LECTURE 16 TECHNOLOGICAL CHANGE AND ECONOMIC GROWTH March 17, 2020

I. POTENTIAL OUTPUT AND LONG-RUN ECONOMIC GROWTH

- A. The critical importance of potential output to long-run outcomes
- B. The enormous variation in potential output per person across countries and over time
- C. The long-run consequences of small differences in growth rates
- D. Discussion of the paper by William Nordhaus
- E. Review of our aggregate production function framework

II. EXPLAINING THE VARIATION IN THE LEVEL OF Y*/POP ACROSS COUNTRIES

- A. Limited contribution of N*/POP
- B. Crucial role of normal capital per worker (K*/N*)
- C. Crucial role of technology—especially institutions

III. EXPLAINING THE GROWTH IN Y*/POP OVER TIME

- A. Limited contribution of N*/POP
- B. Important, but limited contribution of K*/N*
- C. Crucial role of technological change

IV. HISTORICAL EVIDENCE OF TECHNOLOGICAL CHANGE

- A. New production techniques
- B. New goods
- C. Better institutions

V. SOURCES OF TECHNOLOGICAL PROGRESS

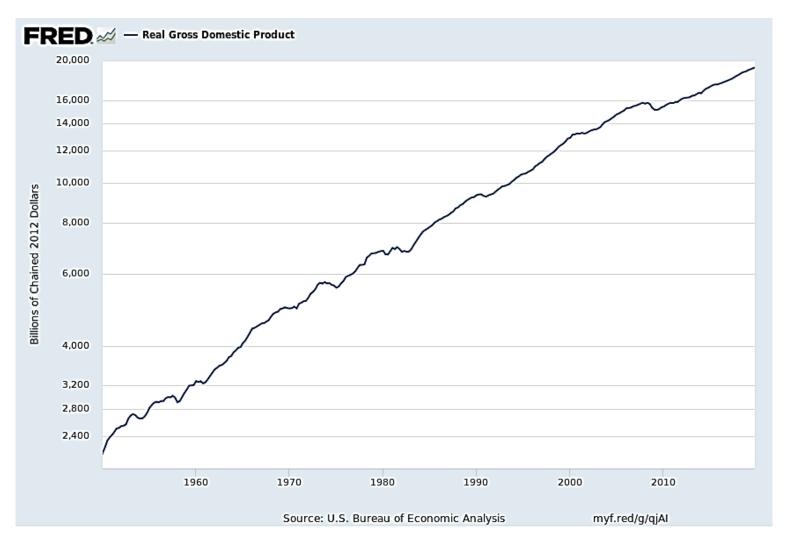
- A. Factors that affect technological progress
- B. Does the market produce the efficient amount of invention?
- C. Policies to encourage technological progress

LECTURE 16

Technological Change and Economic Growth

March 17, 2020

Announcements


- Problem Set 4, Part 1 is due now.
 - If you were not able to complete it on time, please contact your GSI.
- Problem Set 4, Part 2 will be posted after lecture today.
 - It is due Tuesday, March 31, at 2 P.M.
 - The ground rules are the same as on previous problem sets.

Announcements

- Research reading for Thursday, March 19 (by Claudia Goldin and Lawrence Katz):
 - Read only the assigned pages.
 - Read for approach and findings.
- Professor office hours this week:
 - Our usual office hours: W, 1–3 P.M.
 - Extra meeting to discuss economic issues related to coronavirus: Th, starting at 4 P.M.

I. POTENTIAL OUTPUT AND LONG-RUN GROWTH

Real GDP in the United States, 1950–2019

Source: FRED (Federal Reserve Economic Data); data from Bureau of Economic Analysis.

