Reference Dependence: Housing II
Reference Dependence: Tax Elusion
Reference Dependence: Goals
Reference Dependence: Mergers
Reference Dependence: Non-Bunching Papers
Reference Dependence: Labor Supply
Reference Dependence: Employment and Effort
Reference Dependence: Domestic Violence
Section 1

Reference Dependence: Housing II
Formalize Intuition

Return to Housing case, formalize intuition.

- Seller chooses price P at sale
- Higher Price P
 - lowers probability of sale $p(P)$ (hence $p'(P) < 0$)
 - increases utility of sale $U(P)$
- If no sale, utility is $\bar{U} < U(P)$ (for all relevant P)
Model

- Maximization problem:
 \[
 \max_p p(P)U(P) + (1 - p(P))\bar{U}
 \]

- F.o.c. implies
 \[
 MG = p(P^*)U'(P^*) = -p'(P^*)(U(P^*) - \bar{U}) = MC
 \]

- Interpretation: Marginal Gain of increasing price equals Marginal Cost

- S.o.c are
 \[
 2p'(P^*)U'(P^*) + p(P^*)U''(P^*) + p''(P^*)(U(P^*) - \bar{U}) < 0
 \]

- Need \(p''(P^*)(U(P^*) - \bar{U}) < 0\) or not too positive
Model

- Reference-dependent preferences with reference price P_0 (with pure gain-loss utility):

$$v(P|P_0) = \begin{cases}
P + \eta(P - P_0) & \text{if } P \geq P_0; \\
P + \eta\lambda(P - P_0) & \text{if } P < P_0,
\end{cases}$$

- Can write as

$$p(P)(1 + \eta) = -p'(P)(P + \eta(P - P_0) - \bar{U}) \text{ if } P \geq P_0$$

$$p(P)(1 + \eta\lambda) = -p'(P)(P + \eta\lambda(P - P_0) - \bar{U}) \text{ if } P < P_0$$

- Plot Effect on MG and MC of loss aversion

- Compare $P^*_{\lambda=1}$ (equilibrium with no loss aversion) and $P^*_{\lambda>1}$ (equilibrium with loss aversion)
Cases

- Case 1. Loss Aversion λ increase price ($P_{\lambda=1}^* < P_0$)

- Case 2. Loss Aversion λ induces bunching at $P = P_0$ ($P_{\lambda=1}^* < P_0$)
Cases

- Case 3. Loss Aversion has no effect ($P_{\lambda=1}^* > P_0$)

- General predictions. When aggregate prices are low:
 - High prices P relative to fundamentals
 - Bunching at purchase price P_0
 - Lower probability of sale $p(P)$, longer waiting on market

- Important to tie housing evidence to model
- Would be great to redo with data from recent recession
Section 2

Reference Dependence: Tax Elusion
Alex Rees-Jones (2014)

- Preparation of tax returns
 - Can lower taxes due expending effort (finding receipts/elusion)
 - Important setting with clear reference point: 0 taxes due
 - Pre-manipulation balance due b^{PM}
 - Denote by s the tax dollars sheltered

- Slides courtesy of Alex

- Other relevant paper: Engstrom, P., Nordblom, K., Ohlsson, H., & Persson, A. (AEJ: Policy, 2016)
 - Similar evidence, but focus on claiming deductions
Simple example with smooth utility

Consider a model abstracting from income effects:

\[
\max_{s \in \mathbb{R}^+} \left(w - b^{PM} + s \right) - c(s)
\]

linear utility over money cost of sheltering

Optimal sheltering is determined by the first-order condition:

\[1 - c'(s^*) = 0\]

Optimal sheltering solution: \(s^* = c'^{-1}(1) \).

\(\rightarrow \) Distribution of balance due, \(b \equiv b^{PM} - s^* \), is a horizontal shift of the distribution of \(b^{PM} \).
PDF of pre-manipulation balance due
PDF of final balance due after sheltering

Balance due is shifted by sheltering activities

\[s^* = c^{t-1}(1) \]
Loss-averse case

\[
\max_{s \in \mathbb{R}^+} \quad m(-b^{PM} + s) - c(s)
\]

utility over money - cost of sheltering

Loss-averse utility specification:

\[
(w - b^{PM} + s) + n(-b^{PM} + s - r)
\]

consumption utility + gain-loss utility

\[
n(x) = \begin{cases}
\eta x & \text{if } x \geq 0 \\
\eta \lambda x & \text{if } x < 0
\end{cases}
\]
Optimal loss-averse sheltering

This model generates an optimal sheltering solution with different behavior across three regions:

\[
 s^*(b^{PM}) = \begin{cases}
 s^H & \text{if } b^{PM} > s^H - r \\
 b^{PM} + r & \text{if } b^{PM} \in [s^L - r, s^H - r] \\
 s^L & \text{if } b^{PM} < s^L - r
\end{cases}
\]

where \(s^H \equiv c'^{-1}(1 + \eta \lambda) \) and \(s^L \equiv c'^{-1}(1 + \eta) \).

- Sufficiently large \(b^{PM} \rightarrow \) high amount of sheltering.
- Sufficiently small \(b^{PM} \rightarrow \) low amount of sheltering.
- For an intermediate range, sheltering chosen to offset \(b^{PM} \).
PDF of final balance due after loss-averse sheltering

Revenue effect of loss framing: $s^H - s^L$.

- Contains most information from Form 1040 and some related schedules.
- Randomized by SSNs.

Exclude observations filed from outside of the 50 states + DC, drawn from outside the sampling frame, observations before 1979.

Exclude individuals with zero pre-credit tax due, individuals with zero tax prepayments.

Primary sample: $\approx 229k$ tax returns, $\approx 53k$ tax filers.
First look: distribution of nominal balance due
First look: distribution of nominal balance due
Fit of predicted distributions

Full sample

Shift: 389

Frequency

Balance Due

-2000 -1000 0 1000 2000

Kernel Regression (Bandwidth = 10) Fitted Model
Fit of predicted distributions
Rationalizing differences in magnitudes

What drives the differences in the bunching and shifting estimates?

Primary explanation: assumption that sheltering can be manipulated to-the-dollar.

- Possible for some types of sheltering: e.g. direct evasion, choosing amount to give to charity, targeted capital losses.
- Not possible for many types of sheltering.
- Excess mass at zero will “leave out” individuals without finely manipulable sheltering technologies.
- Potential solution: permit diffuse bunching “near” zero.
Distribution with fixed cost in loss domain

\[f_b(b) \]

\[\text{Shelter to zero} \]

Refund → Pay IRS
Section 3

Reference Dependence: Goal Setting
Reference point can be a goal
Marathon running: Round numbers as goals
Similar identification considering discontinuities in finishing times around round numbers
Distribution of Finishing Times

Figure 2: Distribution of marathon finishing times (n = 9,378,546)

NOTE: The dark bars highlight the density in the minute bin just prior to each 30 minute threshold.
Intuition

- Channel of effects: Speeding up if behind and can still make goal
Summary

- Evidence strongly consistent with model
 - Missing distribution to the right
 - Some bunching
- Hard to back out loss aversion given unobservable cost of effort
Section 4

Reference Dependence: Mergers
On the appearance, very different set-up:
- Firm A (Acquirer)
- Firm T (Target)

After negotiation, Firm A announces a price P for merger with Firm T
- Price P typically at a 20-50 percent premium over current price
- About 70 percent of mergers go through at price proposed
- Comparison price for P often used is highest price in previous 52 weeks, P_{52}
Example: How Cablevision (Target) trumpets deal

Figure 1. Slide from Cablevision Presentation to Shareholders, October 24, 2007. The management of Cablevision recommended acceptance of a $36.26 per share cash bid from the Dolan family. The slide compares this bid price to various recent prices including 52-week highs.

