The Experimental Setup in this Study

Bicycle Messengers in Zurich, Switzerland

- Data: Delivery records of Veloblitz and Flash Delivery Services, 1999 - 2000.
 - Contains large number of details on every package delivered.

- Observe hours (shifts) and effort (revenues per shift).

- Work at the messenger service
 - Messengers are paid a commission rate w of their revenues r_{it} ($w = \text{wage}^\text{w}$). Earnings wr_{it}
 - Messengers can freely choose the number of shifts and whether they want to do a delivery, when offered by the dispatcher.

- Suitable setting to test for intertemporal substitution.

- Highly volatile earnings
 - Demand varies strongly between days

- Familiar with changes in intertemporal incentives.
Experiment 1

- **The Temporary Wage Increase**
 - Messengers were randomly assigned to one of two treatment groups, A or B.
 - $N=22$ messengers in each group
 - Commission rate w was increased by 25 percent during four weeks
 - Group A: September 2000 (Control Group: B)
 - Group B: November 2000 (Control Group: A)

- **Intertemporal Substitution**
 - Wage increase has no (or tiny) income effect.
 - Prediction with time-separable preferences, $t= a$ day:
 - Work more shifts
 - Work harder to obtain higher revenues
 - Comparison between TG and CG during the experiment.
 - Comparison of TG over time confuses two effects.
Results for Hours

- Treatment group works 12 shifts, Control Group works 9 shifts during the four weeks.
- Treatment Group works significantly more shifts ($\chi^2(1) = 4.57$, $p<0.05$)
- Implied Elasticity: 0.8

Figure 6: The Working Hazard during the Experiment

- Wage = normal level
- Wage = 25 Percent higher
Results for Effort: Revenues per shift

- Treatment Group has lower revenues than Control Group: -6 percent. \((t = 2.338, p < 0.05)\)
- Implied *negative* Elasticity: -0.25

The Distribution of Revenues during the Field Experiment

- Distributions are significantly different (KS test; \(p < 0.05\));
Results for Effort, cont.

- **Important caveat**
 - Do lower revenues relative to control group reflect lower effort or something else?

- **Potential Problem: Selectivity**
 - Example: Experiment induces TG to work on bad days.
 - More generally: Experiment induces TG to work on days with unfavorable states
 - If unfavorable states raise marginal disutility of work, TG may have lower revenues during field experiment than CG.

- **Correction for Selectivity**
 - Observables that affect marginal disutility of work.
 - Conditioning on experience profile, messenger fixed effects, daily fixed effects, dummies for previous work leave result unchanged.
 - Unobservables that affect marginal disutility of work?
 - Implies that reduction in revenues only stems from sign-up shifts in addition to fixed shifts.
 - **Significantly lower revenues on fixed shifts, not even different from sign-up shifts.**
Corrections for Selectivity

- **Comparison TG vs. CG without controls**
 - Revenues 6 % lower (s.e.: 2.5%)

- **Controls for daily fixed effects, experience profile, workload during week, gender**
 - Revenues are 7.3 % lower (s.e.: 2 %)

- **+ messenger fixed effects**
 - Revenues are 5.8 % lower (s.e.: 2%)

- **Distinguishing between fixed and sign-up shifts**
 - Revenues are 6.8 percent lower on fixed shifts (s.e.: 2 %)
 - Revenues are 9.4 percent lower on sign-up shifts (s.e.: 5 %)

- **Conclusion: Messengers put in less effort**
 - Not due to selectivity.
Measuring Loss Aversion

- **A potential explanation for the results**
 - Messengers have a daily income target in mind
 - They are loss averse around it
 - Wage increase makes it easier to reach income target

 ➢ That’s why they put in less effort per shift

- **Experiment 2: Measuring Loss Aversion**
 - Lottery A: Win CHF 8, lose CHF 5 with probability 0.5.
 - 46 % accept the lottery
 - Lottery C: Win CHF 5, lose zero with probability 0.5; or take CHF 2 for sure
 - 72 % accept the lottery

 ➢ Large Literature: Rejection is related to loss aversion.

- **Exploit individual differences in Loss Aversion**

 - Behavior in lotteries used as proxy for loss aversion.
 ➢ Does the proxy predict reduction in effort during experimental wage increase?
Measuring Loss Aversion

- Does measure of Loss Aversion predict reduction in effort?
 - Strongly loss averse messengers reduce effort substantially: Revenues are 11 % lower (s.e.: 3 %)
 - Weakly loss averse messenger do not reduce effort noticeably: Revenues are 4 % lower (s.e. 8 %).
 - No difference in the number of shifts worked.

- Strongly loss averse messengers put in less effort while on higher commission rate
 - Supports model with daily income target

- Others kept working at normal pace, consistent with standard economic model
 - Shows that not everybody is prone to this judgment bias (but many are)
Concluding Remarks

- **Our evidence does not show that intertemporal substitution in unimportant.**
 - Messenger work more shifts during Experiment 1
 - But they also put in less effort during each shift.

- **Consistent with two competing explanations**
 - Preferences to spread out workload
 - But fails to explain results in Experiment 2
 - Daily income target and Loss Aversion
 - Consistent with Experiment 1 and Experiment 2
 - Measure of Loss Aversion from Experiment 2 predicts reduction in effort in Experiment 1
 - Weakly loss averse subjects behave consistently with simplest standard economic model.
 - Consistent with results from many other studies.