The Critical Importance of Potential Output to Long-Run Outcomes

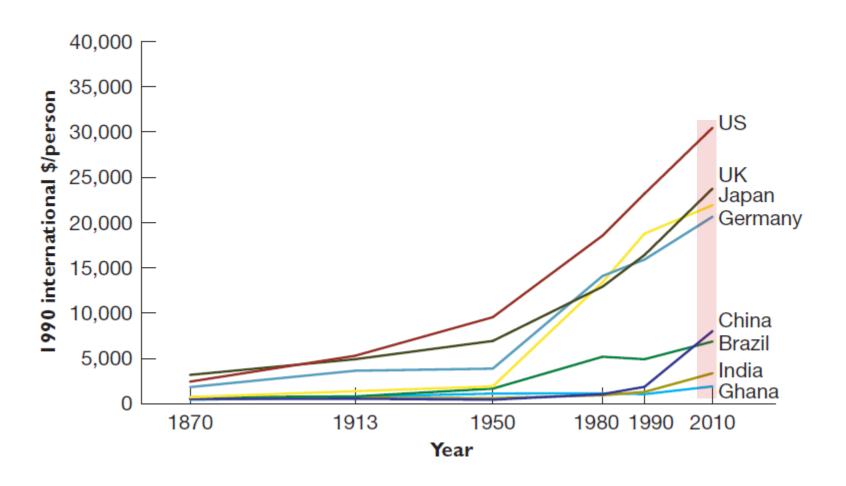
- In the short run (in recessions and booms), the economy's use of its available resources can be above or below normal; this is central to short-run fluctuations.
- In the long run, output is determined by the economy's available resources.
- We call the amount of output the economy produces when using its resources at normal rates "potential output" (or "normal output"), denoted Y*.

Variation in Potential Output per Person

- Differs enormously across countries.
- In many (but not all) countries, it has grown enormously over time.

Issues Relating to Potential Output

- The *level* of potential output per person.
 - This is an indicator of standards of living.
 - It differs enormously across countries.
 - What are the reasons for this variation?
- The growth rate of potential output per person over time.
 - In many (but not all) countries, it has grown enormously over time.
 - Over time, small differences in normal growth can have large impacts on standards of living.


The Long-Run Consequences of Small Differences in Growth Rates

- Suppose countries A and B start with the same real income per capita.
- But annual growth in real income per capita is 1 percentage point higher in A than in B (for example, 1% vs. 0, or 2% vs. 1%).

Real Income per Capita in Country A Relative to Country B

- After 1 year: It is 1% higher.
- After 2 years: It is slightly more than 2% higher
 (1.01•1.01 = 1.0201. So it is 2.01% higher.)
- After 70 years: It is twice as high $(1.01^{70} \approx 2)$.
- After 2 centuries: It is more than 7 times higher $(1.01^{200} \approx 7.3)$.

GDP per Capita in 8 Countries since 1870

Source: Frank, Bernanke, Antonovics, and Heffetz, Principles of Economics.

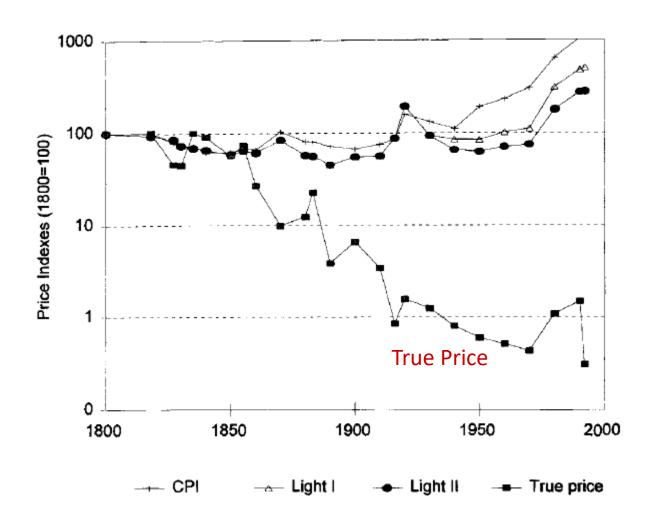
Paper by William Nordhaus

- Argues that growth of real GDP in U.S. over the last two centuries may have been faster than conventionally measured.
- Related to mismeasurement in price indexes.

Consumer Price Index

 A measure of the overall or aggregate level of prices.

$$CPI_t = \frac{Price \text{ of market basket in year t}}{Price \text{ of market basket in base year}}$$


Paper by William Nordhaus

- What problems does Nordhaus see with typical price measures?
 - There may be quality changes.
 - New goods are being introduced all the time.
- What example does he use to illustrate the likely importance of these problems?
 - Lighting.

