Problem Set 9 Due in lecture Thursday, November 10

- 1. In the firm optimization problem in the q-theory model, the transversality condition rules out:
 - A. Paths where the firm is violating its budget constraint by going further and further into debt.
 - B. Paths where investment does not satisfy 1 + C'(I(t)) = q(t).
- C. Paths where the firm is constantly increasing its investment even though the profitability of capital is constantly falling.
 - D. Paths where investment approaches zero.
- 2. In the q-theory model where the initial value of K exceeds its long-run equilibrium value, as the economy moves toward the long-run equilibrium:
 - A. The $\dot{q} = 0$ locus is shifting to the right and the $\dot{K} = 0$ locus is shifting down.
 - B. The $\dot{q} = 0$ locus is shifting to the right and the $\dot{K} = 0$ locus is not shifting.
 - C. The $\dot{K} = 0$ locus is shifting down and the $\dot{q} = 0$ locus is not shifting.
 - D. None of the above.
- 3. Romer, Problem 9.7.
- 4. Romer, Problem 9.12, parts (b), (c), and (d).
- 5. Consider the model of the first section of the notes posted for lecture on 11/8. Assume that utility is logarithmic, that $\beta = 1$, and that there are only two states, each of which occurs with probability one-half. Finally, there is only one investment project. It pays R_G in state G and R_B in state B, with $R_G > R_B > 0$. We will refer to G as the "good" state and B as the "bad" state.
 - a. What are the equilibrium conditions?

 - b. What are C_1 , K, C_2^G , C_2^B , q_G , and q_B ? c. Now suppose a new investment project is discovered. It pays off only in one state of the world. Let $R_{NEW} > 0$ denote its payoff in that state.
 - i. What is the condition for there to be strictly positive investment in the new project?
 - ii. Assume the condition in (i) is satisfied. What are the equilibrium levels of K (investment in the old project) and K_{NEW} (investment in the new project)?
 - iii. Suppose the state in which the new project pays off is B. What is the condition for C_2^B to be greater than or equal to C_2^G , so that it is no longer reasonable to describe B as the "bad" state?

EXTRA PROBLEMS (NOT TO BE HANDED IN/ANSWERS WILL GENERALLY NOT BE PROVIDED)

6. The saddle-path of the q-theory model. Consider the two equations of the q-theory model,

$$\dot{q}(t) = rq(t) - \pi(K(t)), \qquad \dot{K}(t) = f(q(t)).$$

a. Define the steady state of the model, (\bar{q}, \bar{K}) . Show that the model's linear (Taylor) approximation in the neighborhood of the steady state takes the form:

$$[\dot{q}, \dot{K}]' \approx G[q - \bar{q}, K - \bar{K}]',$$

where G =

Be sure to show how A, B, and C depend on exogenous parameters, the steady-state values of q and K, and/or the properties of $\pi(\cdot)$ and $\pi(\cdot)$.

b. Show that the characteristic roots of the preceding 2x2 matrix are:

$$\lambda_1, \lambda_2 = \frac{r \mp \sqrt{r^2 - 4f'(1)\pi'(\overline{K})}}{2},$$

where $\lambda_1 > 0$ and $\lambda_2 < 0$. Please indicate why the second condition holds.

c. Show that the eigenvectors of the matrix G are proportional to the matrix

$$X = \begin{bmatrix} \lambda_1/f'(1) & \lambda_2/f'(1) \\ 1 & 1 \end{bmatrix}$$

- d. Define $[\tilde{q}, \tilde{K}]' \equiv X^{-1}[q \bar{q}, K \bar{K}]'$, and note that this implies that $[\dot{\tilde{q}}, \dot{\tilde{K}}]' = X^{-1}[\dot{q}, \dot{K}]'$. Explain how that change of variables enables us to write the solution of our differential equation system in the form $[\tilde{q}(t), \tilde{K}(t)]' = [\tilde{q}(0)e^{\lambda_1 t}, \tilde{K}(0)e^{\lambda_2 t}]'$ for arbitrary initial conditions $\tilde{q}(0)$ and $\tilde{K}(0)$.
 - e. From this last relationship deduce that:

$$\begin{split} \mathbf{q}(t) - \ \overline{q} &= \ \widetilde{q}(0)(\lambda_1/\mathbf{f}'(1))e^{\lambda_1 t} \ + \ \widetilde{K}(0)(\lambda_2/\mathbf{f}'(1))e^{\lambda_2 t}, \\ \\ \mathbf{K}(t) - \ \overline{K} &= \ \widetilde{q}(0)e^{\lambda_1 t} \ + \ \ \widetilde{K}(0)e^{\lambda_2 t}. \end{split}$$

- f. Recalling that $\lambda_1 > 0$ and $\lambda_2 < 0$, identify the initial condition that will ensure the economy is on the convergent saddle-path in the usual phase diagram with K on the horizontal axis and q on the vertical axis.
 - g. For our linear approximation above, express the (linear) equation for the saddle-path in the form

$$q(t) - \overline{q} = \Omega[K(t) - \overline{K}]$$

for an appropriate constant slope $\Omega < 0$. Be sure to show how Ω depends on the model parameters, the steady-state values of q and K, and/or the properties of $\pi(\cdot)$ and $f(\cdot)$.

h. Recall that

$$\lambda_2 = \frac{r - \sqrt{r^2 - 4f'(1)\pi(\overline{K})}}{2}.$$

Discuss which parameters and steady state values affect the slope of the saddle-path. How do they impact the slope? Why?

7-8. Romer, Problems 9.13, 9.14.