* Adjusted to reflect payment of $10/share special dividend.
Model

• Assume that Firm T chooses price \(P \), and A decides accept or reject.
• As a function of price \(P \), probability \(p(P) \) that deal is accepted (depends on perception of values of synergy of A).
• If deal rejected, go back to outside value \(\bar{U} \).
• Then maximization problem is same as for housing sale:

\[
\max_P p(P)U(P) + (1 - p(P))\bar{U}
\]

• Can assume T reference-dependent with respect to \(P_{52} \):

\[
v(P|P_0) = \begin{cases}
P + \eta(P - P_{52}) & \text{if } P \geq P_{52}; \\
P + \eta\lambda(P - P_{52}) & \text{if } P < P_{52} \end{cases}
\]
Predictions and Tests

- Obtain same predictions as in housing market
- (This neglects possible reference dependence of A)
- Baker, Pan, and Wurgler (2009): Test reference dependence in mergers
 - Test 1: Is there bunching around P_{52}? (GM did not do this)
 - Test 2: Is there effect of P_{52} on price offered?
 - Test 3: Is there effect on probability of acceptance?
 - Test 4: What do investors think? Use returns at announcement
Test 1: Offer price P around P_{52}

- Some bunching, shift in left tail of distribution, as predicted
Test 1: Offer price P around P_{52}

- Notice that this does not tell us how the missing left tail occurs:
 - Firms in left tail raise price to P_{52}?
 - Firms in left tail wait for merger until 12 months after past peak, so P_{52} is higher?
 - Preliminary negotiations break down for firms in left tail

- Would be useful to compare characteristics of firms to right and left of P_{52}
Test 2: Kernel regression of P

- Kernel regression of price offered P (Renormalized by price 30 days before, P_{-30}, to avoid heterosked.) on P_{52}:

$$100 \times \frac{P - P_{-30}}{P_{-30}} = \alpha + \beta \left[100 \times \frac{P_{52} - P_{-30}}{P_{-30}} \right] + \varepsilon$$
Test 4: What do investors think?

- Test 3: Probability of final acquisition is higher when offer price is above P_{52} (Skip)

- Test 4: What do investors think of the effect of P_{52}?
 - Holding constant current price, investors should think that the higher P_{52}, the more expensive the Target is to acquire
 - Standard methodology to examine this:
 - 3-day stock returns around merger announcement: $CAR_{t-1,t+1}$
 - This assumes investor rationality
 - Notice that merger announcements are typically kept top secret until last minute → On announcement day, often big impact
Test 4: What do investors think?

- **Regression (Columns 3 and 5):**

 \[CAR_{t-1,t+1} = \alpha + \beta \frac{P}{P_{-30}} + \varepsilon \]

 where \(P/P_{-30} \) is instrumented with \(P_{52}/P_{-30} \)

- **Table 8. Mergers and Acquisitions: Market Reaction.** Ordinary and two-stage least squares regressions of the 3-day CAR of the bidder on the offer premium.

 \[
 r_{t-1,t+1} = a + b_1 \text{Offer}_{t} + b_2 \text{Offer}_{t} \frac{P}{P_{-30}} + b_3 \text{Offer}_{t} \min \left(\frac{52\text{WeekHigh}}{P_{-30}} - 1, 100 \right) + b_4 \text{Offer}_{t} \max \left(0, \min \left(\frac{52\text{WeekHigh}}{P_{-30}} - 1.25, 0 \right) 100, 50 \right) + b_5 \text{Offer}_{t} \max \left(\frac{52\text{WeekHigh}}{P_{-30}} - 1.75, 0 \right) + \varepsilon
 \]

 where \(r \) is the market-adjusted return of the bidder for the three-day period centered on the announcement date, \(\text{Offer} \) is the offer price from Thomson, \(P \) is the target stock price from CRSP, and \(52\text{WeekHigh} \) is the high stock price over the 365 calendar days ending 30 days prior to the announcement date. The first, second, and fourth columns use ordinary least squares. The third and fifth columns instrument the offer premium using \(52\text{WeekHigh} \). Robust t-statistics with standard errors clustered by month are in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>OLS 1</th>
<th>OLS 2</th>
<th>IV 3</th>
<th>OLS 4</th>
<th>IV 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offer Premium:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>-0.0186***</td>
<td>-0.0204***</td>
<td>-0.215***</td>
<td>-0.0443***</td>
<td>-0.253***</td>
</tr>
<tr>
<td></td>
<td>(-2.64)</td>
<td>(-2.74)</td>
<td>(-3.48)</td>
<td>(-4.21)</td>
<td>(-4.39)</td>
</tr>
</tbody>
</table>

- **Results very supportive of reference dependence hypothesis – Also alternative anchoring story**
Section 5

Reference Dependence: Non-Bunching
Previous Papers: Bunching Assumption

- Previous papers had bunching implication
 - Some papers test for bunching (mergers, tax evasion, marathon running)
 - Some papers do not test it... but should! (housing)
- For bunching test, need
 - Reference point r obvious enough to people AND researcher (house purchase price, zero taxes, round number goal)
 - Effort can be altered to get to reference point
Next Set of Papers: No Bunching

- Next set of papers, these conditions do not apply:
 - Reference point r not an exact number (labor supply, effort and crime, job search)
 - Choice is not about effort (domestic violence, insurance)
- Identification in these papers typically relies on variants of:
 - Loss aversion induces higher marginal utility of income to left of reference point
 - Identify comparing when to the left of reference point, versus to the right
 - Still need some model about reference point (more later on this)
Section 6
Reference Dependence: Labor Supply
Framework

Does reference dependence affect work/leisure decision?

- Framework:
 - effort h (no. of hours)
 - hourly wage w
 - Returns of effort: $Y = w \times h$
 - Linear utility $U(Y) = Y$
 - Cost of effort $c(h) = \theta h^2 / 2$ convex within a day

- Standard model: Agents maximize

$$U(Y) - c(h) = wh - \frac{\theta h^2}{2}$$
Framework

- (Assumption that each day is orthogonal to other days – see below)
- Reference dependence: Threshold T of earnings agent wants to achieve
- Loss aversion for outcomes below threshold:

$$U = \begin{cases}
wh + \eta (wh - T) & \text{if } wh \geq T \\
wh + \eta \lambda (wh - T) & \text{if } wh < T
\end{cases}$$

with $\lambda > 1$ loss aversion coefficient
- Reference-dependent agent maximizes

$$wh + \eta (wh - T) - \frac{\theta h^2}{2} \quad \text{if } h \geq T/w$$
$$wh + \eta \lambda (wh - T) - \frac{\theta h^2}{2} \quad \text{if } h < T/w$$
Framework

- Derivative with respect to h:

\[
(1 + \eta)w - \theta h \quad \text{if} \quad h \geq T/w
\]
\[
(1 + \eta \lambda)w - \theta h \quad \text{if} \quad h < T/w
\]

1 Case 1 \(((1 + \eta \lambda)w - \theta T/w < 0)\).

- Optimum at $h^* = (1 + \eta \lambda)w/\theta < T/w$
Case 2 \((1 + \eta \lambda)w - \theta T/w > 0 > (1 + \eta)w - \theta T/w\)
Optimum at \(h^* = T/w\)

Case 3 \((1 + \eta)w - \theta T/w > 0\)
Optimum at \(h^* = (1 + \eta)w/\theta > T/w\)
Standard theory \((\lambda = 1)\)

- Interior maximum: \(h^* = (1 + \eta) w / \theta\) (Cases 1 or 3)
- Labor supply

Combine with labor demand: \(h^* = a - bw\), with \(a > 0, b > 0\).
Model with reference dependence ($\lambda > 1$)