			Lighting Efficiency	
Device	Stage of Technology	Approximate Date	(lumens per watt)	(lumen-hours per 1,000 Btu)
Open firea	Wood	From earliest time	0.00235	0.69
Neolithic lamp ^b	Animal or vegetable fat	38,000-9000 в.с.	0.0151	4.4
Babylonian lamp ^a	Sesame oil	1750 в.с.	0.0597	17.5
Candle	Tallow	1800	0.0757	22.2
	Sperm	1800	0.1009	29.6
	Tallow	1830	0.0757	22.2
	Sperm	1830	0.1009	29.6
Lamp	Whale oild	1815-45	0.1346	39.4
	Silliman's experiment:			
	Sperm oile	1855	0.0784	23.0
	Silliman's experiment:			
	Other oils ^f	1855	0.0575	16.9
Town gas	Early lamp ⁸	1827	0.1303	38.2
•	Silliman's experiment	1855	0.0833	24.4
	Early lampe	1875-85	0.2464	72.2
	Welsbach mantle	1885-95	0.5914	173.3
	Welsbach mantle	1916	0.8685	254.5
Kerosene lamp	Silliman's experimente	1855	0.0498	14.6
•	19th century ^h	1875-85	0.1590	46.6
	Coleman lanterni	1993	0.3651	107.0
Electric lamp				
Edison carbon	Filament lamp	1883	2.6000	762.0
Advanced	•			
carbon	Filament lamp ⁱ	1900	3.7143	1,088.6
	Filament lamp ^j	1910	6.5000	1,905.0
Tungsten	Filament lamp ⁱ	1920	11.8182	3,463.7
J	Filament lampi	1930	11.8432	3,471.0
	Filament lamp	1940	11.9000	3,487.7
	Filament lampk	1950	11.9250	3,495.0
	Filament lamp ^k	1960	11.9500	3,502.3
	Filament lamp ^k	1970	11.9750	3,509.7
	Filament lamp ^k	1980	12.0000	3,517.0
	Filament lamp	1990	14.1667	4,152.0
Compact		-		,
fluorescent	First generation bulb ^m	1992	68.2778	20,011.1

Source: Nordhaus, "Do Real-Output and Real-Wage Measures Capture Reality?"

Alternative Light Prices

Source: Nordhaus, "Do Real-Output and Real-Wage Measures Capture Reality?"

Why Mismeasurement of Inflation Leads to Mismeasurement of Growth

$$\frac{\text{Real GDP in year } t_2}{\text{Real GDP in year } t_1} = \frac{\frac{\text{Nominal GDP}_{t_2}}{\text{GDP Price Index}_{t_2}}}{\frac{\text{Nominal GDP}_{t_1}}{\text{GDP Price Index}_{t_1}}}$$

$$= \frac{\text{Nominal GDP}_{t_2}}{\text{Nominal GDP}_{t_2}} \bullet \frac{\text{GDP Price Index}_{t_1}}{\text{GDP Price Index}_{t_2}}$$

- If the growth of the price index from year t₁ to year t₂ is overstated, the growth of real GDP is understated.
- The same argument applies to the growth of real wages.

Were You Persuaded by Nordhaus?

Review of Our Aggregate Production Function Framework

- The Three Key Determinants of Potential Output:
 - Labor
 - Capital
 - Technology

Decomposition of Potential Output per Person

$$\frac{\mathsf{Y}^*}{\mathsf{POP}} = \frac{\mathsf{Y}^*}{\mathsf{N}^*} \bullet \frac{\mathsf{N}^*}{\mathsf{POP}}$$

where:

- Y* is potential output;
- POP is population;
- N* is normal employment.
- $\frac{N^*}{POP}$ is the normal employment-to-population ratio.
- $\frac{Y^*}{N^*}$ is normal average labor productivity.

Determinants of Average Labor Productivity

$$\frac{Y^*}{N^*} = f\left(\frac{K^*}{N^*}, T\right)$$

- $\frac{K^*}{N^*}$ is normal capital per worker.
- T is technology.

Aggregate Production Function

$$\frac{Y^*}{POP} = \frac{Y^*}{N^*} \cdot \frac{N^*}{POP}$$

(2)
$$\frac{Y^*}{N^*} = f\left(\frac{K^*}{N^*}, T\right)$$

(3)
$$\frac{Y^*}{POP} = f\left(\frac{K^*}{N^*}, T\right) \cdot \frac{N^*}{POP}$$

What This Is Saying in Words

- Normal output per person is the product of the normal employment-to-population ratio and normal output per worker.
 - One implication: For a given level of normal output per worker, normal output per person is proportional to the normal employment-topopulation ratio.
- Normal output per worker depends on two main things:
 - Normal capital per worker.
 - Technology.

