Econ 101A - Midterm 1

Th 29 September 2004.

You have approximately 1 hour and 20 minutes to answer the questions in the midterm. I will collect the exams at 12.30 sharp. Show your work, and good luck!

Problem 1. Utility maximization. (57 points) In class, we have considered the case of maximization of utility with Cobb-Douglas utility function with goods x (baseball) and y (cupcakes) as arguments. We have also considered the case of intertemporal maximization of utility with consumption of goods today, c_{0}, and in the future, c_{1}. This problem asks you to combine the two elements and reconsider some of the properties we had found in the two separate cases. Consider a consumer with utility function

$$
\begin{equation*}
u\left(x_{0}, y_{0}, x_{1}, y_{1}\right)=\left(x_{0}\right)^{\alpha}\left(y_{0}\right)^{\beta}+\frac{1}{1+\delta}\left(x_{1}\right)^{\alpha}\left(y_{1}\right)^{\beta} \tag{1}
\end{equation*}
$$

where x_{t} is the quantity of baseball x consumed at time $t=0,1$. Similarly, y_{t} is the quantity of cupcakes y consumed at time $t=0,1$. For reasons that we will see below, we will assume $\alpha+\beta<1$, so do not substitute $\beta=1-\alpha$. As usual, $\alpha>0$ and $\beta>0$ also hold.

1. What is the interpretation of δ in the utility function? Interpret in particular the special cases $\delta=0$ and $\delta \rightarrow \infty$. (6 points)
2. Explain the procedure to determine if $u\left(x_{0}, y_{0}, x_{1}, y_{1}\right)$ is concave in $\left(x_{0}, y_{0}, x_{1}, y_{1}\right)$. You should not do the computations. (4 points)
3. We now consider the budget constraint. Both in period 0 and in period 1 the price of music x is p_{x} and the price of cupcakes y is p_{y}. We denote income at time 0 by M_{0} and income at time 1 as M_{1}. Consumers can borrow across periods 0 and 1 at interest rate r. Show that this implies that the (intertemporal) budget constraint is:

$$
\begin{equation*}
p_{x} x_{0}+p_{y} y_{0}+\frac{1}{1+r}\left(p_{x} x_{1}+p_{y} y_{1}\right) \leq M_{0}+\frac{1}{1+r} M_{1} \tag{2}
\end{equation*}
$$

(6 points)
4. The consumer maximizes utility (1) with respect to the four consumption variables $\left(x_{0}, y_{0}, x_{1}, y_{1}\right)$, subject to budget constraint (2). Assume that the budget constraint is satisfied with equality (it is) and write the Lagrangean function. Derive the set of first order conditions. (5 points).
5. Show that the first order conditions with respect to $\left(x_{0}, y_{0}, x_{1}, y_{1}\right)$ lead to the familiar conditions

$$
\begin{equation*}
\frac{\alpha}{\beta} \frac{y_{0}}{x_{0}}=\frac{p_{x}}{p_{y}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\alpha}{\beta} \frac{y_{1}}{x_{1}}=\frac{p_{x}}{p_{y}} . \tag{4}
\end{equation*}
$$

Give an economic interpretation of these conditions. Are you surprised that the same conditions that hold in the one-period Cobb-Douglas utility maximization also hold in the 2-period one? (5 points)
6. [Harder] If you can, show that the first order conditions imply

$$
\begin{equation*}
\left(\frac{y_{1}}{y_{0}}\right)^{1-(\alpha+\beta)}=\left(\frac{x_{1}}{x_{0}}\right)^{1-(\alpha+\beta)}=\frac{1+r}{1+\delta} \tag{5}
\end{equation*}
$$

(You may want to leave this for last - you can continue answering the rest of Problem 1 without solving this point) (10 points)
7. Keep assuming $\alpha+\beta<1$ and consider equation (5). How does relative consumption in period 1 compared to period $0\left(y_{1} / y_{0}=x_{1} / x_{0}\right)$ vary as r increases? Explain intuitively why an increase in the interest rate increase consumption in the future. Similarly, how does relative consumption in period 1 compared to period $0\left(y_{1} / y_{0}=x_{1} / x_{0}\right)$ vary as δ increases? Provide intuition. (6 points)
8. What does equation (5) imply about y_{1} / y_{0} for $r=\delta$? Provide intuition on why at the optimum the agent smooths consumption of goods x and y across periods. (6 points) Extra credit: Why is it crucial for this answer that $\alpha+\beta<1$?
9. For $r=\delta$, solve for the optimal value of x_{0}^{*}. Hint: use the budget constraint and equation (3). (5 points)
10. Use the expression for x_{0}^{*} that you obtained in point 9 . Differentiate x_{0}^{*} with respect to M_{0}, that is, compute $\partial x_{0}^{*} / \partial M_{0}$. Is music x a normal good (for all levels of price and income)? (4 points)

Solution to Problem 1.