- Case 1 or 3 still exist
- BUT: Case 2. Kink at $h^* = T/w$ for $\lambda > 1$
- Combine Labor supply with labor demand: $h^* = a - bw$, with $a > 0, b > 0$

Case 2: On low-demand days (low w) need to work harder to achieve reference point $T \rightarrow$ Work harder \rightarrow Opposite to standard theory
Camerer, Babcock, Loewenstein, and Thaler (QJE 1997)

- Data on daily labor supply of New York City cab drivers
 - 70 Trip sheets, 13 drivers (TRIP data)
 - 1044 summaries of trip sheets, 484 drivers, dates: 10/29-11/5, 1990 (TLC1)
 - 712 summaries of trip sheets, 11/1-11/3, 1988 (TLC2)
- Notice data feature: Many drivers, few days in sample
Analysis in paper neglects wealth effects: Higher wage today \rightarrow Higher lifetime income

Justification:
- Correlation of wages across days close to zero
- Each day can be considered in isolation
- \rightarrow Wealth effects of wage changes are very small

Test:
- Assume variation across days driven by Δa (labor demand shifter)
- Do hours worked h and w co-vary positively (standard model) or negatively?
Raw evidence
Model

- Estimate:
 \[\log (h_{i,t}) = \alpha + \beta \log (Y_{i,t}/h_{i,t}) + X_{i,t} \Gamma + \varepsilon_{i,t}. \]

- Estimates of \(\hat{\beta} \):
 \[\hat{\beta} = -.186 \text{ (s.e. 129)} \] – TRIP with driver f.e.
 \[\hat{\beta} = -.618 \text{ (s.e. .051)} \] – TLC1 with driver f.e.
 \[\hat{\beta} = -.355 \text{ (s.e. .051)} \] – TLC2

- Estimate is not consistent with prediction of standard model

- Indirect support for income targeting
Economic Issue 1

Reference-dependent model does not predict (log-) linear, negative relation

What happens if reference income is stochastic? (Koszegi-Rabin, 2006)
Econometric Issue 1

Division bias in regressing hours on log wages

- Wages are not directly observed – Computed at $Y_{i,t}/h_{i,t}$
- Assume $h_{i,t}$ measured with noise: $\tilde{h}_{i,t} = h_{i,t} \ast \phi_{i,t}$. Then,

\[
\log \left(\tilde{h}_{i,t} \right) = \alpha + \beta \log \left(Y_{i,t}/\tilde{h}_{i,t} \right) + \varepsilon_{i,t}.
\]

becomes

\[
\log (h_{i,t}) + \log (\phi_{i,t}) = \alpha + \beta \left[\log (Y_{i,t}) - \log (h_{i,t}) \right] - \beta \log (\phi_{i,t}) + \varepsilon_{i,t}.
\]

- Downward bias in estimate of $\hat{\beta}$

- Response: instrument wage using other workers’ wage on same day
Econometric Issue 1: Use IV

- IV Estimates:

<table>
<thead>
<tr>
<th>Sample</th>
<th>TRIP</th>
<th>TLC1</th>
<th>TLC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log hourly wage</td>
<td>-.319</td>
<td>-.313</td>
<td>-.926</td>
</tr>
<tr>
<td></td>
<td>(.298)</td>
<td>(.236)</td>
<td>(.259)</td>
</tr>
<tr>
<td>High temperature</td>
<td>-.000</td>
<td>.002</td>
<td>.002</td>
</tr>
<tr>
<td></td>
<td>(.002)</td>
<td>(.002)</td>
<td>(.007)</td>
</tr>
</tbody>
</table>

- Notice: First stage not very strong (and few days in sample)

<table>
<thead>
<tr>
<th></th>
<th>First-stage regressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>.316 (.225) - .385 (.394) - .276 (.467) 1.292 (.4281)</td>
</tr>
<tr>
<td>25th percentile</td>
<td>.323 (.160) - .693 (.241) .469 (.332) -.373 (.3516)</td>
</tr>
<tr>
<td>75th percentile</td>
<td>.399 (.171) - .614 (.242) .688 (.292) .479 (1.699)</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>.374 (.842) - .056 (.206) .019 (.019)</td>
</tr>
<tr>
<td>P-value for F-test of</td>
<td>.000 (.004) - .000 (.000) .200 (.020)</td>
</tr>
<tr>
<td>instruments for wage</td>
<td></td>
</tr>
</tbody>
</table>
Econometric issue 2

Are the authors really capturing demand shocks or supply shocks?

- Assume θ (disutility of effort) varies across days.
- Even in standard model we expect negative correlation of $h_{i,t}$ and $w_{i,t}$

Camerer et al. argue for plausibility of shocks due to a rather than θ
Farber (JPE, 2005)

- Re-Estimate Labor Supply of Cab Drivers on new data
- Address Econometric Issue 1 (Division Bias)
- Data:
 - 349 trip sheets, 10 drivers, 6/2000-5/2001
 - Daily summary not available (unlike in Camerer et al.)
 - Notice: Few drivers, many days in sample
Reference Dependence: Labor Supply

Farber (2005)

Model

- Key specification: Hazard model that does not suffer from division bias
 - Dependent variable is dummy $\text{Stop}_i,t = 1$ if driver i stops at hour t:
 \[
 \text{Stop}_i,t = \Phi (\alpha + \beta_1 Y_i,t + \beta_2 h_i,t + \Gamma X_i,t)
 \]
 - Control for hours worked so far ($h_{i,t}$) and other controls $X_{i,t}$
 - Does a higher earned income $Y_{i,t}$ increase probability of stopping ($\beta > 0$)?

Table 5

<table>
<thead>
<tr>
<th>Variable</th>
<th>X^0</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total hours</td>
<td>8.0</td>
<td>.013</td>
<td>.037</td>
<td>.014</td>
<td>.010</td>
<td>.010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.009)</td>
<td>(.012)</td>
<td>(.005)</td>
<td>(.005)</td>
<td>(.005)</td>
</tr>
<tr>
<td>Waiting hours</td>
<td>2.5</td>
<td>.010</td>
<td>- .005</td>
<td>.001</td>
<td>.004</td>
<td>.004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.010)</td>
<td>(.012)</td>
<td>(.006)</td>
<td>(.006)</td>
<td>(.005)</td>
</tr>
<tr>
<td>Break hours</td>
<td>.5</td>
<td>.006</td>
<td>- .015</td>
<td>- .003</td>
<td>- .001</td>
<td>- .002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.009)</td>
<td>(.011)</td>
<td>(.005)</td>
<td>(.005)</td>
<td>(.005)</td>
</tr>
<tr>
<td>Shift income ÷ 100</td>
<td>1.5</td>
<td>.063</td>
<td>.036</td>
<td>.014</td>
<td>.016</td>
<td>.011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.022)</td>
<td>(.030)</td>
<td>(.015)</td>
<td>(.015)</td>
<td>(.015)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver (21)</td>
<td></td>
</tr>
<tr>
<td>Day of week (7)</td>
<td></td>
</tr>
<tr>
<td>Hour of day (19)</td>
<td></td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-2.039.2</td>
</tr>
</tbody>
</table>

Note: The sample includes 15,461 trips in 384 shifts for 21 drivers. Probit estimates are normalized to reflect the marginal effect at X^0 of X on the probability of stopping. The normalized probit estimate is $\beta \cdot \Phi' (\beta)$, where $\Phi (\cdot)$ is the standard normal density. The values of X^0 chosen for the fixed effects are equally weighted for each day of the week and for each driver. The hours from 5:00 a.m. to 10:00 a.m. have a common fixed effect. The estimation point is after 5.5 driving hours, 2.5 waiting hours, and 0.5 break hour in a 4 hr hour on a day with moderate temperatures in midtown Manhattan at 2:00 p.m. Robust standard errors accounting for clustering by shift are reported in parentheses.
Results

- Positive, but not significant effect of $Y_{i,t}$ on probability of stopping:
 - 10 percent increase in Y ($\$15 \rightarrow 1.6$ percent increase in stopping prob. (.225 pctg. pts. increase in stopping prob. out of average 14 pctg. pts.) $\rightarrow 0.16$ elasticity
 - Cannot reject large effect: 10 pct. increase in Y increase stopping prob. by 6 percent $\rightarrow 0.6$ elasticity

- Qualitatively consistent with income targeting

- Also notice:
 - Failure to reject standard model is not the same as rejecting alternative model (reference dependence)
 - Alternative model is not spelled out
Still, Supply or Demand?

