Economics 101A (Lecture 12)

Stefano DellaVigna

March 4, 2014

Outline

1. Mid-Term Feedback

2. Insurance II
3. Investment in Risky Asset
4. Time Consistency

1 Mid-Term Feedback

- Thanks for the feedback!

2 Insurance II

- Individual maximization:

$$
\begin{aligned}
& \max _{\alpha}(1-p) u(w-q \alpha)+p u(w-q \alpha-L+\alpha) \\
& \text { s.t. } \alpha \geq 0
\end{aligned}
$$

- First order conditions:

$$
\begin{aligned}
0= & -q(1-p) u^{\prime}(w-q \alpha) \\
& +(1-q) p u^{\prime}(w-q \alpha-L+\alpha)
\end{aligned}
$$

or

$$
\frac{u^{\prime}(w-q \alpha)}{u^{\prime}(w-q \alpha-L+\alpha)}=\frac{1-q}{q} \frac{p}{1-p}
$$

- Assume first $q=p$ (insurance is fair)
- Solution for $\alpha^{*}=$?
- $\alpha^{*}>0$, so we are ok!
- What if $q>p$ (insurance needs to cover operating costs)?
- Insurance will be only partial (if at all): $\alpha^{*}<L$
- Exercise: Check second order conditions!

3 Investment in Risky Asset

- Individual has:
- wealth w
- utility function u, with $u^{\prime}>0$
- Two possible investments:
- Asset B (bond) yields return 1 for each dollar
- Asset S (stock) yields uncertain return $(1+r)$: * $r=r_{+}>0$ with probability p
* $r=r_{-}<0$ with probability $1-p$
* $E r=p r_{+}+(1-p) r_{-}>0$
- Share of wealth invested in stock $S=\alpha$
- Individual maximization:

$$
\begin{aligned}
& \max _{\alpha}(1-p) u\left(w\left[(1-\alpha)+\alpha\left(1+r_{-}\right)\right]\right)+ \\
& +p u\left(w\left[(1-\alpha)+\alpha\left(1+r_{+}\right)\right]\right) \\
& \text {s.t. } 0 \leq \alpha \leq 1
\end{aligned}
$$

- Case of risk neutrality: $u(x)=a+b x, b>0$
- Assume $a=0$ (no loss of generality)
- Maximization becomes

$$
\max _{\alpha} b(1-p)\left(w\left[1+\alpha r_{-}\right]\right)+b p\left(w\left[1+\alpha r_{+}\right]\right)
$$

or

$$
\max _{\alpha} b w+\alpha b w\left[(1-p) r_{-}+p r_{+}\right]
$$

- Sign of term in square brackets? Positive!
- Set $\alpha^{*}=1$
- Case of risk aversion: $u^{\prime \prime}<0$
- Assume $0 \leq \alpha^{*} \leq 1$, check later
- First order conditions:

$$
\begin{aligned}
0= & (1-p)\left(w r_{-}\right) u^{\prime}\left(w\left[1+\alpha r_{-}\right]\right)+ \\
& +p\left(w r_{+}\right) u^{\prime}\left(w\left[1+\alpha r_{+}\right]\right)
\end{aligned}
$$

- Can $\alpha^{*}=0$ be solution?
- Solution is $\alpha^{*}>0$ (positive investment in stock)
- Exercise: Check s.o.c.

4 Time consistency

- Intertemporal choice
- Three periods, $t=0, t=1$, and $t=2$
- At each period i, agents:
- have income $M_{i}^{\prime}=M_{i}$ +savings/debts from previous period
- choose consumption c_{i};
- can save/borrow $M_{i}^{\prime}-c_{i}$
- no borrowing in last period: at $t=2 M_{2}^{\prime}=c_{2}$
- Utility function at $t=0$

$$
u\left(c_{0}, c_{1}, c_{2}\right)=U\left(c_{0}\right)+\frac{1}{1+\delta} U\left(c_{1}\right)+\frac{1}{(1+\delta)^{2}} U\left(c_{2}\right)
$$

- Utility function at $t=1$

$$
u\left(c_{1}, c_{2}\right)=U\left(c_{1}\right)+\frac{1}{1+\delta} U\left(c_{2}\right)
$$

- Utility function at $t=2$

$$
u\left(c_{2}\right)=U\left(c_{2}\right)
$$

- $U^{\prime}>0, U^{\prime \prime}<0$
- Question: Do preferences of agent in period 0 agree with preferences of agent in period 1 ?
- Period 1.
- Budget constraint at $t=1$:

$$
c_{1}+\frac{1}{1+r} c_{2} \leq M_{1}^{\prime}+\frac{1}{1+r} M_{2}
$$

- Maximization problem:

$$
\begin{aligned}
& \max U\left(c_{1}\right)+\frac{1}{1+\delta} U\left(c_{2}\right) \\
& \text { s.t. } c_{1}+\frac{1}{1+r} c_{2} \leq M_{1}^{\prime}+\frac{1}{1+r} M_{2}
\end{aligned}
$$

- First order conditions:
- Ratio of f.o.c.s:

$$
\frac{U^{\prime}\left(c_{1}\right)}{U^{\prime}\left(c_{2}\right)}=\frac{1+r}{1+\delta}
$$

- Back to period 0.
- Agent at time 0 can commit to consumption at time 1 as function of uncertain income M_{1}.
- Anticipated budget constraint at $t=1$:

$$
c_{1}+\frac{1}{1+r} c_{2} \leq M_{1}^{\prime}+\frac{1}{1+r} M_{2}
$$

- Maximization problem:

$$
\begin{aligned}
& \max U\left(c_{0}\right)+\frac{1}{1+\delta} U\left(c_{1}\right)+\frac{1}{(1+\delta)^{2}} U\left(c_{2}\right) \\
& \text { s.t. } c_{1}+\frac{1}{1+r} c_{2} \leq M_{1}^{\prime}+\frac{1}{1+r} M_{2}
\end{aligned}
$$

- First order conditions:
- Ratio of f.o.c.s:

$$
\frac{U^{\prime}\left(c_{1}\right)}{U^{\prime}\left(c_{2}\right)}=\frac{1+r}{1+\delta}
$$

- The two conditions coincide!
- Time consistency. Plans for future coincide with future actions.
- To see why, rewrite utility function $u\left(c_{0}, c_{1}, c_{2}\right)$:

$$
\begin{aligned}
& U\left(c_{0}\right)+\frac{1}{1+\delta} U\left(c_{1}\right)+\frac{1}{(1+\delta)^{2}} U\left(c_{2}\right) \\
= & U\left(c_{0}\right)+\frac{1}{1+\delta}\left[U\left(c_{1}\right)+\frac{1}{1+\delta} U\left(c_{2}\right)\right]
\end{aligned}
$$

- Expression in brackets coincides with utility at $t=1$
- Is time consistency right?
- addictive products (alcohol, drugs);
- good actions (exercising, helping friends);
- immediate gratification (shopping, credit card borrowing)

5 Next lecture and beyond

- Time Inconsistency
- Production Function

