpm25concentration 1.279** 1.131** 1.425* 0.290* 1.229* 0.199* 0.338* 0.215* 

 (0.612) (0.517) (0.799) (0.206) (0.639) (0.150) (0.219) (0.157) 

temperature 0.298 0.280* 0.200 -0.0219 0.179 0.0243 -0.0390 -0.00101 

 (0.212) (0.155) (0.193) (0.0721) (0.133) (0.0463) (0.0564) (0.0355) 

dewpoint -0.260 -0.239 -0.208 0.141 -0.179 0.0801 0.148* 0.0833* 

 (0.260) (0.189) (0.275) (0.0881) (0.180) (0.0557) (0.0779) (0.0467) 

precipitation 4.069*** 2.095** 4.586** 1.882*** 2.565* 0.425 1.903*** 0.430 

 (1.439) (1.020) (2.048) (0.489) (1.425) (0.301) (0.572) (0.359) 

humidity 0.0818 0.0820 0.0666 -0.0905** 0.0531 -0.0630** -0.0872** -0.0635*** 

 (0.113) (0.0863) (0.120) (0.0384) (0.0812) (0.0255) (0.0343) (0.0211) 

pressure 5.129*** 2.039** 5.492*** 4.731*** 2.094** 0.939*** 4.622*** 0.833*** 

 (0.557) (0.890) (0.858) (0.202) (1.064) (0.273) (0.264) (0.288) 

windspeed 0.735** 0.606** 0.724* 0.160 0.583* 0.0657 0.157 0.0524 

 (0.356) (0.300) (0.416) (0.120) (0.335) (0.0876) (0.115) (0.0827) 

2.ucod 5.285*** 5.335*** 5.267*** 5.283*** 5.319*** 5.346*** 5.285*** 5.345*** 

 (0.271) (0.232) (0.290) (0.101) (0.245) (0.0769) (0.103) (0.0767) 

Constant -180.8*** -84.39** -189.3*** -143.3*** -82.89** -29.54*** -140.6*** -26.34** 

 (28.68) (36.64) (40.42) (9.853) (41.99) (10.91) (11.68) (10.93) 

         
City dummy No Yes No No Yes Yes No Yes 

Year Month dummy No No Yes No Yes No Yes Yes 

Day of Week dummy No No No Yes No Yes Yes Yes 

Observations 5,664 5,664 5,664 5,664 5,664 5,664 5,664 5,664 

R-squared       0.301   0.598 0.272 0.601 

Standard errors in 
parentheses         
*** p<0.01, ** p<0.05, * p<0.1         
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Table 3: Pollution OLS Regression Result 

  (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES countper1000 countper1000 countper1000 countper1000 countper1000 countper1000 countper1000 countper1000 

                  

dailymeanpm25concentration -0.0293*** -0.0127*** -0.0220*** -0.0301*** -0.0101*** -0.0134*** -0.0226*** -0.0106*** 

 (0.00439) (0.00378) (0.00397) (0.00433) (0.00346) (0.00374) (0.00389) (0.00339) 

temperature -0.120*** -0.0266 -0.112*** -0.124*** -0.0331 -0.0323 -0.116*** -0.0393* 

 (0.0242) (0.0218) (0.0243) (0.0241) (0.0223) (0.0218) (0.0242) (0.0222) 

dewpoint 0.265*** 0.145*** 0.261*** 0.269*** 0.135*** 0.151*** 0.264*** 0.140*** 

 (0.0252) (0.0229) (0.0255) (0.0251) (0.0237) (0.0229) (0.0254) (0.0237) 

precipitation 1.149*** 0.0138 0.983*** 1.171*** -0.0771 0.0403 1.006*** -0.0494 

 (0.142) (0.120) (0.134) (0.138) (0.121) (0.115) (0.131) (0.116) 

humidity -0.144*** -0.0927*** -0.136*** -0.145*** -0.0864*** -0.0952*** -0.137*** -0.0887*** 

 (0.0118) (0.0105) (0.0119) (0.0117) (0.0108) (0.0105) (0.0119) (0.0108) 

pressure 4.564*** 0.624*** 4.294*** 4.602*** 0.487*** 0.685*** 4.330*** 0.549*** 

 (0.191) (0.181) (0.198) (0.189) (0.178) (0.178) (0.196) (0.176) 

windspeed -0.0219** -0.0551*** -0.0258** -0.0255** -0.0626*** -0.0573*** -0.0301*** -0.0654*** 

 (0.0101) (0.00941) (0.0104) (0.01000) (0.00956) (0.00921) (0.0103) (0.00934) 

2.ucod 5.281*** 5.349*** 5.290*** 5.282*** 5.351*** 5.349*** 5.291*** 5.351*** 

 (0.0789) (0.0664) (0.0765) (0.0782) (0.0650) (0.0655) (0.0758) (0.0642) 

Constant -130.2*** -15.50*** -123.6*** -131.3*** -12.16** -17.08*** -124.6*** -13.75** 

 (6.251) (5.651) (6.413) (6.208) (5.583) (5.563) (6.372) (5.507) 

         
City dummy No Yes No No Yes Yes No Yes 

Year Month dummy No No Yes No Yes No Yes Yes 

Day of Week dummy No No No Yes No Yes Yes Yes 

Observations 5,664 5,664 5,664 5,664 5,664 5,664 5,664 5,664 

R-squared 0.565 0.706 0.594 0.574 0.719 0.714 0.603 0.726 

Robust standard errors in parentheses        
*** p<0.01, ** p<0.05, * 
p<0.1         
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Table 4: Boston and Washington DC Pollution IV Regression Results 