- Farber (2005) cannot address the Econometric Issue 2: Is it Supply or Demand that Varies

- **Fehr and Goette (AER 2007).** Experiments on Bike Messengers
- Use explicit randomization to deal with Econometric Issues 1 and 2
- Combination of:
 - *Experiment 1.* Field Experiment shifting wage and
 - *Experiment 2.* Lab Experiment (relate to evidence on loss aversion)...
 - ... on the same subjects
- Slides courtesy of Lorenz Goette
The Experimental Setup in this Study

Bicycle Messengers in Zurich, Switzerland

- Data: Delivery records of Veloblitz and Flash Delivery Services, 1999 - 2000.
 - Contains large number of details on every package delivered.

 ➢ Observe hours (shifts) and effort (revenues per shift).

- Work at the messenger service

 - Messengers are paid a commission rate w of their revenues r_{it} ($w =$ “wage”). Earnings wr_{it}
 - Messengers can freely choose the number of shifts and whether they want to do a delivery, when offered by the dispatcher.

 ➢ suitable setting to test for intertemporal substitution.

- Highly volatile earnings

 - Demand varies strongly between days

 ➢ Familiar with changes in intertemporal incentives.
Experiment 1

- **The Temporary Wage Increase**
 - Messengers were randomly assigned to one of two treatment groups, A or B.
 - $N=22$ messengers in each group
 - Commission rate w was increased by 25 percent during four weeks
 - Group A: September 2000
 (Control Group: B)
 - Group B: November 2000
 (Control Group: A)

- **Intertemporal Substitution**
 - Wage increase has no (or tiny) income effect.
 - Prediction with time-separable preferences, $t=\text{a day}$:
 - Work more shifts
 - Work harder to obtain higher revenues
 - Comparison between TG and CG during the experiment.
 - Comparison of TG over time confuses two effects.
Results for Hours

- Treatment group works 12 shifts, Control Group works 9 shifts during the four weeks.
- Treatment Group works significantly more shifts ($\chi^2(1) = 4.57$, $p<0.05$)
- Implied Elasticity: 0.8

Figure 6: The Working Hazard during the Experiment
Results for Effort: Revenues per shift

- Treatment Group has lower revenues than Control Group: - 6 percent. ($t = 2.338, p < 0.05$)
- Implied negative Elasticity: -0.25

The Distribution of Revenues during the Field Experiment

- Distributions are significantly different (KS test; $p < 0.05$).
Results for Effort, cont.

- **Important caveat**
 - Do lower revenues relative to control group reflect lower effort or something else?

- **Potential Problem: Selectivity**
 - Example: Experiment induces TG to work on bad days.
 - More generally: Experiment induces TG to work on days with unfavorable states
 - If unfavorable states raise marginal disutility of work, TG may have lower revenues during field experiment than CG.

- **Correction for Selectivity**
 - Observables that affect marginal disutility of work.
 - Conditioning on experience profile, messenger fixed effects, daily fixed effects, dummies for previous work leave result unchanged.
 - Unobservables that affect marginal disutility of work?
 - Implies that reduction in revenues only stems from sign-up shifts in addition to fixed shifts.
 - **Significantly lower revenues on fixed shifts, not even different from sign-up shifts.**
Measuring Loss Aversion

- A potential explanation for the results
 - Messengers have a daily income target in mind
 - They are loss averse around it
 - Wage increase makes it easier to reach income target

 ➢ That’s why they put in less effort per shift

- Experiment 2: Measuring Loss Aversion
 - Lottery A: Win CHF 8, lose CHF 5 with probability 0.5.
 ➢ 46 % accept the lottery

 - Lottery C: Win CHF 5, lose zero with probability 0.5; or take CHF 2 for sure
 ➢ 72 % accept the lottery

 ➢ Large Literature: Rejection is related to loss aversion.

- Exploit individual differences in Loss Aversion

 ➢ Behavior in lotteries used as proxy for loss aversion.
 ➢ Does the proxy predict reduction in effort during experimental wage increase?
Measuring Loss Aversion

- Does measure of Loss Aversion predict reduction in effort?
 - Strongly loss averse messengers reduce effort substantially: Revenues are 11 % lower (s.e.: 3 %)
 - Weakly loss averse messenger do not reduce effort noticeably: Revenues are 4 % lower (s.e. 8 %).
 - No difference in the number of shifts worked.

- Strongly loss averse messengers put in less effort while on higher commission rate
 - Supports model with daily income target

- Others kept working at normal pace, consistent with standard economic model
 - Shows that not everybody is prone to this judgment bias (but many are)
Farber (2008)

- Farber (AER 2008) goes beyond Farber (JPE, 2005) and attempts to estimate model of labor supply with loss-aversion
 - Estimate loss-aversion δ
 - Estimate (stochastic) reference point T
- Same data as Farber (2005)
- Results:
 - significant loss aversion δ
 - however, large variation in T mitigates effect of loss-aversion
Farber (2008)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β (contprob)</td>
<td>-0.691</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(0.243)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\theta}$ (mean ref inc)</td>
<td>159.02</td>
<td>206.71</td>
<td>250.86</td>
<td>---</td>
</tr>
<tr>
<td>(4.99)</td>
<td>(7.98)</td>
<td>(16.47)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ (cont increment)</td>
<td>3.40</td>
<td>5.35</td>
<td>4.85</td>
<td>5.38</td>
</tr>
<tr>
<td>(0.279)</td>
<td>(0.573)</td>
<td>(0.711)</td>
<td>(0.545)</td>
<td></td>
</tr>
<tr>
<td>σ^2 (ref inc var)</td>
<td>3199.4</td>
<td>10440.0</td>
<td>15944.3</td>
<td>8236.2</td>
</tr>
<tr>
<td>(294.0)</td>
<td>(1660.7)</td>
<td>(3652.1)</td>
<td>(1222.2)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Driver $\hat{\theta}$, (15)</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vars in Cont Prob</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver FE’s (14)</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Accum Hours (7)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Weather (4)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Day Shift and End (2)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Location (1)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Day-of-Week (6)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Hour-of-Day (18)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Log(L)</td>
<td>-1867.8</td>
<td>-1631.6</td>
<td>-1572.8</td>
<td>-1606.0</td>
</tr>
<tr>
<td>Number Parms</td>
<td>4</td>
<td>43</td>
<td>57</td>
<td>57</td>
</tr>
</tbody>
</table>

- δ is loss-aversion parameter
- Reference point: mean θ and variance σ^2
Crawford and Meng (AER 2011)

- Re-estimates on Farber (2005) data allowing for two dimensions of reference dependence:
 - Hours (loss if work more hours than \bar{h})
 - Income (loss if earn less than \bar{Y})
- Re-estimates Farber (2005) data for:
 - Wage above average (income likely to bind)
 - Wages below average (hours likely to bind)
- Perhaps, reconciling Camerer et al. (1997) and Farber (2005)
 - $w > w^e$: hours binding \rightarrow hours explain stopping
 - $w < w^e$: income binding \rightarrow income explains stopping
Table 1: Probability of Stopping: Probit Model with Linear Effect

