Economics 101A (Lecture 16)

Stefano DellaVigna

March 18, 2014

Outline

1. Cost Curves

2. One-step Profit Maximization
3. Second-Order Conditions
4. Introduction to Market Equilibrium
5. Aggregation
6. Market Equilibrium in the Short-Run

1 Cost Curves

- Nicholson, Ch. 10, pp. 341-349; Ch. 11, pp. 380383
- Marginal costs $M C=\partial c / \partial y \rightarrow$ Cost minimization

$$
p=M C=\partial c(w, r, y) / \partial y
$$

- Average costs $A C=c / y \rightarrow$ Does firm break even?

$$
\begin{aligned}
\pi & =p y-c(w, r, y)>0 \text { iff } \\
\pi / y & =p-c(w, r, y) / y>0 \mathrm{iff} \\
c(w, r, y) / y & =A C<p
\end{aligned}
$$

- Supply function. Portion of marginal cost $M C$ above average costs. (price equals marginal cost)
- Assume only 1 input (expenditure minimization is trivial)
- Case 1. Production function. $y=L^{\alpha}$
- Cost function? (cost of input is w):

$$
c(w, y)=w L^{*}(w, y)=w y^{1 / \alpha}
$$

- Marginal cost?

$$
\frac{\partial c(w, y)}{\partial y}=\frac{1}{\alpha} w y^{(1-\alpha) / \alpha}
$$

- Average cost $c(w, y) / y$?

$$
\frac{c(w, y)}{y}=\frac{w y^{1 / \alpha}}{y}=w y^{(1-\alpha) / \alpha}
$$

- Case 1a. $\alpha>1$. Plot production function, total cost, average and marginal. Supply function?
- Case 1b. $\alpha=1$. Plot production function, total cost, average and marginal. Supply function?
- Case 1c. $\alpha<1$. Plot production function, total cost, average and marginal. Supply function?
- Case 2. Non-convex technology. Plot production function, total cost, average and marginal. Supply function?
- Case 3. Technology with setup cost. Plot production function, total cost, average and marginal. Supply function?

2 One-step Profit Maximization

- Nicholson, Ch. 11, pp. 383-393
- One-step procedure: maximize profits
- Perfect competition. Price p is given
- Firms are small relative to market
- Firms do not affect market price p_{M}
- Will firm produce at $p>p_{M}$?
- Will firm produce at $p<p_{M}$?
$-\Longrightarrow p=p_{M}$
- Revenue: $p y=p f(L, K)$
- Cost: $w L+r K$
- Profit $p f(L, K)-w L-r K$
- Agent optimization:

$$
\max _{L, K} p f(L, K)-w L-r K
$$

- First order conditions:

$$
p f_{L}^{\prime}(L, K)-w=0
$$

and

$$
p f_{K}^{\prime}(L, K)-r=0
$$

- Second order conditions? $p f_{L, L}^{\prime \prime}(L, K)<0$ and

$$
\begin{aligned}
|H| & =\left|\begin{array}{cc}
p f_{L, L}^{\prime \prime}(L, K) & p f_{L, K}^{\prime \prime}(L, K) \\
p f_{L, K}^{\prime \prime}(L, K) & p f_{K, K}^{\prime \prime}(L, K)
\end{array}\right|= \\
& =p^{2}\left[f_{L, L}^{\prime \prime} f_{K, K}^{\prime \prime}-\left(f_{L, K}^{\prime \prime}\right)^{2}\right]>0
\end{aligned}
$$

- Need $f_{L, K}^{\prime \prime}$ not too large for maximum
- Comparative statics with respect to to p, w, and r.
- What happens if w increases?

$$
\begin{aligned}
& \qquad \frac{\partial L^{*}}{\partial w}=-\frac{\left|\begin{array}{cc}
-1 & p f_{L, K}^{\prime \prime}(L, K) \\
0 & p f_{K, K}^{\prime \prime}(L, K)
\end{array}\right|}{\left|\begin{array}{ll}
p f_{L, L}^{\prime \prime}(L, K) & p f_{L, K}^{\prime \prime}(L, K) \\
p f_{L, K}^{\prime \prime}(L, K) & p f_{K, K}^{\prime \prime}(L, K)
\end{array}\right|}<0 \\
& \text { and } \begin{array}{c}
\frac{\partial L^{*}}{\partial r}=
\end{array}
\end{aligned}
$$

- Sign of $\partial L^{*} / \partial r$ depends on $f_{L, K}^{\prime \prime}$.