City Boston Washington DC 

  (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES countper1000 countper1000 countper1000 countper1000 countper1000 countper1000 countper1000 countper1000 

                  

dailymeanpm25concentration 2.097** 1.964** -0.0341 -0.276* 1.378** 1.610** -0.0642 -0.0559* 

 (1.064) (0.933) (0.210) (0.154) (0.620) (0.754) (0.309) (0.328) 

temperature 0.771 0.457 -0.207** -0.131** 0.480** 0.389* 0.112 0.00493 

 (0.510) (0.281) (0.105) (0.0579) (0.214) (0.235) (0.0968) (0.0937) 

dewpoint -0.924 -0.741* 0.331** 0.240*** -0.396* -0.411 0.0189 0.135 

 (0.644) (0.433) (0.131) (0.0804) (0.233) (0.299) (0.106) (0.122) 

precipitation 3.541** 3.171** 0.456 -0.365 2.806** 3.355** -0.131 0.0454 

 (1.651) (1.560) (0.343) (0.285) (1.338) (1.576) (0.653) (0.673) 

humidity 0.404 0.303 -0.169*** -0.123*** 0.0460 0.0144 -0.0607* -0.114*** 

 (0.293) (0.187) (0.0595) (0.0347) (0.0809) (0.0940) (0.0346) (0.0362) 

pressure 0.923 -0.782 0.707*** 0.418** 0.545 -1.363 0.326 0.361 

 (0.754) (0.816) (0.205) (0.212) (0.735) (1.092) (0.291) (0.435) 

windspeed 0.429* 0.357* -0.0742 -0.112*** 0.630* 0.671* -0.143 -0.170 

 (0.254) (0.198) (0.0511) (0.0343) (0.334) (0.383) (0.167) (0.167) 

2.ucod 4.405*** 4.409*** 4.433*** 4.436*** 8.286*** 8.286*** 8.286*** 8.286*** 

 (0.320) (0.271) (0.0869) (0.0800) (0.278) (0.298) (0.109) (0.105) 

Constant -73.63* -9.554 -10.15 -5.052 -44.47 15.56 -8.957 -5.241 

 (39.76) (21.05) (9.065) (6.240) (28.76) (27.11) (12.31) (9.948) 

         
Year Month dummy No Yes No Yes No Yes No Yes 

Day of Week dummy No No Yes Yes No No Yes Yes 

Observations 1608 1608 1608 1608 1410 1410 1410 1410 

R-squared 0.656 0.711 0.677 0.726 0.719 0.714 0.787 0.801 

Robust standard errors in parentheses        

*** p<0.01, ** p<0.05, * p<0.1         
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Table 5: Los Angeles and San Francisco Pollution IV Regression Results 

City Los Angeles San Francisco 

  (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES countper1000 countper1000 countper1000 countper1000 countper1000 countper1000 countper1000 countper1000 

                  

dailymeanpm25concentration 0.000635 0.000358 0.00222 0.00144 0.00791 -0.182* 0.00949 0.00749 

 (0.00476) (0.00465) (0.00397) (0.00425) (0.0692) (0.102) (0.0367) (0.0246) 

temperature 0.000867 -0.000590 0.000978 -0.000549 -0.0249 -0.160 0.00255 -0.0209 

 (0.000918) (0.00116) (0.000959) (0.00120) (0.0694) (0.122) (0.0596) (0.0543) 

dewpoint -2.71e-05 0.000260 -0.000652 -0.000284 0.0397 -0.0312 0.00694 0.0354 

 (0.00190) (0.00264) (0.00174) (0.00252) (0.0654) (0.125) (0.0604) (0.0569) 

precipitation -0.0263 -0.0130 -0.0205 -0.00961 -0.593 -0.689 -0.811** -0.268 

 (0.0463) (0.0499) (0.0455) (0.0516) (0.478) (0.587) (0.332) (0.246) 

humidity 7.23e-05 -0.000345 0.000338 -0.000114 -0.0228 -0.0621 -0.00717 -0.0220 

 (0.000859) (0.00115) (0.000844) (0.00115) (0.0319) (0.0540) (0.0282) (0.0258) 

pressure -0.0142 0.0106 -0.00143 0.0213 -0.319 -1.057 -0.275 0.799 

 (0.0445) (0.0516) (0.0419) (0.0520) (1.127) (1.316) (0.737) (0.500) 

windspeed -0.000468 -2.54e-05 -0.000166 9.49e-05 0.0492 -0.242* 0.0572 0.00102 

 (0.00126) (0.00125) (0.00127) (0.00130) (0.0750) (0.129) (0.0415) (0.0337) 

2.ucod 0.0139*** 0.0142*** 0.0141*** 0.0142*** 3.483*** 3.483*** 3.483*** 3.483*** 

 (0.00488) (0.00477) (0.00494) (0.00479) (0.101) (0.162) (0.0933) (0.0791) 

Constant 0.388 -0.247 0.00274 -0.566 11.02 48.02 8.700 -24.39 

 (1.317) (1.523) (1.243) (1.539) (37.75) (46.95) (24.25) (16.71) 

         
Year Month dummy No Yes No Yes No Yes No Yes 

Day of Week dummy No No Yes Yes No No Yes Yes 

Observations 1130 1130 1130 1130 1380 1380 1380 1380 

R-squared 0.063 0.097 0.035 0.088 0.529   0.598 0.711 

Robust standard errors in parentheses        

*** p<0.01, ** p<0.05, * p<0.1         
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