<table>
<thead>
<tr>
<th>Variable</th>
<th>(1) Pooled data</th>
<th>$w^a > w^e$</th>
<th>$w^a \leq w^e$</th>
<th>(2) Pooled data</th>
<th>$w^a > w^e$</th>
<th>$w^a \leq w^e$</th>
<th>(3) Pooled data</th>
<th>$w^a > w^e$</th>
<th>$w^a \leq w^e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total hours</td>
<td>.013</td>
<td>.005</td>
<td>.016</td>
<td>.010</td>
<td>.003</td>
<td>.011</td>
<td>.009</td>
<td>.002</td>
<td>.011</td>
</tr>
<tr>
<td></td>
<td>(.009)*</td>
<td>(.009)</td>
<td>(.007)**</td>
<td>(.003)**</td>
<td>(.004)</td>
<td>(.008)**</td>
<td>(.006)*</td>
<td>(.005)</td>
<td>(.002)**</td>
</tr>
<tr>
<td>Waiting hours</td>
<td>.010</td>
<td>.007</td>
<td>.016</td>
<td>.001</td>
<td>.001</td>
<td>.002</td>
<td>.003</td>
<td>.003</td>
<td>.005</td>
</tr>
<tr>
<td></td>
<td>(.003)**</td>
<td>(.007)</td>
<td>(.001)**</td>
<td>(.009)</td>
<td>(.012)</td>
<td>(.004)</td>
<td>(.010)</td>
<td>(.012)</td>
<td>(.003)**</td>
</tr>
<tr>
<td>Break hours</td>
<td>.006</td>
<td>.005</td>
<td>.004</td>
<td>-.003</td>
<td>-.006</td>
<td>-.003</td>
<td>-.002</td>
<td>-.004</td>
<td>-.002</td>
</tr>
<tr>
<td></td>
<td>(.003)**</td>
<td>(.001)**</td>
<td>(.008)</td>
<td>(.006)</td>
<td>(.009)</td>
<td>(.004)</td>
<td>(.007)</td>
<td>(.009)</td>
<td>(.001)</td>
</tr>
<tr>
<td>Income/100</td>
<td>.053</td>
<td>.076</td>
<td>.055</td>
<td>.013</td>
<td>.045</td>
<td>.009</td>
<td>.010</td>
<td>.042</td>
<td>.002</td>
</tr>
<tr>
<td></td>
<td>(.000)**</td>
<td>(.007)**</td>
<td>(.007)**</td>
<td>(.010)</td>
<td>(.019)**</td>
<td>(.024)</td>
<td>(.005)**</td>
<td>(.019)**</td>
<td>(.011)</td>
</tr>
<tr>
<td>Min temp<30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Max temp>80</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Hourly rain</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Daily snow</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Location dummies</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Driver dummies</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Day of week</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Hour of day</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-2039.2</td>
<td>-1148.4</td>
<td>-882.6</td>
<td>-1789.5</td>
<td>-1003.8</td>
<td>-753.4</td>
<td>-1767.5</td>
<td>-9878.0</td>
<td>-740.0</td>
</tr>
<tr>
<td>Pseudo R2</td>
<td>0.1516</td>
<td>0.1555</td>
<td>0.1533</td>
<td>0.2555</td>
<td>0.2618</td>
<td>0.2773</td>
<td>0.2647</td>
<td>0.2735</td>
<td>0.2901</td>
</tr>
<tr>
<td>Observation</td>
<td>13461</td>
<td>7936</td>
<td>5525</td>
<td>13461</td>
<td>7936</td>
<td>5525</td>
<td>13461</td>
<td>7936</td>
<td>5525</td>
</tr>
</tbody>
</table>
Farber (QJE 2015)

- Finally data set with large K and large T
 - $K = 62,000$ drivers
 - $T = 5 \times 365$ (2009 to 2013)
 - 100+ million trips!
 - Electronic record of all information (except tips)
- Inexplicably, most of analysis uses discredited OLS specification
- We focus on hazard model (Table 7) as in Farber (2005)
 - $P(\text{stopping})$ for $300-349$ compared to $200-224$ is $0.059 - 0.015 = 0.044$ higher out of average of 0.14
 - Thus, 31% increase in stopping for a 51% increase in income \rightarrow elasticity of 0.6!
 - Within the confidence interval of Farber (2005) and clearly sizable
Farber (2015)

TABLE VII
MARGINAL EFFECTS OF INCOME AND HOURS ON PROBABILITY OF ENDING SHIFT (LINEAR PROBABILITY MODEL)

<table>
<thead>
<tr>
<th>Income ($)</th>
<th>(1) Day shift</th>
<th>(2) Night shift</th>
<th>Hours</th>
<th>(3) Day shift</th>
<th>(4) Night shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>100–149</td>
<td>0.0001</td>
<td>-0.0045</td>
<td>3–5</td>
<td>0.0020</td>
<td>-0.0049</td>
</tr>
<tr>
<td></td>
<td>(0.0003)</td>
<td>(0.0003)</td>
<td></td>
<td>(0.0004)</td>
<td>(0.0003)</td>
</tr>
<tr>
<td>150–199</td>
<td>0.0044</td>
<td>-0.0077</td>
<td>6</td>
<td>0.0001</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td>(0.0006)</td>
<td>(0.0005)</td>
<td></td>
<td>(0.0007)</td>
<td>(0.0006)</td>
</tr>
<tr>
<td>200–224</td>
<td>0.0157</td>
<td>-0.0062</td>
<td>7</td>
<td>0.0034</td>
<td>0.0223</td>
</tr>
<tr>
<td></td>
<td>(0.0010)</td>
<td>(0.0007)</td>
<td></td>
<td>(0.0011)</td>
<td>(0.0010)</td>
</tr>
<tr>
<td>225–249</td>
<td>0.0264</td>
<td>-0.0046</td>
<td>8</td>
<td>0.0281</td>
<td>0.0536</td>
</tr>
<tr>
<td></td>
<td>(0.0013)</td>
<td>(0.0008)</td>
<td></td>
<td>(0.0017)</td>
<td>(0.0016)</td>
</tr>
<tr>
<td>250–274</td>
<td>0.0389</td>
<td>-0.0042</td>
<td>9</td>
<td>0.0750</td>
<td>0.0897</td>
</tr>
<tr>
<td></td>
<td>(0.0017)</td>
<td>(0.0011)</td>
<td></td>
<td>(0.0025)</td>
<td>(0.0022)</td>
</tr>
<tr>
<td>275–299</td>
<td>0.0506</td>
<td>-0.0033</td>
<td>10</td>
<td>0.1210</td>
<td>0.1603</td>
</tr>
<tr>
<td></td>
<td>(0.0020)</td>
<td>(0.0013)</td>
<td></td>
<td>(0.0035)</td>
<td>(0.0031)</td>
</tr>
<tr>
<td>300–349</td>
<td>0.0596</td>
<td>-0.0027</td>
<td>11</td>
<td>0.1236</td>
<td>0.2563</td>
</tr>
<tr>
<td></td>
<td>(0.0024)</td>
<td>(0.0017)</td>
<td></td>
<td>(0.0050)</td>
<td>(0.0051)</td>
</tr>
<tr>
<td>350–399</td>
<td>0.0607</td>
<td>0.0011</td>
<td>12</td>
<td>0.1004</td>
<td>0.2573</td>
</tr>
<tr>
<td></td>
<td>(0.0028)</td>
<td>(0.0024)</td>
<td></td>
<td>(0.0078)</td>
<td>(0.0142)</td>
</tr>
<tr>
<td>≥ 400</td>
<td>0.0702</td>
<td>0.0101</td>
<td>≥ 13</td>
<td>0.1093</td>
<td>0.2406</td>
</tr>
<tr>
<td></td>
<td>(0.0034)</td>
<td>(0.0035)</td>
<td></td>
<td>(0.0050)</td>
<td>(0.0063)</td>
</tr>
</tbody>
</table>