II. EXPLAINING THE VARIATION IN THE LEVEL OF POTENTIAL OUTPUT PER PERSON ACROSS COUNTRIES

Contribution of the Employment-to-Population Ratio

$$\frac{Y^*}{POP} = f(\frac{K^*}{N^*}, T) \cdot \frac{N^*}{POP}$$

- It can certainly matter, but its effects are limited.
- It doesn't vary that much across countries.

TABLE 1.1 STATISTICS ON GROWTH AND DEVELOPMENT							
	GDP per capita, 2008	GDP per worker, 2008	Labor force participation rate, 2008	Average annual growth rate, 1960–2008	Years to double		
"Rich" countries							
United States	\$43,326	\$84,771	0.51	1.6	43		
Japan	33,735	64,778	0.52	3.4	21		
France	31,980	69,910	0.46	2.2	30		
United Kingdom	35,345	70,008	0.51	1.9	36		
Spain	28,958	57,786	0.50	2.7	26		
"Poor" countries							
China	6,415	10,938	0.59	5.6	13		
India	3,078	7,801	0.39	3.0	24		
Nigeria	1,963	6,106	0.32	0.6	114		
Uganda	1,122	2,604	0.43	1.3	52		
"Growth miracles"							
Hong Kong	37,834	70,940	0.53	4.3	16		
Singapore	49,987	92,634	0.54	4.1	17		
Taiwan	29,645	62,610	0.47	5.1	14		
South Korea	25,539	50,988	0.50	4.5	16		
"Growth disasters"							
Venezuela	9,762	21,439	0.46	-0.1	-627		
Haiti	1,403	3,164	0.44	-0.4	-168		
Madagascar	810	1,656	0.49	-0.1	-488		
Zimbabwe	135	343	0.40	-1.5	-47		

Source: Charles Jones and Dietrich Vollrath, *Economic Growth*.

Contribution of Capital per Worker

$$\frac{Y^*}{POP} = f(\frac{K^*}{N^*}, T) \cdot \frac{N^*}{POP}$$

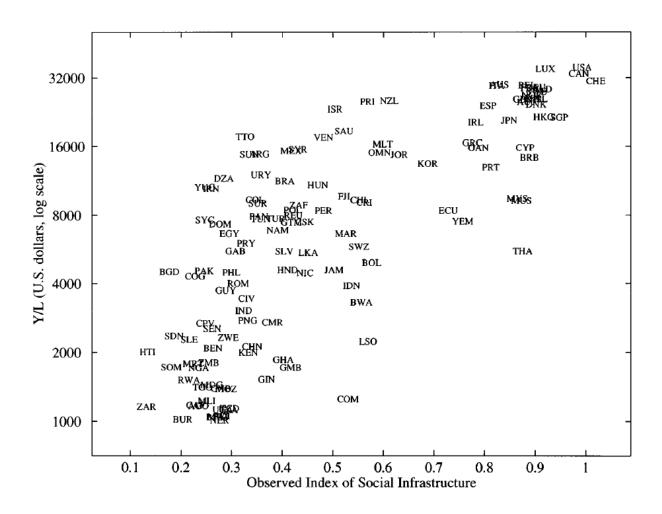
 Physical and human capital does vary a lot across countries.

GDP Statistics for Selected Countries

		Physical Capital	Human Capital
	GDP per Capita	<u>per Worker</u>	per Worker (Index)
"Rich" countries			
U.S.A	43,326	292,614	3.62
Japan	33,735	297,337	3.27
France	31,980	327,397	3.04
U.K.	35,345	222,377	2.82
"Poor" countries			
China	6,415	57,700	2.58
India	3,078	20,373	1.93
Nigeria	1,963	8,516	n.a.
Uganda	1,122	n.a.	1.98
"Growth miracles"			
Hong Kong	37,834	293,414	3.01
Singapore	49,987	309,148	2.77
Taiwan	29,645	179,589	3.21
South Korea	25,539	234,288	3.35
"Growth disasters"			
Venezuela	9,762	91,882	2.34
Zimbabwe	135	1,288	2.48

Source: Jones and Vollrath, Economic Growth, and Penn World Tables.

Contribution of Technology


$$\frac{Y^*}{POP} = f(\frac{K^*}{N^*}, T) \cdot \frac{N^*}{POP}$$

- The types of technology that vary significantly across countries are probably not knowledge, but institutions and culture.
- And this variation is an important source of the variation in normal output per capita.

