Problem Set 5 Due at the start of class, Thursday, October 6

1. (From last year's midterm.) Consider the model of endogenous knowledge accumulation presented in the book and in lecture for the case of $\theta < 1$:

$$Y(t) = (1 - a_L)L(t)A(t), \quad 0 < a_L < 1,$$

$$\dot{A}(t) = B[a_L L(t)]^{\gamma} A(t)^{\theta}, \quad B > 0, \quad \gamma > 0, \quad \theta < 1.$$

$$\dot{L}(t) = nL(t).$$

Assume L(0) > 0, A(0) > 0. As in the usual model, a_L is exogenous and constant.

In contrast to the baseline version of the model, assume that the rate of population growth is a decreasing function of the fraction of workers who are engaged in R&D: $n = n(a_L)$, $n'(\bullet) < 0$, $n(\bullet) > 0$. (The idea is that, for some reason, scientists on average have fewer children than other workers.)

Suppose the economy is on a balanced growth path, and that there is a permanent increase in a_L . Sketch the resulting path of $\ln A$ and what that path would have been without the increase in a_L . Explain your answer.

INSTRUCTIONS FOR PROBLEMS 2-7:

- Give the <u>best</u> answer to <u>5 of the following 6</u> questions. Note:
- If you wish, you may add a <u>BRIEF</u> explanation of your answer to <u>AT MOST ONE</u> question. In that case, your score on that question will be based on your answer and explanation together. This means that an explanation can either raise or lower a grade.
- If you answer all 6 questions, your score on these questions will be based on your average, not on your 5 best scores.
- 2. In models where the allocation of resources to R&D is determined by market forces, the inputs that embody different ideas are typically modeled as:
 - A. Supplied in exogenously determined amounts.
 - B. Public goods.
 - C. Perfect substitutes for one another.
 - D. Imperfect substitutes for one another.
- 3. One of the empirical issues that Jones addresses in "Time-Series Tests of Endogenous Growth Models" is:
 - A. Whether population growth is stationary or nonstationary.
 - B. Whether the growth rate of income per capita is higher in countries with larger populations.
 - C. The horizon over which investment affects growth.
 - D. The correlation between the number of scientists and engineers and the saving rate.
- 4. In the P. Romer model of endogenous technological change, the condition for equilibrium in the allocation of workers between R&D and goods production at time *t* is:
 - A. The wages in the two sectors at time *t* are equal.
- B. The present value of the revenues from an idea created at time t equals the wage in the goods-producing sector at time t.
- C. The marginal product of an idea in creating new ideas equals its marginal product in goods production.
- D. The price of using an idea equals $\eta/(\eta 1)$ times the cost of producing the idea, where η is the elasticity of demand for the input using a given idea.

- 5. The "accounting" approach to decomposing cross-country income differences described in Section 4.2 of Romer, *Advanced Macroeconomics*, <u>fails</u> to assign to human capital:
 - A. Differences in income stemming from differences in the quality of schooling.
 - B. Any impact of human capital on income that operates through externalities.
- C. The fact that when human capital raises income, if the saving rate does not change then the quantity of saving rises, thereby raising the stock of physical capital.
 - D. (A) and (B).
 - E. (A) and (C).
 - F. (B) and (C).
 - G. (A), (B), and (C).
 - H. None of the above.
- 6. Of the following possible regression results concerning the elasticity of long-run output with respect to the saving rate, the one that would provide the best evidence that differences in saving rates are not important to cross-country income differences is:
 - A. A point estimate of 5, with a standard error of 2.
 - B. A point estimate of 0.1, with a standard error of 0.01.
 - C. A point estimate of 0.001, with a standard error of 5.
 - D. A point estimate of -2, with a standard error of 5.
- 7. Consider an economy described by: $\dot{B}(t) = bB(t)$, $\dot{D}(t) = d[cB(t)]^{\omega}D(t)^{\mu}$, J(t) = [(1-c)B(t)]D(t), with b > 0, d > 0, 0 < c < 1, $\omega > 0$, B(0) > 0, and D(0) > 0. This economy will converge to a balanced growth path if and only if:
 - A. μ < 1.
 - B. $\mu \leq 1$.
 - $C. \omega < 1.$
 - D. $\omega \leq 1$.

EXTRA PROBLEMS (NOT TO BE HANDED IN / AT MOST A VERY SMALL NUMBER OF ANSWERS WILL BE PROVIDED)

8. Knowledge accumulation may vary in a complicated way over time. This problem asks you to investigate one way that this might occur.

For simplicity, <u>population is constant</u>. Output at time t is given by $Y(t) = (1 - a_L)A(t)L$, where Y is output, a_L is the fraction of the population that is engaged in producing knowledge, A is knowledge, and L is population.

Knowledge accumulation is given by the function: $\dot{A}(t) = B_1 a_L L A(t)^{\theta}$ if $A < A^*$, $\dot{A}(t) = B_2 a_L L$ if $A > A^*$, where A^* , B_1 , and B_2 are positive parameters, and where θ is a parameter that is assumed to be greater than 1. In addition, B_1 and B_2 are assumed to be such that \dot{A} does not change discontinuously when A reaches A^* . This requires that $B_1 a_L L A^{*\theta} = B_2 a_L L$, which is equivalent to $B_2 = B_1 A^{*\theta}$.

The initial level of knowledge, A(0), is assumed to be greater than zero and less than A^* .

- a. Consider the period when A is less than A*.
 - i. Define $g_A(t) \equiv \dot{A}(t)/A(t)$. What is $g_A(t)$ as a function of B_1 , a_L , A_L , and A(t)?
 - ii. Find an expression for $g_A(t)$ as a function of $g_A(t)$ and θ .
 - iii. Is $g_A(t)$ rising, falling, or constant over time?
- b. Now consider the period when A is greater than or equal to A*.
 - i. What is $\dot{A}(t)$?
 - ii. Is $g_A(t)$ rising, falling, or constant over time?
- c. Combine your answers to (a) and (b) to:
 - i. Sketch the path of the growth rate of output, $\dot{Y}(t)/Y(t)$ over time.
 - ii. Sketch the path of the log of output, ln Y(t), over time.
- 9-14. Romer, Problems 3.5, 3.8, 3.14, 4.1, 4.4, 4.9.