3 Second Order Conditions in PMax: Cobb-Douglas

- How do the second order conditions relate for:
- Cost Minimization
- Profit Maximization?
- Check for Cobb-Douglas production function

$$
y=A K^{\alpha} L^{\beta}
$$

- Cost Minimization. S.o.c.:

$$
c_{y}^{\prime \prime}\left(y^{*}, w, r\right)>0
$$

- As we showed, for CD prod. ftn.,
$c_{y}^{\prime \prime}\left(y^{*}, w, r\right)=-\frac{1}{\alpha+\beta} \frac{1-(\alpha+\beta)}{\alpha+\beta} \frac{B}{A^{2}}\left(\frac{y}{A}\right)^{\frac{1-2(\alpha+\beta)}{\alpha+\beta}}$
which is >0 as long as $\alpha+\beta<1$ (DRS)
- Profit Maximization. S.o.c.: $p f_{L, L}^{\prime \prime}(L, K)<0$ and

$$
|H|=p^{2}\left[f_{L, L}^{\prime \prime} f_{K, K}^{\prime \prime}-\left(f_{L, K}^{\prime \prime}\right)^{2}\right]>0
$$

- As long as $\beta<1$,

$$
p f_{L, L}^{\prime \prime}=p \beta(\beta-1) A K^{\alpha} L^{\beta-2}<0
$$

- Then,

$$
\begin{aligned}
|H| & =p^{2}\left[f_{L, L}^{\prime \prime} f_{K, K}^{\prime \prime}-\left(f_{L, K}^{\prime \prime}\right)^{2}\right]= \\
& =p^{2}\left[\begin{array}{c}
\beta(\beta-1) A K^{\alpha} L^{\beta-2} * \\
\alpha(\alpha-1) A K^{\alpha-2} L^{\beta}- \\
\left(\alpha \beta A K^{\alpha-1} L^{\beta-1}\right)^{2}
\end{array}\right]= \\
& =p^{2} A^{2} K^{2 \alpha-2} L^{2 \beta-2} \alpha \beta[1-\alpha-\beta]
\end{aligned}
$$

- Therefore, $|H|>0$ iff $\alpha+\beta<1$ (DRS)
- The two conditions coincide

4 Introduction to Market Equilibrium

- Nicholson, Ch. 12, pp. 409-419
- Two ways to analyze firm behavior:
- Two-Step Cost Minimization
- One-Step Profit Maximization
- What did we learn?
- Optimal demand for inputs L^{*}, K^{*} (see above)
- Optimal quantity produced y^{*}
- Supply function. $y=y^{*}(p, w, r)$
- From profit maximization:

$$
y=f\left(L^{*}(p, w, r), K^{*}(p, w, r)\right)
$$

- From cost minimization:

$$
M C \text { curve above } A C
$$

- Supply function is increasing in p
- Market Equilibrium. Equate demand and supply.
- Aggregation?
- Industry supply function!

5 Aggregation

5.1 Producers aggregation

- J companies, $j=1, \ldots, J$, producing good i
- Company j has supply function

$$
y_{i}^{j}=y_{i}^{j *}\left(p_{i}, w, r\right)
$$

- Industry supply function:

$$
Y_{i}\left(p_{i}, w, r\right)=\sum_{j=1}^{J} y_{i}^{j *}\left(p_{i}, w, r\right)
$$

- Graphically,

5.2 Consumer aggregation

- One-consumer economy
- Utility function $u\left(x_{1}, \ldots, x_{n}\right)$
- prices p_{1}, \ldots, p_{n}
- Maximization \Longrightarrow

$$
\begin{aligned}
x_{1}^{*} & =x_{1}^{*}\left(p_{1}, \ldots, p_{n}, M\right) \\
& : \\
x_{n}^{*} & =x_{n}^{*}\left(p_{1}, \ldots, p_{n}, M\right) .
\end{aligned}
$$

- Focus on good i. Fix prices $p_{1}, \ldots, p_{i-1}, p_{i+1}, \ldots, p_{n}$ and M
- Single-consumer demand function:

$$
x_{i}^{*}=x_{i}^{*}\left(p_{i} \mid p_{1}, \ldots, p_{i-1}, p_{i+1}, \ldots, p_{n}, M\right)
$$

- What is sign of $\partial x_{i}^{*} / \partial p_{i}$?
- Negative if good i is normal
- Negative or positive if good i is inferior
- Aggregation: J consumers, $j=1, \ldots, J$
- Demand for good i by consumer j :

$$
x_{i}^{j *}=x_{i}^{j *}\left(p_{1}, \ldots, p_{n}, M^{j}\right)
$$

- Market demand X_{i} :

$$
\begin{aligned}
& X_{i}\left(p_{1}, \ldots, p_{n}, M^{1}, \ldots, M^{J}\right) \\
= & \sum_{j=1}^{J} x_{i}^{j *}\left(p_{1}, \ldots, p_{n}, M^{j}\right)
\end{aligned}
$$

- Graphically,
- Notice: market demand function depends on distribution of income M^{J}
- Market demand function X_{i} :
- Consumption of good i as function of prices \mathbf{p}
- Consumption of good i as function of income distribution M^{j}

6 Market Equilibrium in the Short-

 Run- What is equilibrium price p_{i} ?
- Magic of the Market...
- Equilibrium: No excess supply, No excess demand
- Prices \mathbf{p}^{*} equates demand and supply of good i :

$$
Y^{*}=Y_{i}^{S}\left(p_{i}^{*}, w, r\right)=X_{i}^{D}\left(p_{1}^{*}, \ldots, p_{n}^{*}, M^{1}, \ldots, M^{J}\right)
$$

- Graphically,

- Notice: in short-run firms can make positive profits
- Comparative statics exercises with endogenous price p_{i} :
- increase in wage w or interest rate r :
- change in income distribution

7 Next Lecture

- Market Equilibrium
- Comparative Statics of Equilibrium
- Elasticities
- Taxes and Subsidies