Notes. Based on estimates of two linear probability models for the probability of stopping: day shifts (columns (1) and (3)) and night shifts (columns (2) and (4)). The base category for income is $0–99 and the base category for hours is 0–2. Both models additionally include sets of fixed effects for driver, hour of the day by day of the week (168), week of the year (52), and year (5) as well as indicators for the period subsequent to the September 4, 2012, fare increase and major holiday. Robust standard errors clustered by driver are in parentheses. See text for information on sample size and composition.
Thakral and To (2017)

- Uses same data as Farber (2015) – in fact, uses replication data set on QJE site
- Re-estimates hazard model as in Farber (2005)
- Estimate separately the impact of earnings early, versus late, in spell
- Model:
 - allow for extra earnings W_0
 - extra earnings are partially integrated in reference point
 - Utility function $U(h; T, \eta, \lambda, \theta, w, w_0)$ is now

\[
\begin{align*}
W_0 + wh - \frac{\theta h^2}{2} + \eta (wh + W_0 - (T + \alpha W_0)) & \quad \text{if } wh + W_0 \geq T + \alpha W_0 \\
W_0 + wh - \frac{\theta h^2}{2} + \eta \lambda (wh + W_0 - (T + \alpha W_0)) & \quad \text{if } wh + W_0 < T + \alpha W_0
\end{align*}
\]
Thakral and To (2017)

- **Special case 1:** Reference point fully reflects extra earnings ($\alpha = 1$):
 - W_0 cancels out from expression above \(\rightarrow\) no effect
 - Intuition: extra income already expected, no impact on gain/loss

- **Special case 2:** Reference point not affected by extra earnings ($\alpha = 0$):
 - In this case can rewrite solution above replace T with $T - W_0$
<table>
<thead>
<tr>
<th>Panel A</th>
<th>Night weekday</th>
<th>Medallion owners</th>
<th>Top decile experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income effect</td>
<td>0.3564 (0.0473)</td>
<td>0.5421 (0.1548)</td>
<td>0.4625 (0.0805)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B</th>
<th>Income in hour 2</th>
<th>Income in hour 4</th>
<th>Income in hour 6</th>
<th>Income in hour 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0725 (0.0742)</td>
<td>0.0077 (0.0717)</td>
<td>0.2645 (0.0732)</td>
<td>0.3270 (0.0752)</td>
</tr>
<tr>
<td></td>
<td>-0.1175 (0.2351)</td>
<td>0.0282 (0.2269)</td>
<td>0.2363 (0.2389)</td>
<td>0.5714 (0.2246)</td>
</tr>
<tr>
<td></td>
<td>-0.0130 (0.1236)</td>
<td>0.3062 (0.1284)</td>
<td>0.3309 (0.1267)</td>
<td>0.5580 (0.1335)</td>
</tr>
</tbody>
</table>

Note: Panel A reports estimates from Equation (1) of the percentage-point increase in the probability of ending a shift at 8.5 hours when cumulative earnings is 10% higher. Panel B reports estimates from Equation (2) of the percentage-point change in the probability of ending a shift at 8.5 hours in response to a $10 increase in earnings accumulated at different times in the shift. The columns correspond to different sample restrictions: (1) trips on Friday and Saturday after 5 pm, (2) cabdrivers who operate exactly one cab and no other driver shares that cab, and (3) the latest 10% of shifts for drivers with over 100 shifts. The control variables consist of the full set from Table 2. Standard errors reported in parentheses are adjusted for clustering at the driver level.

- Estimates in Panel B are
 - increases in pp in $P(\text{stop})$ for $10 \triangle Y$ in that hour, equal to 5% higher income overall
 - Mean stopping probability is 13.6%

- $10 \triangle Y$ in hour 2 $\rightarrow \triangle P(\text{stop}) = 0.07\% \rightarrow \eta_{\text{Stop},Y} = 0.1$
- $10 \triangle Y$ in hour 8 $\rightarrow \triangle P(\text{stop}) = 0.32\% \rightarrow \eta_{\text{Stop},Y} = 0.46$
Thakral and To (2017)

- Findings provide evidence on speed of formation of reference point:
 - Income earned early during the day is already incorporated into reference point $T \Rightarrow$ Does not impact stopping
 - Income earned late in the shift not incorporated \Rightarrow Affect stopping
 - Provides evidence of backward looking reference points
 - Can also be interpreted as forward-looking (KR) delayed expectations
Section 7

Reference Dependence: Employment and Effort
Mas (2006): Police Performance

- Back to labor markets: Do reference points affect performance?

- **Mas (QJE 2006)** examines police performance
- Exploits quasi-random variation in pay due to arbitration

Background
- 60 days for negotiation of police contract \rightarrow If undecided, arbitration
- 9 percent of police labor contracts decided with final offer arbitration
Framework

- Pay is \(w \cdot (1 + r) \)
- Union proposes \(r_u \), employer proposes \(r_e \), arbitrator prefers \(r_a \)
- Arbitrator chooses \(r_e \) if \(|r_e - r_a| \leq |r_u - r_a| \)
- \(P(r_e, r_u) \) is probability that arbitrator chooses \(r_e \)
- Distribution of \(r_a \) is common knowledge (cdf \(F \))
- Assume \(r_e \leq r_a \leq r_u \) → Then

\[
P = P(r_a - r_e \leq r_u - r_a) = P(r_a \leq (r_u + r_e)/2) = F\left(\frac{r_u + r_e}{2}\right)
\]
Nash Equilibrium

If \(r_a \) is certain, Hotelling game: convergence of \(r_e \) and \(r_u \) to \(r_a \)

- Employer’s problem:

\[
\max_{r_e} PU \left(w \left(1 + r_e \right) \right) + (1 - P) U \left(w \left(1 + r_u^* \right) \right)
\]

- Notice: \(U' < 0 \)

- First order condition (assume \(r_u \geq r_e \)):

\[
\frac{P'}{2} \left[U \left(w \left(1 + r_e^* \right) \right) - U \left(w \left(1 + r_u^* \right) \right) \right] + PU' \left(w \left(1 + r_e^* \right) \right) w = 0
\]

- \(r_e^* = r_u^* \) cannot be solution \(\rightarrow \) Lower \(r_e \) and increase utility (\(U' < 0 \))
Union’s problem

- Maximize:
 \[
 \max_{r_u} PV (w (1 + r_e^*)) + (1 - P) V (w (1 + r_u))
 \]

- Notice: \(V' > 0 \)
- First order condition for union:
 \[
 \frac{P'}{2} [V (w (1 + r_e^*)) - V (w (1 + r_u^*))] + (1 - P) V' (w (1 + r_u^*)) w = 0
 \]
- To simplify, assume \(U (x) = -bx \) and \(V (x) = bx \)
- This implies \(V (w (1 + r_e^*)) - V (w (1 + r_u^*)) = -U (w (1 + r_e^*)) - U (w (1 + r_u^*)) \), so
 \[
 -bP^* w = -(1 - P^*) bw
 \]
- Result: \(P^* = 1/2 \)
Prediction

Prediction (i) in Mas (2006): “If disputing parties are equally risk-averse, the winner in arbitration is determined by a coin toss.”

