Economics 101A
(Lecture 1)

Stefano DellaVigna (sick with flu!)
Jonas Tungodden Katalin Springel

January 20, 2015
Outline

1. Who are we?

2. Prerequisites for the course

3. A test in maths

4. Optimization with 1 variable
1 Who are we?

Stefano DellaVigna – call me ‘Stefano’

- Professor of Economics

- Bocconi (Italy) undergraduate (Econ.), Harvard PhD (Econ.)

- Psychology and Economics, Economics of Media, Behavioral Finance

- Evans 515, Office Hours: TBA
Jonas Tungodden (2 Sections)

- Graduate Student, Department of Economics
- Psychology and Economics
- Office Hours: TBA

Katalin Springel (1 Section)

- Graduate Student, Department of Economics
- Industrial Organization
- Office Hours: TBA
2 Prerequisites

• Mathematics
 – Good knowledge of multivariate calculus – Maths 1A or 1B and 53
 – Basic knowledge of probability theory and matrix algebra

• Economics
 – Knowledge of fundamentals – Ec1 or 2 or 3
 – High interest!
• Go over syllabus
3 A Test in Maths

1. Can you differentiate the following functions with respect to \(x \)?

 (a) \(y = \exp(x) \)

 (b) \(y = a + bx + cx^2 \)

 (c) \(y = \frac{\exp(x)}{b^x} \)

2. Can you partially differentiate these functions with respect to \(x \) and \(w \)?

 (a) \(y = axw + bx - c\frac{x}{w} + d\sqrt{xw} \)

 (b) \(y = \exp(x/w) \)

 (c) \(y = \int_0^1 (x + aw^2 + xs) \, ds \)
3. Can you plot the following functions of one variable?

(a) \(y = \exp(x) \)

(b) \(y = -x^2 \)

(c) \(y = \exp(-x^2) \)

4. Are the following functions concave, convex or neither?

(a) \(y = x^3 \)

(b) \(y = -\exp(x) \)

(c) \(y = x^5 y^5 \) for \(x > 0, y > 0 \)
5. Consider an urn with 20 red and 40 black balls?

(a) What is the probability of drawing a red ball?

(b) What is the probability of drawing a black ball?

6. What is the determinant of the following matrices?

 (a) \[A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \]

 (b) \[A = \begin{bmatrix} 10 & 10 \\ 20 & 20 \end{bmatrix} \]
4 Optimization with 1 variable

- Nicholson, Ch.2, pp. 20-23

- Example. Function $y = -x^2$ – Graph it

- What is the maximum?

 - Maximum is at 0

- General method?
• Sure! Use derivatives

• Derivative is slope of the function at a point:

\[\frac{\partial f(x)}{\partial x} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]

• Necessary condition for maximum \(x^* \) is

\[\frac{\partial f(x^*)}{\partial x} = 0 \] \hspace{1cm} (1)

• Try with \(y = -x^2 \).

\[\frac{\partial f(x)}{\partial x} = \hspace{1cm} = 0 \implies x^* = \]
• Does this guarantee a maximum? No!

• Consider the function $y = x^3$

 \[\frac{\partial f(x)}{\partial x} =\quad \quad = 0 \rightarrow x^* = \]

• Plot $y = x^3$.
• Sufficient condition for a (local) maximum:

\[
\frac{\partial f(x^*)}{\partial x} = 0 \quad \text{and} \quad \frac{\partial^2 f(x)}{\partial^2 x} \bigg|_{x^*} < 0 \quad (2)
\]

• Proof: At a maximum, \(f(x^* + h) - f(x^*) < 0 \) for all \(h \).

• Taylor Rule: \(f(x^* + h) - f(x^*) = \frac{\partial f(x^*)}{\partial x} h + \frac{1}{2} \frac{\partial^2 f(x^*)}{\partial^2 x} h^2 + \) higher order terms.

• Notice: \(\frac{\partial f(x^*)}{\partial x} = 0 \).

• \(f(x^* + h) - f(x^*) < 0 \) for all \(h \) \(\Rightarrow \) \(\frac{\partial^2 f(x^*)}{\partial^2 x} h^2 < 0 \)

\(0 \Rightarrow \frac{\partial^2 f(x^*)}{\partial^2 x} < 0 \)

• Careful: Maximum may not exist: \(y = \exp(x) \)
• Tricky examples:

 – *Minimum.* $y = x^2$

 – *No maximum.* $y = \exp(x)$ for $x \in (-\infty, +\infty)$

 – *Corner solution.* $y = x$ for $x \in [0, 1]$
5 Multivariate optimization I

- Nicholson, Ch.2, pp. 26-31 and 33-35

- Function from \mathbb{R}^n to \mathbb{R}: $y = f(x_1, x_2, \ldots, x_n)$

- Partial derivative with respect to x_i:
 \[
 \frac{\partial f(x_1, \ldots, x_n)}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \ldots, x_i + h, \ldots x_n) - f(x_1, \ldots, x_i, \ldots x_n)}{h}
 \]

 - Slope along dimension i

- Total differential:
 \[
 df = \frac{\partial f(x)}{\partial x_1}dx_1 + \frac{\partial f(x)}{\partial x_2}dx_2 + \ldots + \frac{\partial f(x)}{\partial x_n}dx_n
 \]
• One important economic example

• Example 1: Partial derivatives of \(y = f(L, K) = L^{.5}K^{.5} \)

• \(f'_{L} = \)
 (marginal productivity of labor)

• \(f'_{K} = \)
 (marginal productivity of capital)

• \(f''_{L,K} = \)
Maximization over an open set (like \mathbb{R})

- **Necessary condition for maximum** x^* is
 \[
 \frac{\partial f(x^*)}{\partial x_i} = 0 \quad \forall i
 \]
 (3)

 or in vectorial form
 \[
 \nabla f(x) = 0
 \]

- These are commonly referred to as first order conditions (f.o.c.)

- Sufficient conditions? Next lecture
6 Next Class

• Example: Economics of Discrimination

• Multivariate Maximization II

• Comparative Statics

• Implicit Function Theorem

• Envelope Theorem

• Going toward:
 – Preferences
 – Utility Maximization (where we get to apply maximization techniques the first time)