
Econ 101A — Problem Set 3

Due in class on Th March 13. No late Problem Sets accepted, sorry!

This Problem set tests the knowledge that you accumulated mainly in lectures 11 to 13, but it builds on

the work of the previous weeks. It is focused on choice under uncertainy and time-inconsistency. General

rules for problem sets: show your work, write down the steps that you use to get a solution (no credit for

right solutions without explanation), write legibly. If you cannot solve a problem fully, write down a partial

solution. We give partial credit for partial solutions that are correct. Do not forget to write your name on

the problem set!

Problem 1. Relative and Absolute Risk aversion (6 points) In class we introduced the concepts of

relative and absolute risk aversion, but we have not used them. This exercise introduces you to two useful

classes of utility functions.

1. Consider the exponential utiliy function − exp (−)  Show that it is increasing (0  0) and concave
(00  0) for all  as long as   0, that is, as long as the agent is risk-averse. Show that this function
has constant absolute risk aversion coefficient  given by  (2 points)

2. Consider the power utiliy function 1−
1− for  6= 1 Show that it is increasing (0  0) and concave

(00  0) for all   0 as long as   0 Show that this function has constant relative risk aversion
coefficient  given by  (2 points)

3. Consider the log utility function ln ()  Show that it is increasing (0  0) and concave (00  0) for all
  0 Show that this function has constant relative risk aversion coefficient  equal to 1 (in fact, it

is possibile to show lim→1 1−−1
1− = ln () — you are not required to prove this) (2 points).

Problem 2. Investment in Risky Asset (26 points) We consider here a standard problem of in-

vestment in risky assets, similar to the one that we covered in class. The agent can invest in bonds or

stocks. Bonds have a return   0 (in class we asumed  = 0) Stocks have a stochastic return, +  
with probability  and −   with probability 1−  In expectations, the stocks outperform bonds, that is,

+ + (1− ) −   The agent has income  and utility function  with 0 ()  0 and 00 ()  0 for all
. The agents wants to decide the optimal share  of his wealth to invest in stocks. The agent maximizes

max

(1− ) ( [(1− ) (1 + ) +  (1 + −)]) +

+ ( [(1− ) (1 + ) +  (1 + +)])

0 ≤  ≤ 1
or, after some semplification,

max

(1− ) ( [1 +  +  (− − )]) +  ( [1 +  +  (+ − )])

0 ≤  ≤ 1
1. Assume that the solution is interior and write down the first order conditions for this problem with

respect to . (1 point)

2. Write down the second order condition. Is it satisfied? (3 points)

3. Use the first order conditions to derive the comparative statics of ∗ with respect to  Use the implicit
function theorem to write down ∗. (this is a long expression — sorry!) (4 points)

4. What is the sign of the denominator? You have checked this already. Where? (3 points)
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5. Argue that, given your answer to point 4, the sign of ∗ is given by the sign of the numerator.

Simplify the numerator using the first order conditions. Once you do this simplification, you should

get the following expression for the numerator:

(1− ) (− − ) [1 +  +  (− − )]00 ( [1 +  +  (− − )]) +

+ (+ − ) [1 +  +  (+ − )]00 ( [1 +  +  (+ − )]) 

(4 points) Now, let me do one piece of the argument for you. We are interested in the sign of this

expression, since it coincides with the sign of ∗ We can rewrite it as

(1− ) (− − )0 ( [1 +  +  (− − )])

½
00 ( [1 +  +  (− − )])

0 ( [1 +  +  (− − )])
 [1 +  +  (− − )]

¾
+(1)

+ (+ − )0 ( [1 +  +  (+ − )])

½
00 ( [1 +  +  (+ − )])

0 ( [1 +  +  (+ − )])
 [1 +  +  (+ − )]

¾


All we did was to multiply and divide by 0 ( [1 +  +  (− − )]) in the first half of the expression
and by 0 ( [1 +  +  (+ − )]) in the second half.

6. Your turn again. What are the expressions in curly brackets? They should be familiar to you. Show

that for a power utility function 1−
1− the two expressions in curly brackets are both equal to − (you

can use point 2 in the previous problem). Using this nice result, rewrite expression (1) substituting

the two expressions in curly brackets with − (4 points)
7. Consider the simplified expression (1) where you substituted − for the curly brackets. Argue, using
the first order conditions, that the resulting expression is in fact equal to zero! Now, if you go back

and look at the steps of this exercise, you will realize that you have proven the following important

result: With power utility function, the ratio of wealth invested in stocks () is independent of wealth
 i.e.,  = 0 Therefore, the model predicts that individuals earning $20,000 should invest the
same fraction of their earnings in stocks as individuals earning $100,000. (3 points)