Three Key Features of Institutions that Contribute to High Normal Output per Person

- A market-based system for allocating resources.
- Government protection of property from others.
- Protection of property from government corruption, theft, arbitrary taxation,

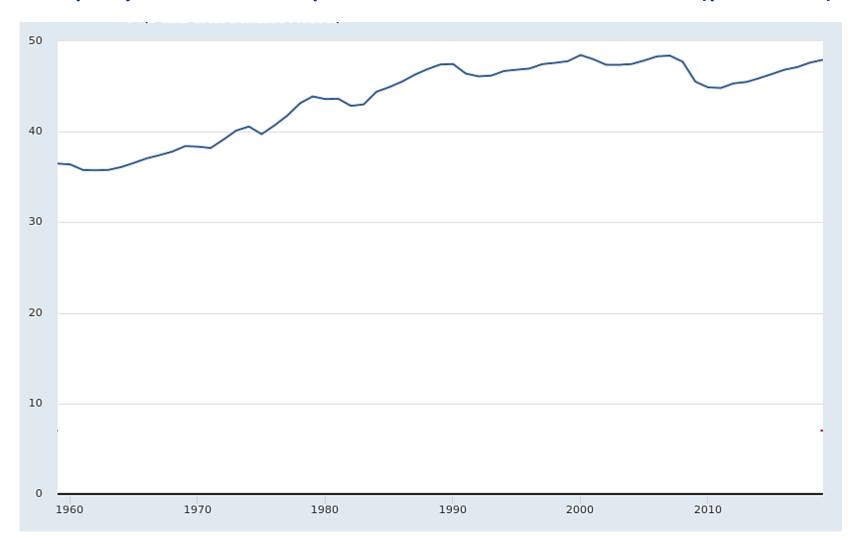
Average Labor Productivity and Social Infrastructure

Source: Hall and Jones, "Why Do Some Countries Produce So Much More Output per Worker than Others?"

Messages about Cross-Country Income Differences

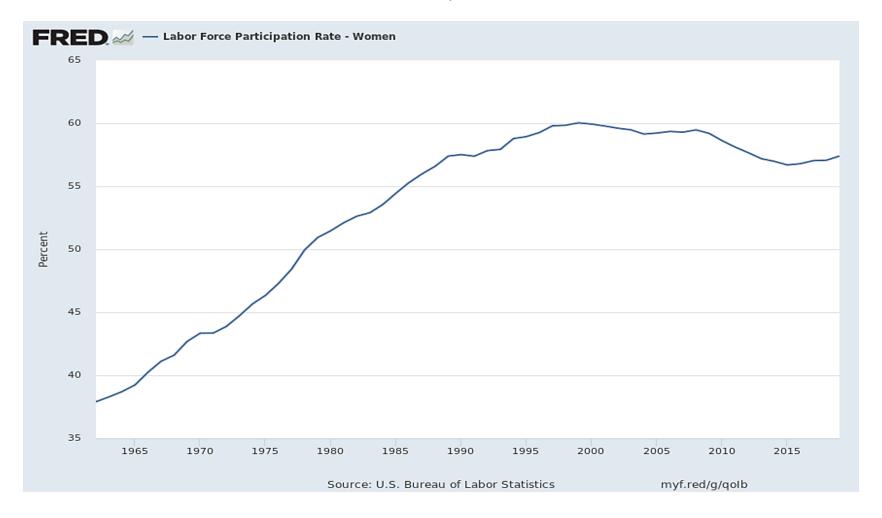
- Differences in the normal employment-topopulation ratio are not very important.
- Variations in normal capital per worker (both physical and human) and in technology are both very important.
- The most important type of variation in technology is not variation in knowledge or knowhow, but variation in institutions.

III. EXPLAINING THE GROWTH IN POTENTIAL OUTPUT PER PERSON OVER TIME


Aggregate Production Function

$$\frac{Y^*}{POP} = \frac{Y^*}{N^*} \cdot \frac{N^*}{POP}$$

(2)
$$\frac{Y^*}{N^*} = f\left(\frac{K^*}{N^*}, T\right)$$


(3)
$$\frac{Y^*}{POP} = f\left(\frac{K^*}{N^*}, T\right) \cdot \frac{N^*}{POP}$$

Employment-to-Population Ratio in the U.S. (percent)

Source: FRED; data from Bureau of Labor Statistics.

Labor Force Participation Rate, Women Ages 16+, United States, 1962–2019

Source: FRED; data from Bureau of Labor Statistics.

Can Increases in N*/POP Explain Growth?

