Econ 101A Midterm 1

Instructor: Stefano DellaVigna

Th 28 February 2008

Do not turn page unless instructed to.

Econ 101A – Midterm 1 Th 28 February 2008.

You have approximately 1 hour and 20 minutes to answer the questions in the midterm. Vikram will collect the exams at 11.00 sharp. Show your work, and good luck!

Problem 1. Three-Good Cobb-Douglas. (50 points) Seung likes three goods: x_1 , x_2 , and x_3 . He is aware that in Econ 101A we only use two goods, but he is too attached to all of them to let go of one. He maximizes the utility function

$$u(x_1, x_2, x_3) = x_1^{\alpha_1} x_2^{\alpha_2} x_3^{\alpha_3},$$

with $0 < \alpha_i < 1$ for i = 1, 2, 3. The consumption good x_i has price p_i (for i = 1, 2, 3) and the individual has total income M.

- 1. Compute the marginal utility of consumption with respect to good x_1 , $\partial u(x_1, x_2, x_3)/\partial x_1$. (2 points)
- 2. What is the limit of the marginal utility for $x_1 \to 0$ and for $x_1 \to \infty$? Interpret the economic intuition behind this feature of this utility function. (5 points)
- 3. Write the budget constraint. (3 points)
- 4. Write the maximization problem of Seung. Seung wants to achieve the highest utility subject to the budget constraint. Write down the boundary constraints for x_1, x_2, x_3 , and neglect them for now. (3 points)
- 5. Assuming that the budget constraint holds with equality, write down the Lagrangean and derive the first order conditions with respect to x_1, x_2, x_3 , and λ . (5 points)
- 6. Solve for x_1^* as a function of the prices p_1, p_2, p_3 , the income M, and the parameters α_1, α_2 , and α_3 . [Hint: combine the first and second first-order condition, then combine the first and third first-order condition, and finally plug in budget constraint] Similarly solve for x_2^* and x_3^* . (6 points)
- 7. True or false? Show your work: "Cobb-Douglas preferences have the feature that the share of money spent on each good does not depend on the income, or on prices" (6 points)
- 8. Are the boundary conditions for x_1, x_2 , and x_3 satisfied? (2 points)
- 9. Is good x_1 a normal good (for all values of M and prices p_i)? Compute and answer. (4 points)
- 10. Plot the implied demand function for x_1 , that is plot x_1 as a function of p_1 . (Put p_1 on the y axis and x_1 on the x axis) (4 points)
- 11. Is good x_1 a Giffen good? Why did you know this already from the answer to question 9? (5 points)
- 12. Are goods x_1 and x_2 gross complements, gross substitutes, or neither? Define and answer. (5 points)

Problem 2. (26 points)

- 1. Angela has utility function $u(x_1, x_2) = 2x_1 + 2x_2$.
 - (a) Plot the indifference curves of Angela. What kind of goods do they represent? (4 points)
 - (b) Using the plot you did, find the utility-maximing solution x_1^*, x_2^* for prices $p_1 = 1, p_2 = 2$ and income M. Argue the steps you make. (8 points)
- 2. Kim has utility function $u(x_1, x_2) = \min(x_1, 2x_2)$
 - (a) Plot the indifference curves of Kim. What kind of goods do they represent? (4 points)
 - (b) Are the preferences represented by this utility function monotonic? Define. (4 points)
 - (c) Are they strictly monotonic? Define. (6 points)