8. How would you test the above prediction? What would you expect to find? (4 points)

Problem 3. Time inconsistent preferences. (35 points) In this exercise, we reconsider the topic of

choice over time, with the twist that consumers have time-inconsistent preferences, as introduced in lecture

14. We assume three periods,  = 0  = 1 and  = 2 We will call this time-inconsistent agent Tim. To
make things simpler, assume that Tim only receives income in period 0, that is, 0  0 1 = 2 = 0.
He earns per-period interest  on each dollar saved. We denote  0

1 the income saved from period 1, i.e,

 0
1 = (1 + ) (0 − 0)  Similarly, 

0
2 = (1 + ) ( 0

1 − 1)  We assume that in period  Tim has utility

function

 ( +1 +2) = ln() +


1 + 
ln(+1) + 

µ
1

1 + 

¶2
ln(+2)

To make things clearer, imagine that  is ice cream, and that Tim has an immediate gratification problems

with ice cream. If he can consume ice cream, he will eat too much, and leave too little income saved for the

future. This is what the case   1 captures.

1. In this sort of intertemporal problems, you need to start from the last period and work backward. In

period 2 Tim receives  0
2 in income. How much ice cream will Tim consume in period 2? [Remember,

period 2 is the last period, any ice cream that the agent does not consume in the last period is wasted.

Therefore, the agent maximizes ln (2) s.t. 2 ≤ 0
2] (1 point)

2. Let us now go back to period 1. In period 1 Tim has income 0
1 and has to decide how much ice cream

to consume, and how much money to save for period 2. Argue that this leads to the budget constraint

1 +
2
1 + 

≤ 0
1

(3 points)
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3. Now that we have derived the budget constraint, consider the maximization problem of Tim in period

1:

max
12

ln(1) +


1 + 
ln(2) (2)

 1 +
2
1 + 

≤ 0
1

In this case, the easiest way to solve the problem is to solve for 2 in the budget constraint (which is
satisfied with equality), plug it into the objective function, and then maximize the objective function

with respect to 1 Once you find the solution for 
∗
1 use the budget constraint to obtain ∗2 If you

prefer, you can alternatively use the Lagrangean system. You will get the same result, if you do the

calculations right! What are the solutions for ∗1 and ∗2 as a function of  0
1  , and ? (5 points)

4. We now consider several features of this solution. Are you surprised that ∗1 is independent of ?What
does this tell you about the strength of the income and substitution effect? Explain in words the

income and substitution effects of a change in  on ∗1. (no math here) (4 points)

5. What is the effect on ∗1 and ∗2 of an increase in impatience ? Is it reasonable? (3 points)

6. What is the effect on ∗1 and ∗2 of an increase in ? Remember that higher  is associated with less
time-inconsistency, i.e., less taste for immediate gratification? Does it make sense that qualitatively

an increase in  has the same effects as a decrease in ? (4 points)

7. Now we go back to period 0 Suppose that Tim, at time 0, could decide already the ice cream con-

sumption of the future selves. In other words, he has a commitment device: for example, he may ask

his friends at time 0 to perpetually make fun of him if he consumes more than a predetermined level

of ice cream. What quantity of consumption would Tim decide for periods 1 and 2 as a function of

 0
1? Here is how we solve this problem. Consider the utility function at time 0:

ln(0) +


1 + 
ln(1) + 

µ
1

1 + 

¶2
ln(2)

Tim maximizes this utility function subject to the budget constraint 1+
2
1+ ≤ 0

1 In addition, Tim
is taking the choice of 0 for given, at least for now. The terms with 0 drop out. The maximization
problem therefore is:

max
12



1 + 
ln(1) + 

µ
1

1 + 

¶2
ln(2)

 1 +
2
1 + 

≤ 0
1

Notice the similarity to the maximization problem in (2). As in point 3, solve for 2 in the budget
constraint (which is satisfied with equality), and plug it into the objective function, and then maximize

the objective function with respect to 1We label the solution for 1 
∗
1  that is the level of 1 chosen

with commitment. Once you find the solution for ∗1  use the budget constraint to obtain ∗2  What
are the solutions for ∗1 and ∗2 as a function of  0

1  , and ? (5 points)

8. This is the key part of the exercise. You should now compare the solutions to point 7 and the solutions

to point 3. Are they equal? No! They are different precisely because of the time inconsistency. Show

that, however, they coincide (∗1 = ∗1 ) for  = 1. That is, when there is no time inconsistency ( = 1),
the solutions with and without commitment are the same. (3 points)

9. Show that ∗1  ∗1. Why is this the case? (3 points)

10. Argue, formally or informally, that Tim at time 0 is happier with commitment (that is, with ∗1 and

∗2 ) than without commitment (with ∗1 and ∗2). (4 points)
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