Therefore, as-if random assignment of winner
Use to study impact of pay on police effort
Data:
- 383 arbitration cases in New Jersey, 1978-1995
- Observe offers submitted r_e, r_u, and ruling \bar{r}_a
- Match to UCR crime clearance data (=number of crimes solved by arrest)
Summary Statistics

- Compare summary statistics of cases when employer and when police wins
- Estimated $\hat{P} = 0.344 \neq 1/2 \rightarrow$ Unions more risk-averse than employers
- No systematic difference between Union and Employer cases except for r_e

Table I

<table>
<thead>
<tr>
<th></th>
<th>(1) Full-sample</th>
<th>(2) Pre-arbitration: Employer wins</th>
<th>(3) Pre-arbitration: Employer loses</th>
<th>(4) Pre-arbitration: Employer win-Employer loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbitrator rules for employer</td>
<td>0.344</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Offer: Employer</td>
<td>6.11 (1.65)</td>
<td>6.44 (1.54)</td>
<td>5.94 (1.68)</td>
<td>0.50 (0.18)</td>
</tr>
<tr>
<td>Final Offer: Union</td>
<td>7.65 (1.71)</td>
<td>7.87 (2.03)</td>
<td>7.54 (1.51)</td>
<td>0.32 (0.18)</td>
</tr>
<tr>
<td>Population</td>
<td>21,345 (33,453)</td>
<td>22,893 (34,561)</td>
<td>20,534 (32,915)</td>
<td>2,358 (3,598)</td>
</tr>
<tr>
<td>Contract length</td>
<td>2.09 (0.66)</td>
<td>2.09 (0.64)</td>
<td>2.09 (0.66)</td>
<td>0.007 (0.071)</td>
</tr>
<tr>
<td>Size of bargaining unit</td>
<td>42.58 (97.24)</td>
<td>41.36 (53.33)</td>
<td>43.22 (113.84)</td>
<td>-1.86 (15.66)</td>
</tr>
<tr>
<td>Arbitration year</td>
<td>85.56 (4.75)</td>
<td>85.85 (5.10)</td>
<td>85.41 (4.56)</td>
<td>0.436 (0.510)</td>
</tr>
<tr>
<td>Clearances per 100,000 capita</td>
<td>120.31 (106.65)</td>
<td>122.28 (108.76)</td>
<td>118.57 (104.35)</td>
<td>3.71 (9.46)</td>
</tr>
</tbody>
</table>
Effects on Performance

- Graphical evidence of effect of ruling on crime clearance rate

![Graph showing the effect of ruling on crime clearance rate.](image)

- Significant effect on clearance rate for one year after ruling
- Estimate of the cumulated difference between Employer and Union cities on clearance rates and crime
Effects on Performance
Effects on Performance

- Arbitration leads to an average increase of 15 clearances out of 100,000 each month

Table II

| Event study estimates of the effect of arbitration rulings on clearances;
| -12 to +12 month event time window
<p>| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |</p>
<table>
<thead>
<tr>
<th>All clearances</th>
<th>Violent crime clearances</th>
<th>Property crime clearances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>118.57 (5.12)</td>
<td>63.16 (3.13)</td>
</tr>
<tr>
<td></td>
<td>141.25 (9.94)</td>
<td>75.10 (6.86)</td>
</tr>
<tr>
<td>Post-arbitration</td>
<td>-6.79 (2.62)</td>
<td>-2.54 (1.75)</td>
</tr>
<tr>
<td>× Employer win</td>
<td>-8.48 (2.20)</td>
<td>-3.10 (1.33)</td>
</tr>
<tr>
<td></td>
<td>-9.75 (2.70)</td>
<td>-3.77 (1.78)</td>
</tr>
<tr>
<td>Post-arbitration</td>
<td>4.99 (2.09)</td>
<td>4.17 (1.53)</td>
</tr>
<tr>
<td>× Union win</td>
<td>7.92 (2.91)</td>
<td>5.82 (1.93)</td>
</tr>
<tr>
<td></td>
<td>5.96 (2.65)</td>
<td>5.31 (1.42)</td>
</tr>
<tr>
<td>Row 3 − Row 2</td>
<td>11.78 (3.35)</td>
<td>6.71 (2.32)</td>
</tr>
<tr>
<td></td>
<td>16.40 (3.65)</td>
<td>8.71 (2.37)</td>
</tr>
<tr>
<td></td>
<td>15.71 (3.75)</td>
<td>9.08 (2.26)</td>
</tr>
<tr>
<td>Employer Win</td>
<td>3.71 (9.46)</td>
<td>2.14 (6.11)</td>
</tr>
<tr>
<td>(Yes = 1)</td>
<td>-2.81 (14.92)</td>
<td>-5.73 (9.53)</td>
</tr>
</tbody>
</table>

Fixed-effects?	Yes	Yes	Yes
Weighted sample?	Yes	Yes	Yes
Augmented sample?	Yes	Yes	Yes
Mean of the	120.31 (106.65)	64.79 (71.28)	55.51 (58.72)
Dependent variable	120.31 (106.65)	64.79 (71.28)	55.51 (58.72)
	130.82 (370.58)	72.15 (294.78)	58.63 (180.55)
Sample Size	9,538	9,538	9,538
R²	0.0008	0.0005	0.63
Effects on Crime Rate

- Effects on crime rate more imprecise

Table IV

<p>| Event study estimates of the effect of arbitration rulings on crime; -12 to +12 month event time window |</p>
<table>
<thead>
<tr>
<th>All crime</th>
<th>Violent crime</th>
<th>Property crime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>612.18 (63.98)</td>
<td>150.26 (23.23)</td>
</tr>
<tr>
<td>Post-arbitration</td>
<td>26.86 (25.29)</td>
<td>7.75 (7.85)</td>
</tr>
<tr>
<td>\times Employer win</td>
<td>24.68 (14.68)</td>
<td>4.87 (4.70)</td>
</tr>
<tr>
<td>Post-arbitration</td>
<td>7.64 (16.24)</td>
<td>7.07 (5.46)</td>
</tr>
<tr>
<td>\times Union win</td>
<td>6.68 (11.42)</td>
<td>2.49 (4.46)</td>
</tr>
<tr>
<td>Row 3 – Row 2</td>
<td>-19.21 (30.06)</td>
<td>-0.68 (9.56)</td>
</tr>
<tr>
<td>Employer Win (Yes = 1)</td>
<td>-31.81 (84.42)</td>
<td>-20.43 (27.57)</td>
</tr>
</tbody>
</table>

Fixed-effects? Yes Yes Yes

Mean of the dependent variable
- All crime: 444.03 [364.23]
- Violent crime: 519.42 [2037.4]
- Property crime: 95.49 [103.16]
- 98.26 [363.76]
- 348.45 [292.10]
- 421.28 [1865.8]

Sample size
- All crime: 9,528
- Violent crime: 59,060
- Property crime: 9,529
- 59,085
- 9,537
- 59,119

R^2
- All crime: 0.001
- Violent crime: 0.54
- Property crime: 0.007
- 0.76
- 0.0003
- 0.42
Do reference points matter?

