Economics 101A (Lecture 7)

Stefano DellaVigna

February 8, 2014

Outline

1. Utility maximization - Tricky Cases

2. Indirect Utility Function
3. Comparative Statics (Introduction)
4. Income Changes
5. Price Changes

1 Utility maximization - tricky cases

- Tricky Cases (ctd)

2. Solution does not satisfy $x_{1}^{*}>0$ or $x_{2}^{*}>0$. Example:

$$
\begin{aligned}
& \max x_{1} *\left(x_{2}+5\right) \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2}=M
\end{aligned}
$$

- In this case consider corner conditions: what happens for $x_{1}^{*}=0$? And $x_{2}^{*}=0$?

3. Multiplicity of solutions.

- Example 1: Perfect Substitutes with $p_{1} / p_{2}=$ α / β
- Example 2: Non-convex preferences with two optima

2 Indirect utility function

- Nicholson, Ch. 4, pp. 128-130
- Define the indirect utility $v(\mathbf{p}, M) \equiv u\left(\mathbf{x}^{*}(\mathbf{p}, M)\right)$, with \mathbf{p} vector of prices and \mathbf{x}^{*} vector of optimal solutions.
- $v(\mathbf{p}, M)$ is the utility at the optimum for prices \mathbf{p} and income M
- Some comparative statics: $\partial v(\mathbf{p}, M) / \partial M=$?
- Hint: Use Envelope Theorem on Lagrangean function
- What is the sign of λ ?
- $\lambda=u_{x_{i}}^{\prime} / p>0$
- $\partial v(\mathbf{p}, M) / \partial p_{i}=?$
- Properties:
- Indirect utility is always increasing in income M
- Indirect utility is always decreasing in the price p_{i}

3 Comparative Statics (introduction)

- Nicholson, Ch. 5, pp. 145-155
- Utility maximization yields $x_{i}^{*}=x_{i}^{*}\left(p_{1}, p_{2}, M\right)$
- Quantity consumed as a function of income and price
- What happens to quantity consumed x_{i}^{*} as prices or income varies?
- Simple case: Equal increase in prices and income.
- $M^{\prime}=t M, p_{1}^{\prime}=t p_{1}, p_{2}^{\prime}=t p_{2}$.
- Compare $x^{*}\left(t M, t p_{1}, t p_{2}\right)$ and $x^{*}\left(M, p_{1}, p_{2}\right)$.
- What happens?
- Write budget line: $t p_{1} x_{1}+t p_{2} x_{2}=t M$
- Demand is homogeneous of degree 0 in \mathbf{p} and M :

$$
x^{*}\left(t M, t p_{1}, t p_{2}\right)=t^{0} x^{*}\left(M, p_{1}, p_{2}\right)=x^{*}\left(M, p_{1}, p_{2}\right)
$$

- Consider Cobb-Douglas Case:

$$
x_{1}^{*}=\frac{\alpha}{\alpha+\beta} M / p_{1}, x_{2}^{*}=\frac{\beta}{\alpha+\beta} M / p_{2}
$$

- What is $\partial x_{1}^{*} / \partial M$?
- What is $\partial x_{1}^{*} / \partial p_{1}$?
- What is $\partial x_{1}^{*} / \partial p_{2}$?
- General results?

4 Income changes

- Income increases from M to to $M^{\prime}>M$.
- Budget line $\left(p_{1} x_{1}+p_{2} x_{2}=M\right)$ shifts out:

$$
x_{2}=\frac{M^{\prime}}{p_{2}}-x_{1} \frac{p_{1}}{p_{2}}
$$

- New optimum?
- Engel curve: $x_{i}^{*}(M)$: demand for good i as function of income M holding fixed prices p_{1}, p_{2}
- Does x_{i}^{*} increase with M ?
- Yes. Good i is normal
- No. Good i is inferior

5 Price changes

- Price of good i decreases from p_{i} to to $p_{i}^{\prime}>p_{i}$
- For example, decrease in price of good $2, p_{2}^{\prime}<p_{2}$
- Budget line tilts:

$$
x_{2}=\frac{M}{p_{2}^{\prime}}-x_{1} \frac{p_{1}}{p_{2}^{\prime}}
$$

- New optimum?
- Demand curve: $x_{i}^{*}\left(p_{i}\right)$: demand for good i as function of own price holding fixed p_{j} and M
- Odd convention of economists: plot price p_{i} on vertical axis and quantity x_{i} on horizontal axis. Better get used to it!
- Does x_{i}^{*} decrease with p_{i} ?
- Yes. Most cases
- No. Good i is Giffen
- Ex.: Potatoes in Ireland
- Do not confuse with Veblen effect for luxury goods or informational asimmetries: these effects are real, but not included in current model

6 Next Class

- More comparative statics:
- More on Price Effects
- Slutzky Equation
- Then moving on to applications:
- Labor Supply
- Intertemporal choice
- Economics of Altruism