- An increase in N*/POP will raise Y*/POP, and there have been periods when rises in N*/POP had a noticeable impact on growth.
- But, N*/POP doesn't tend to change much, and it can't rise indefinitely.
- And its contribution is limited by diminishing returns:

 $\frac{Y^*}{POP} = f(\frac{K^*}{N^*}, T) \cdot \frac{N^*}{POP}$

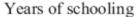
When N*/POP rises, K*/N* tends to fall, and so Y*/POP rises less than proportionally with N*/POP.

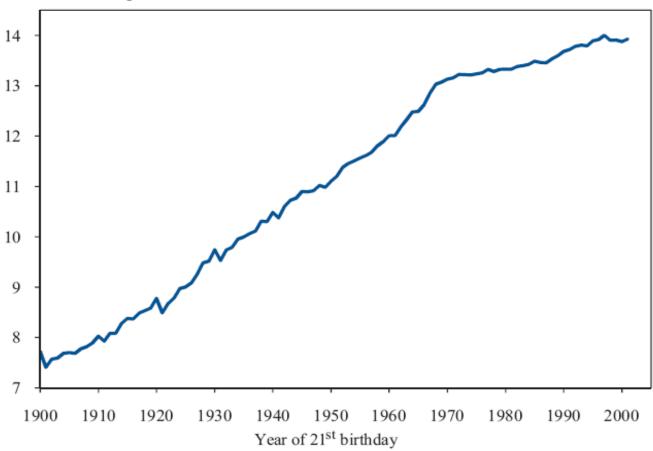
Aggregate Production Function

$$\frac{Y^*}{POP} = \frac{Y^*}{N^*} \cdot \frac{N^*}{POP}$$

(2)
$$\frac{Y^*}{N^*} = f\left(\frac{K^*}{N^*}, T\right)$$

(3)
$$\frac{Y^*}{POP} = f\left(\frac{K^*}{N^*}, T\right) \bullet \frac{N^*}{POP}$$


Can Increases in K*/N* Explain Growth? The Case of Physical Capital


- An increase in K*/N* will raise Y*/POP, and there have been periods when capital accumulation was important to growth.
- But, diminishing returns means that doubling K*/N* less than doubles Y*/POP.
- Observed increases in K*/N* are not large enough to account for much of the observed rise in Y*/POP over time.

Can Increases in K*/N* Explain Growth? The Case of Human Capital

- Human capital has increased substantially over the past 100+ years.
- The increases probably account for a moderate amount of the observed rise in Y*/POP over time.

Figure 1-7 Mean Years of Schooling by Birth Cohort

Notes: Years of schooling at 30 years of age. Methodology described in Goldin and Katz (2007).

Sources: Department of Commerce (Bureau of the Census), 1940-2000 Census IPUMS, 2005 CPS MORG; Goldin and Katz (2007).

Source: Economic Report of the President 2010.

Technological change is a key determinant of economic growth

$$\frac{Y^*}{POP} = f(\frac{K^*}{N^*}, T) \cdot \frac{N^*}{POP}$$

 Argument by elimination: If it is not N*/POP or K*/N*, it must be T.

Messages about Economic Growth

- Changes in the normal employment-to-population ratio are not very important.
- Increases in normal capital per worker (both physical and human) are somewhat important.
- Improvements in technology are crucial.

IV. HISTORICAL EVIDENCE OF TECHNOLOGICAL CHANGE

New Production Techniques

- New machines (electric motor, tractor).
- New methods of organization and management (assembly line, accounting).

Early Textile Mill

Modern Textile Factory

Social Savings from the Farm Tractor in 1954

(All values in millions of dollars)

Source	1954 Crop Mix	1909 Crop Mix
Wage labor freed up	27,800	29,800
Land reallocated	200	200
Exports maintained	1,000	1,000
Crop inventory increased	600	600
Less: Fuels used	(400)	(400)
Total savings	29,200	31,200
1954 U.S. GNP	364,800	364,800
Savings as % of GNP	8.0 %	8.6 %

Source: Steckel and White, "Engines of Growth."

New Products

 Another way to create improvements in the standard of living.

business costs largely omitted in price indexes

Major process improvement: some impact showed up in

Convenience over buttons omitted from price indexes

not captured in price index

reduced clerical costs; expansion of use of copied materials

digital computer

Xerography

Zipper

Better Institutions

Example: Opening up to trade.

• Example: More reliance on market forces.

V. Sources of Technological Progress

[Note: This material will be covered at the start of Lecture 17.]