1. Parameter δ has the interpretation of psychological discount rate. It indicates how much the individual discounts future utility as of the present. The higher δ, the more impatient the individual is, the less she value the future. Special case $\delta=0$: in this case the individual gives equal weight to consumption of baseball (or cupcakes) in the present or in the future. Special case $\delta \rightarrow \infty$: the individual is myopic, does not give any weight to future utility.
2. To determine whether the utility function u is concave in $\left(x_{0}, y_{0}, x_{1}, y_{1}\right)$ we should set up the matrix:

$$
H=\left|\begin{array}{cccc}
\frac{\partial^{2} u}{\partial x_{0} \partial x_{0}} & \frac{\partial^{2} u}{\partial x_{0} \partial x_{1}} & \frac{\partial^{2} u}{\partial x_{0}, \partial y_{0}} & \frac{\partial^{2} u}{\partial x_{0} \partial y_{1}} \\
\frac{\partial^{2} u}{\partial x_{1} \partial x_{0}} & \frac{\partial^{2} u}{\partial x_{1}, \partial x_{1}} & \frac{\partial^{2} u}{\partial x_{1}, \partial y_{0}} & \frac{\partial^{2} u}{\partial x_{1}, \partial y_{1}} \\
\frac{\partial^{2} u}{\partial y_{0} \partial x_{0}} & \frac{\partial^{2} u}{\partial y_{0} \partial x_{1}} & \frac{\partial^{2} u}{\partial y_{0} \partial y_{0}} & \frac{\partial^{2} u}{\partial y_{0} \partial y_{1}} \\
\frac{\partial^{2} u}{\partial y_{1}, \partial x_{0}} & \frac{\partial^{2} u}{\partial y_{1}, \partial x_{1}} & \frac{\partial^{2} u}{\partial y_{1}, \partial y_{0}} & \frac{\partial^{2} u}{\partial y_{1}, \partial y_{1}}
\end{array}\right|
$$

The condition for concavity is that the first subdeterminant be negative or equal to zero, the second be positive (or equal to zero), the third be negative (or equal to zero), the fourth (the whole matrix) be positive (or equal to zero). Importantly, these conditions have to hold for all ($x_{0}, y_{0}, x_{1}, y_{1}$) in R_{4}^{+}.
3. In period 0 the consumer can spend income M_{0} on good x_{0} or on good y_{0}. The savings in period 0 $s_{0}=M_{0}-\left(p_{x} x_{0}+p_{y} y_{0}\right)$ can be saved for period 1 and earn interest rate r. Notice that s_{0} can be negative, that is, the individual may wish to borrow from period 1. In period 2 the individual can spend $M_{1}+(1+r) s_{0}=M_{1}+(1+r)\left[M_{0}-\left(p_{x} x_{0}+p_{y} y_{0}\right)\right]$. The budget constraint in period 1 therefore can be written as $p_{x} x_{1}+p_{y} y_{1} \leq M_{1}+(1+r)\left[M_{0}-\left(p_{x} x_{0}+p_{y} y_{0}\right)\right]$. By rearranging terms, we obtain

$$
(1+r)\left(p_{x} x_{0}+p_{y} y_{0}\right)+\left(p_{x} x_{1}+p_{y} y_{1}\right) \leq M_{1}+(1+r) M_{0}
$$

which is equivalent to (2) (just divide by $(1+r)$).
4. The consumer maximizes

$$
\begin{aligned}
& \max _{\left(x_{0}, y_{0}, x_{1}, y_{1}\right)}\left(x_{0}\right)^{\alpha}\left(y_{0}\right)^{\beta}+\frac{1}{1+\delta}\left(x_{1}\right)^{\alpha}\left(y_{1}\right)^{\beta} \\
& \text { s.t. } p_{x} x_{0}+p_{y} y_{0}+\frac{1}{1+r}\left(p_{x} x_{1}+p_{y} y_{1}\right) \leq M_{0}+\frac{1}{1+r} M_{1}
\end{aligned}
$$

This is equivalent to maximizing the Lagrangean

$$
\begin{aligned}
L\left(x_{0}, y_{0}, x_{1}, y_{1}, \lambda\right)= & \left(x_{0}\right)^{\alpha}\left(y_{0}\right)^{\beta}+\frac{1}{1+\delta}\left(x_{1}\right)^{\alpha}\left(y_{1}\right)^{\beta}- \\
& \lambda\left[p_{x} x_{0}+p_{y} y_{0}+\frac{1}{1+r}\left(p_{x} x_{1}+p_{y} y_{1}\right)-\left(M_{0}+\frac{1}{1+r} M_{1}\right)\right]
\end{aligned}
$$