- Plot impact on clearances rates \((12, -12)\) as a function of \(\bar{r}_a - (r_e + r_u)/2\)

Figure V

Estimated expected change in clearances conditional on the deviation of the award from the average of the offers
Effect of loss is larger than effect of gain

Table VII
Heterogeneous effects of arbitration decisions on clearances by loss size, award, and deviation from the expected offer; -12 to +12 month event time window

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2.31)</td>
<td>(9.58)</td>
<td>(8.45)</td>
<td>(4.76)</td>
<td>(3.14)</td>
<td>(4.17)</td>
</tr>
<tr>
<td>Post-Arbitration × Award</td>
<td>1.23</td>
<td>-1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.16)</td>
<td>(0.98)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Arbitration × Loss size</td>
<td>-10.31</td>
<td>-10.93</td>
<td></td>
<td>-0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.59)</td>
<td>(1.89)</td>
<td></td>
<td>(4.54)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Arbitration × Union win</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(5.32)</td>
</tr>
<tr>
<td>Post-Arbitration × (expected award-award)</td>
<td></td>
<td></td>
<td></td>
<td>-17.72</td>
<td>2.82</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(7.94)</td>
<td>(4.13)</td>
<td></td>
</tr>
<tr>
<td>Post-Arbitration × p(loss size)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Included</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Size</td>
<td>59,137</td>
<td>59,137</td>
<td>59,137</td>
<td>59,137</td>
<td>52,857</td>
<td>55,879</td>
</tr>
<tr>
<td>R^2</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
<td>0.60</td>
<td>0.62</td>
</tr>
</tbody>
</table>

*Standard errors, clustered on the intersection of arbitration window and city, are in parentheses. Standard deviations are in brackets. Observations are municipality × month cells. The sample is weighted by population size in 1976. The dependant variable is clearances per 100,000 capita. Loss size is defined as the union demand (percent increase on previous wage) less the arbitrator award. Amongst cities that underwent arbitration, the mean loss size is 0.489 with a standard deviation of 0.953. The expected award is the mathematical expectation of the award given the union and employer offers and the predicted probability of an employer win. The predicted probability of an employer win is estimated with a probit model using as predictors year of arbitration dummies, the average of the final offers, log population, and the length of the contract. See text for details. The samples in models (1)-(4) consist of the 12 months before to the 12 months after arbitration, for jurisdictions that underwent arbitration, as well as all jurisdictions that never underwent arbitration for all months between 1976 and 1996. The sample in model (5) consists of cities where the union lost in arbitration and the comparison group of non-arbitrating cities. The sample in model (6) consists of cities where the union won in arbitration and the comparison group of non-arbitrating cities. All models include month × year effects (252), arbitration window effects (383), and city effects (452). Author’s calculation based on NJ PERC arbitration cases matched to monthly municipal clearance rates at the jurisdiction level from FBI Uniform Crime Reports.
Reference Dependence Model

- Column (3): Effect of a gain relative to \((r_e + r_u)/2 \) is not significant; effect of a loss is.
- Columns (5) and (6): Predict expected award \(\hat{r}_a \) using covariates, then compute \(\bar{r}_a - \hat{r}_a \)
 - \(\bar{r}_a - \hat{r}_a \) does not matter if union wins.
 - \(\bar{r}_a - \hat{r}_a \) matters a lot if union loses.
- Assume policeman maximizes

\[
\max_e \left[\bar{U} + U(w) \right] e - \theta \frac{e^2}{2}
\]

where

\[
U(w) = \begin{cases}
 w - \hat{w} & \text{if } w \geq \hat{w} \\
 \lambda (w - \hat{w}) & \text{if } w < \hat{w}
\end{cases}
\]
Reference Dependence Model

- Reduced form of reciprocity model where altruism towards the city is a function of how nice the city was to the policemen \((\bar{U} + U(w))\)
- F.o.c.:
 \[
 \bar{U} + U(w) - \theta e = 0
 \]
 Then
 \[
 e^*(w) = \frac{\bar{U}}{\theta} + \frac{1}{\theta} U(w)
 \]
- It implies that we would estimate
 \[
 \text{Clearances} = \alpha + \beta (\bar{r}_a - \hat{r}_a) + \gamma (\bar{r}_a - \hat{r}_a) 1 (\bar{r}_a - \hat{r}_a < 0) + \varepsilon
 \]
 with \(\beta > 0\) (also in standard model) and \(\gamma > 0\) (not in standard model)
Results

- Compare to observed pattern

- Close to predictions of model
Section 8

Reference Dependence: Domestic Violence
Introduction

- Consider a man in conflicted relationship with the spouse
- What is the effect of an event such as the local (American) football team losing or winning a game?
- With probability h the man loses control and becomes violent
 - Assume $h = h(u)$ with $h' < 0$ and u the underlying utility
 - Denote by p the ex-ante expectation that the team wins
 - Denote by $u(W)$ and $u(L)$ the consumption utility of a loss
Using a Koszegi-Rabin specification, then ex-post the utility from a win is

\[U(W|p) = u(W) \text{ [consumption utility]} + p[0] + (1 - p) \eta [u(W) - u(L)] \text{ [gain-loss utility]} \]

Similarly, the utility from a loss is

\[U(L|p) = u(L) + (1 - p)[0] - \lambda p \eta [u(W) - u(L)] \]

- Implication:
 \[\frac{\partial U(L|p)}{\partial p} = -\lambda \eta [u(W) - u(L)] < 0 \]

- The more a win is expected, the more a loss is painful → the more likely it is to trigger violence
- The (positive) effect of a gain is higher the more unexpected
Testing the Predictions

- **Card and Dahl (QJE 2011)** test these predictions using a data set of:
 - Domestic violence (NIBRS)
 - Football matches by State
 - Expected win probability from Las Vegas predicted point spread

- Separate matches into
 - Predicted win (+3 points of spread)
 - Predicted close
 - Predicted loss (-3 points)
Testing the Predictions

Table 4. Emotional Shocks from Football Games and Male-on-Female Intimate Partner Violence Occurring at Home, Poisson Regressions.

<table>
<thead>
<tr>
<th>Coefficient Estimates</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss * Predicted Win (Upset Loss)</td>
<td>.083</td>
<td>.077</td>
<td>.080</td>
<td>.074</td>
<td>.076</td>
</tr>
<tr>
<td>(0.026)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss * Predicted Close (Close Loss)</td>
<td>.031</td>
<td>.034</td>
<td>.036</td>
<td>.024</td>
<td>.026</td>
</tr>
<tr>
<td>(0.023)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Win * Predicted Loss (Upset Win)</td>
<td>-0.002</td>
<td>.011</td>
<td>.021</td>
<td>.013</td>
<td>.011</td>
</tr>
<tr>
<td>(0.027)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted Win</td>
<td>-0.004</td>
<td>-0.19</td>
<td>-0.15</td>
<td>-0.00</td>
<td>-0.068</td>
</tr>
<tr>
<td>(0.022)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted Close</td>
<td>-0.012</td>
<td>-0.17</td>
<td>-0.16</td>
<td>-0.07</td>
<td>-0.074</td>
</tr>
<tr>
<td>(0.023)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted Loss</td>
<td>-0.000</td>
<td>-0.04</td>
<td>-0.11</td>
<td>-0.06</td>
<td>-0.057</td>
</tr>
<tr>
<td>(0.022)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-game Day</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Nielsen Rating</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>.009</td>
</tr>
<tr>
<td>(0.004)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Municipality fixed effects</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Year, week, & holiday dummies</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Weather variables</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nielsen Data Sub-sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Municipalities</td>
<td>765</td>
<td>765</td>
<td>765</td>
<td>749</td>
<td>749</td>
</tr>
<tr>
<td>Observations</td>
<td>77,520</td>
<td>77,520</td>
<td>77,520</td>
<td>71,798</td>
<td>71,798</td>
</tr>
</tbody>
</table>
Findings

1. Unexpected loss increases domestic violence
2. No effect of expected loss
3. No effect of unexpected win, if anything increases violence

Findings 1-2 consistent with ref. dep. and 3 partially consistent (given that violence is a function of very negative utility)

Other findings:
- Effect is larger for more important games
- Effect disappears within a few hours of game end → Emotions are transient
- No effect on violence of females on males
Section 9

Next Lecture
More Reference-Dependence:
- Insurance
- Finance
- Job Search
- KR vs. backward looking ref. points
- Endowment Effect
- Effort