Outline

1. Cost Curves II

2. One-step Profit Maximization

3. Second-Order Conditions

4. Introduction to Market Equilibrium

5. Aggregation

6. Market Equilibrium in the Short-Run
1 Cost Curves II

- **Case 2.** *Non-convex technology.* Plot production function, total cost, average and marginal. Supply function?

- **Case 3.** *Technology with setup cost.* Plot production function, total cost, average and marginal. Supply function?
2 One-step Profit Maximization

- Nicholson, Ch. 11, pp. 383-393

- One-step procedure: maximize profits

- Perfect competition. Price p is given
 - Firms are small relative to market
 - Firms do not affect market price p_M

 - Will firm produce at $p > p_M$?
 - Will firm produce at $p < p_M$?
 - $\implies p = p_M$
- Revenue: $py = pf(L, K)$

- Cost: $wL + rK$

- Profit $pf(L, K) - wL - rK$
• Agent optimization:

$$\max_{L,K} pf(L, K) - wL - rK$$

• First order conditions:

$$pf'_L(L, K) - w = 0$$

and

$$pf'_K(L, K) - r = 0$$

• Second order conditions? $pf''_{L,L}(L, K) < 0$ and

$$|H| = \begin{vmatrix} pf''_{L,L}(L, K) & pf''_{L,K}(L, K) \\ pf''_{L,K}(L, K) & pf''_{K,K}(L, K) \end{vmatrix} =$$

$$= p^2 \left[f''_{L,L}f''_{K,K} - (f''_{L,K})^2 \right] > 0$$

• Need $f''_{L,K}$ not too large for maximum
• Comparative statics with respect to to p, w, and r.

• What happens if w increases?

\[
\frac{\partial L^*}{\partial w} = -\frac{\begin{vmatrix} -1 & p_{f_{L,K}}''(L,K) \\ 0 & p_{f_{K,K}}''(L,K) \end{vmatrix}}{\begin{vmatrix} p_{f_{L,L}}''(L,K) & p_{f_{L,K}}''(L,K) \\ p_{f_{L,K}}''(L,K) & p_{f_{K,K}}''(L,K) \end{vmatrix}} < 0
\]

and

\[
\frac{\partial L^*}{\partial r} =
\]

• Sign of $\partial L^*/\partial r$ depends on $f_{L,K}''$.

3 Second Order Conditions in P-Max: Cobb-Douglas

• How do the second order conditions relate for:
 – Cost Minimization
 – Profit Maximization?

• Check for Cobb-Douglas production function
 \[y = AK^\alpha L^\beta \]

• Cost Minimization. S.o.c.:
 \[c''_y (y^*, w, r) > 0 \]

• As we showed, for CD prod. ftn.,
 \[c''_y (y^*, w, r) = -\frac{1}{\alpha + \beta} \frac{1 - (\alpha + \beta)}{\alpha + \beta} \frac{B}{A^2} \left(\frac{y}{A} \right)^{\frac{1-2(\alpha+\beta)}{\alpha+\beta}} \]
 which is > 0 as long as $\alpha + \beta < 1$ (DRS)
• **Profit Maximization.** S.o.c.:

\[p f''_{L,L}(L, K) < 0 \]

and

\[
|H| = p^2 \left[f''_{L,L} f''_{K,K} - (f''_{L,K})^2 \right] > 0
\]

• As long as \(\beta < 1 \),

\[
p f''_{L,L} = p \beta (\beta - 1) AK^\alpha L^\beta - 2 < 0
\]

• Then,

\[
|H| = p^2 \left[f''_{L,L} f''_{K,K} - (f''_{L,K})^2 \right] =
\]

\[
= p^2 \left[\beta (\beta - 1) AK^\alpha L^{\beta - 2} \right] =
\]

\[
= \alpha (\alpha - 1) AK^{\alpha - 2} L^{\beta - 2} \]

\[
= p^2 A^2 K^{2\alpha - 2} L^{2\beta - 2} \alpha \beta \left[1 - \alpha - \beta \right]
\]

• Therefore, \(|H| > 0 \) iff \(\alpha + \beta < 1 \) (DRS)

• The two conditions coincide
4 Introduction to Market Equilibrium

- Nicholson, Ch. 12, pp. 409–419

- Two ways to analyze firm behavior:
 - Two-Step Cost Minimization
 - One-Step Profit Maximization

- What did we learn?
 - Optimal demand for inputs L^*, K^* (see above)
 - Optimal quantity produced y^*
• Supply function. $y = y^* (p, w, r)$

 – From profit maximization:
 $$y = f (L^* (p, w, r), K^* (p, w, r))$$

 – From cost minimization:
 $$MC \text{ curve above } AC$$

 – Supply function is increasing in p

• Market Equilibrium. Equate demand and supply.

• Aggregation?

• Industry supply function!
5 Aggregation

5.1 Producers aggregation

- J companies, $j = 1, \ldots, J$, producing good i

- Company j has supply function

\[y_i^j = y_i^{j*}(p_i, w, r) \]

- Industry supply function:

\[Y_i(p_i, w, r) = \sum_{j=1}^{J} y_i^{j*}(p_i, w, r) \]

- Graphically,
5.2 Consumer aggregation

- *One-consumer economy*

- Utility function $u(x_1, \ldots, x_n)$

- Prices p_1, \ldots, p_n

- Maximization \implies

\[
x_1^* = x_1^*(p_1, \ldots, p_n, M),
\]

\[
\vdots
\]

\[
x_n^* = x_n^*(p_1, \ldots, p_n, M).
\]
• Focus on good i. Fix prices $p_1, \ldots, p_{i-1}, p_{i+1}, \ldots, p_n$ and M

• **Single-consumer demand function:**

 $x^*_i = x^*_i (p_i | p_1, \ldots, p_{i-1}, p_{i+1}, \ldots, p_n, M)$

• What is sign of $\partial x^*_i / \partial p_i$?

 • Negative if good i is normal

 • Negative or positive if good i is inferior
• **Aggregation:** \(J \) consumers, \(j = 1, \ldots, J \)

• Demand for good \(i \) by consumer \(j \):

\[
x^{j*}_i = x^{j*}_i (p_1, \ldots, p_n, M^j)
\]

• Market demand \(X_i \):

\[
X_i (p_1, \ldots, p_n, M^1, \ldots, M^J) = \sum_{j=1}^{J} x^{j*}_i (p_1, \ldots, p_n, M^j)
\]

• Graphically,
• Notice: market demand function depends on distribution of income M^J

• Market demand function X_i:
 - Consumption of good i as function of prices p
 - Consumption of good i as function of income distribution M^J
6 Market Equilibrium in the Short-Run

- What is equilibrium price p_i?

- Magic of the Market...

- Equilibrium: No excess supply, No excess demand

- Prices p^* equates demand and supply of good i:

$$Y^* = Y^S_i (p^*_i, w, r) = X^D_i (p^*_1, ..., p^*_n, M^1, ..., M^J)$$
• Graphically,

• Notice: in short-run firms can make positive profits
Comparative statics exercises with endogenous price p_i:

- increase in wage w or interest rate r:

- change in income distribution
7 Next Lecture

- Market Equilibrium

- Comparative Statics of Equilibrium

- Elasticities

- Taxes and Subsidies