This yields the following five first order conditions:

$$
\begin{array}{ll}
\text { f.o.c. } x_{0} & : \alpha\left(x_{0}\right)^{\alpha-1}\left(y_{0}\right)^{\beta}-\lambda p_{x}=0 \\
\text { f.o.c. } y_{0} & : \beta\left(x_{0}\right)^{\alpha}\left(y_{0}\right)^{\beta-1}-\lambda p_{y}=0 \\
\text { f.o.c. } x_{1} & : \frac{1}{1+\delta}\left(\alpha\left(x_{1}\right)^{\alpha-1}\left(y_{1}\right)^{\beta}\right)-\lambda \frac{1}{1+r} p_{x}=0 \\
\text { f.o.c. } y_{1} & : \frac{1}{1+\delta}\left(\beta\left(x_{1}\right)^{\alpha}\left(y_{1}\right)^{\beta-1}\right)-\lambda \frac{1}{1+r} p_{y}=0 \\
\text { f.o.c. } \lambda & :-\left[p_{x} x_{0}+p_{y} y_{0}+\frac{1}{1+r}\left(p_{x} x_{1}+p_{y} y_{1}\right)-\left(M_{0}+\frac{1}{1+r} M_{1}\right)\right]=0
\end{array}
$$

5. First order conditions 1 and 2 lead to

$$
\begin{aligned}
\alpha\left(x_{0}\right)^{\alpha-1}\left(y_{0}\right)^{\beta}= & \lambda p_{x} \\
& \text { and } \\
\beta\left(x_{0}\right)^{\alpha}\left(y_{0}\right)^{\beta-1}= & \lambda p_{y}
\end{aligned}
$$

Taking the ratio of these two equalities, we obtain

$$
\begin{equation*}
\frac{\alpha}{\beta} \frac{y_{0}}{x_{0}}=\frac{p_{x}}{p_{y}} \tag{6}
\end{equation*}
$$

Similarly, the ratio of first order conditions 3 and 4 lead to

$$
\begin{equation*}
\frac{\alpha}{\beta} \frac{y_{1}}{x_{1}}=\frac{p_{x}}{p_{y}} . \tag{7}
\end{equation*}
$$

These conditions indicates the Marginal Rate of Substitution between goods x and y in period 0 equate the ratio of the prices, and similarly so for goods x and y in period 1 . The condition MSR=ratio of prices that denotes the tangency of indifference curve and budget set, therefore, extends to the 2-period case.
6. First order conditions 1 and 3 lead to

$$
\begin{aligned}
\alpha\left(x_{0}\right)^{\alpha-1}\left(y_{0}\right)^{\beta} & =\lambda p_{x} \\
& \text { and } \\
\frac{1}{1+\delta}\left(\alpha\left(x_{1}\right)^{\alpha-1}\left(y_{1}\right)^{\beta}\right)= & \lambda \frac{1}{1+r} p_{x} .
\end{aligned}
$$

Taking the ratio of these two equalities, we obtain

$$
\begin{equation*}
\left(\frac{x_{0}}{x_{1}}\right)^{\alpha-1}\left(\frac{y_{0}}{y_{1}}\right)^{\beta}=\frac{1+r}{1+\delta} \tag{8}
\end{equation*}
$$

Note now that (6) and (7) can be combined to yield

$$
\frac{y_{0}}{y_{1}}=\frac{x_{0}}{x_{1}}
$$

We label $R=\frac{y_{0}}{y_{1}}=\frac{x_{0}}{x_{1}}$ the ratio of consumption in period 0 and 1. Then (8) implies

$$
R^{\alpha+\beta-1}=\left(\frac{y_{1}}{y_{0}}\right)^{1-(\alpha+\beta)}=\left(\frac{x_{1}}{x_{0}}\right)^{1-(\alpha+\beta)}=\frac{1+r}{1+\delta}
$$

7. As r increases, the right-hand side of the equality increases. This implies that the left-hand side must increase as well. Given $\alpha+\beta<1$, this implies that y_{1} / y_{0} and x_{1} / x_{0} must increase. Intuitively, as the interest rate increases, it becomes more expensive to consume in period 0 and more advantageous to consume in the later period, period 1. The opposite effect applies when impatience increases. The right-hand side decreases, and y_{1} / y_{0} and x_{1} / x_{0} must decrease as well. Intuitively, if individuals become more impatient they consume more in the present.
8. For $r=\delta$, we obtain $y_{1}^{*}=y_{0}^{*}=y^{*}$ and $x_{1}^{*}=x_{0}^{*}=x^{*}$, that is, the consumer consumes the same quantity of baseball (cupcakes) in each of the periods. The reason for this is that the utility function is concave in the amount of consumption in each period. This implies that marginal utility is decreasing in the amount of consumption in each period. The consumer prefers to consume equal amounts rather than consuming a lot one period and very little the next.
9. Under the assumption $r=\delta$, we know that $y_{1}^{*}=y_{0}^{*}=y^{*}$ and $x_{1}^{*}=x_{0}^{*}=x^{*}$. Further, equation (3) implies $p_{y} y^{*}=(\beta / \alpha) p_{x} x^{*}$. We substitute into the budget constraint to get

