Economics 101A
(Lecture 5)

Stefano DellaVigna

February 3, 2015
Outline

1. Properties of Preferences II

2. From Preferences to Utility (and vice versa)

3. Common Utility Functions

4. Utility maximization
1 Properties of Preferences II

• Nicholson, Ch. 3, pp. 89-90

• Commodity set X (apples vs. strawberries, work vs. leisure, consume today vs. tomorrow)

• Preference relation \succeq over X

• A preference relation \succeq is rational if

 1. It is complete: For all x and y in X, either $x \succeq y$, or $y \succeq x$ or both

 2. It is transitive: For all x, y, and z, $x \succeq y$ and $y \succeq z$ implies $x \succeq z$

• Preference relation \succeq is continuous if for all y in X, the sets $\{x : x \succeq y\}$ and $\{x : y \succeq x\}$ are closed sets.
• Example 2: choice of combinations of apples and oranges: \(X = \{(1, 0), (0, 1), (1, 1), (0, 0)\} \)

• Example 2: \(X = \mathbb{R}^2 \) with map of indifference curves
• Counterexamples:

 1. Incomplete preferences. Dominance rule.
2. Intransitive preferences. Quasi-discernible differences.
3. Discontinuous preferences. Lexicographic order
• Indifference relation \sim: $x \sim y$ if $x \succeq y$ and $y \succeq x$

• Strict preference: $x \succ y$ if $x \succeq y$ and not $y \succeq x$

• Exercise. If \succeq is rational,

 – \succ is transitive

 – \sim is transitive

 – Reflexive property of \succeq. For all x, $x \succeq x$.
• Other features of preferences

• Preference relation \succeq is:

 – *monotonic* if $x \geq y$ implies $x \succeq y$.

 – *strictly monotonic* if $x \geq y$ and $x_j > y_j$ for some j implies $x \succ y$.

 – *convex* if for all x, y, and z in X such that $x \succeq z$ and $y \succeq z$, then $tx + (1 - t)y \succeq z$ for all t in $[0, 1]$.
2 From preferences to utility

• Nicholson, Ch. 3

• Economists like to use utility functions \(u : X \to \mathbb{R} \)

• \(u(x) \) is ‘liking’ of good \(x \)

• \(u(a) > u(b) \) means: I prefer \(a \) to \(b \).

• **Def.** Utility function \(u \) represents preferences \(\geq \) if, for all \(x \) and \(y \) in \(X \), \(x \geq y \) if and only if \(u(x) \geq u(y) \).

• **Theorem.** If preference relation \(\succeq \) is rational and continuous, there exists a continuous utility function \(u : X \to \mathbb{R} \) that represents it.
• [Skip proof]

• Example:

\[(x_1, x_2) \succeq (y_1, y_2) \text{ iff } x_1 + x_2 \geq y_1 + y_2\]

• Draw:

• Utility function that represents it: \(u(x) = x_1 + x_2 \)

• But... Utility function representing \(\succeq \) is not unique

• Take \(3u(x) \) or \(\exp(u(x)) \)

• \(u(a) > u(b) \iff \exp(u(a)) > \exp(u(b)) \)
• If $u(x)$ represents preferences \succeq and f is a strictly increasing function, then $f(u(x))$ represents \succeq as well.

• If preferences are represented from a utility function, are they rational?

 – completeness

 – transitivity
• Indifference curves: $u(x_1, x_2) = \bar{u}$

• They are just implicit functions! $u(x_1, x_2) − \bar{u} = 0$

$$\frac{dx_2}{dx_1} = -\frac{U'_x}{U'_x} = MRS$$

• Indifference curves for:

 – monotonic preferences;

 – strictly monotonic preferences;

 – convex preferences
3 Common utility functions

- Nicholson, Ch. 3, pp. 102-105

1. Cobb-Douglas preferences: \(u(x_1, x_2) = x_1^\alpha x_2^{1-\alpha} \)

- \(MRS = -\alpha x_1^{\alpha-1} x_2^{1-\alpha} / (1-\alpha) x_1^\alpha x_2^{-\alpha} = \frac{\alpha}{1-\alpha x_1} x_2 \)

2. Perfect substitutes: \(u(x_1, x_2) = \alpha x_1 + \beta x_2 \)

- \(MRS = -\alpha / \beta \)
3. Perfect complements: \(u(x_1, x_2) = \min(\alpha x_1, \beta x_2) \)

- \(MRS \) discontinuous at \(x_2 = \frac{\alpha}{\beta} x_1 \)

4. Constant Elasticity of Substitution: \(u(x_1, x_2) = \left(\alpha x_1^\rho + \beta x_2^\rho \right)^{1/\rho} \)

- \(MRS = -\frac{\alpha}{\beta} \left(\frac{x_1}{x_2} \right)^{\rho - 1} \)

- if \(\rho = 1 \), then...

- if \(\rho = 0 \), then...

- if \(\rho \to -\infty \), then...
4 Utility Maximization

- Nicholson, Ch. 4, pp. 119–128

- $X = R^2_+$ (2 goods)

- Consumers: choose bundle $x = (x_1, x_2)$ in X which yields highest utility.

- Constraint: income = M

- Price of good 1 = p_1, price of good 2 = p_2

- Bundle x is feasible if $p_1 x_1 + p_2 x_2 \leq M$

- Consumer maximizes

$$\max_{x_1, x_2} u(x_1, x_2)$$

$$s.t. \ p_1 x_1 + p_2 x_2 \leq M$$

$$x_1 \geq 0, \ x_2 \geq 0$$
• Maximization subject to inequality. How do we solve that?

• Trick: u strictly increasing in at least one dimension. (\succeq strictly monotonic)

• Budget constraint always satisfied with equality

• Ignore temporarily $x_1 \geq 0$, $x_2 \geq 0$ and check afterwards that they are satisfied for x_1^* and x_2^*.
Problem becomes

\[
\max_{x_1, x_2} u(x_1, x_2) \\
\text{s.t. } p_1 x_1 + p_2 x_2 - M = 0
\]
5 Next Class

• Utility Maximization (ctd)

• Utility Maximization – tricky cases

• Indirect Utility Function