$$
p_{x} x^{*}+(\beta / \alpha) p_{x} x^{*}+\frac{1}{1+r}\left(p_{x} x^{*}+(\beta / \alpha) p_{x} x^{*}\right)=M_{0}+\frac{1}{1+r} M_{1}
$$

or

$$
p_{x} x^{*} \frac{\alpha+\beta}{\alpha}\left(1+\frac{1}{1+r}\right)=M_{0}+\frac{1}{1+r} M_{1}
$$

or

$$
\begin{equation*}
x^{*}=\frac{1+r}{2+r} \frac{\alpha}{\alpha+\beta} \frac{M_{0}+\frac{1}{1+r} M_{1}}{p_{x}} . \tag{9}
\end{equation*}
$$

10. The derivative of (9) with respect to M_{0} is

$$
\frac{\partial x_{0}^{*}}{\partial M_{0}}=\frac{1+r}{2+r} \frac{\alpha}{\alpha+\beta} \frac{1}{p_{x}} .
$$

The good is a normal good since increases in income M_{0} induce an increase in the quantity consumed x_{0}^{*} for all levels of p_{x} and r.

1. Consider the maximization problem

$$
\max _{x} f(x, p)
$$

where both x and p are real numbers (that is, not vectors). This leads to the first order condition

$$
f_{x}^{\prime}\left(x^{*}, p\right)=0
$$

Use the implicit function theorem to give an expression for $d x^{*} / d p$. Argue that, as long as x^{*} is a maximum, the sign of $d x^{*} / d p$ is given by $f_{x, p}^{\prime \prime}\left(x^{*}, p\right)$. (8 points)
2. Consider a consumer with preferences over two goods, music x and cupcakes y, with $x \geq 0$ and $y \geq 0$. The consumer is addicted to cupcakes y and is 'loss averse' to consuming less than $Y>0$ units of cupcakes. Here are the preferences of the consumer. A bundle (x, y) is weakly preferred (\succsim) to a bundle $\left(x^{\prime}, y^{\prime}\right)$ if and only if the following is true:

$$
\begin{aligned}
(y-Y)+x & \geq\left(y^{\prime}-Y\right)+x^{\prime} \text { for } y \geq Y \text { and } y^{\prime} \geq Y \\
2(y-Y)+x & \geq\left(y^{\prime}-Y\right)+x^{\prime} \text { for } y<Y \text { and } y^{\prime} \geq Y \\
(y-Y)+x & \geq 2\left(y^{\prime}-Y\right)+x^{\prime} \text { for } y \geq Y \text { and } y^{\prime}<Y \\
2(y-Y)+x & \geq 2\left(y^{\prime}-Y\right)+x^{\prime} \text { for } y<Y \text { and } y^{\prime}<Y
\end{aligned}
$$

Can you provide a utility function that represents these preferences? Plot some of the indifference curves. Why could these indifference curves capture an aspect of addiction? (10 points)

Solution to Problem 2.

1. Using the implicit function theorem we have

$$
\frac{d x^{*}}{d p}=-\frac{\frac{\partial\left(f_{x}^{\prime}\left(x^{*}, p\right)\right)}{\partial p}}{\frac{\partial\left(f_{x}^{\prime}\left(x^{*}, p\right)\right)}{\partial x}}=-\frac{f_{x, p}^{\prime \prime}\left(x^{*}, p\right)}{f_{x, x}^{\prime \prime}\left(x^{*}, p\right)}
$$

Since in a point of maximum the second order condition guarantees $f_{x, p}^{\prime \prime}\left(x^{*}, p\right)<0$, we can conclude that the sign of $d x^{*} / d p$ is equal to the sign of the numerator, that is, to the sign of $f_{x, p}^{\prime \prime}\left(x^{*}, p\right)$.
2. A utility function that represents the preferences in the problem is

$$
u(x, y)=\begin{array}{ccc}
x+(y-Y) & \text { if } \quad y \geq Y \\
x+2(y-Y) & \text { if } \quad y<Y
\end{array}
$$

See the Figure for indifference curves. The consumer has the same preferences for x and y as long as y is at least as large as Y. That is, she is willing to trade one unit of music for one unit of cupcake. If y falls below the minimum level Y, though, the preferences of the consumer change. For y below Y, the consumer wants two units of cupcake in exchange for one unit of music. Intuitively, this captures the existence of a reference point with respect to which the consumer is loss averse: the relative preference for good y increases when y falls below the reference point. This may capture a feature of addiction insofar as falling below the addictive level Y makes the consumer desire y more.

