Economics 101A (Lecture 2)

Stefano DellaVigna

January 23, 2014

Outline

1. Optimization with 1 variable

2. Multivariate optimization
3. Comparative Statics
4. Implicit function theorem

1 Optimization with 1 variable

- Nicholson, Ch.2, pp. 20-25
- Example. Function $y=-x^{2}$
- What is the maximum?
- Maximum is at 0
- General method?
- Sure! Use derivatives
- Derivative is slope of the function at a point:

$$
\frac{\partial f(x)}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- Necessary condition for maximum x^{*} is

$$
\begin{equation*}
\frac{\partial f\left(x^{*}\right)}{\partial x}=0 \tag{1}
\end{equation*}
$$

- Try with $y=-x^{2}$.
- $\frac{\partial f(x)}{\partial x}=$

$$
=0 \Longrightarrow x^{*}=
$$

- Does this guarantee a maximum? No!
- Consider the function $y=x^{3}$
- $\frac{\partial f(x)}{\partial x}=$

$$
=0 \Longrightarrow x^{*}=
$$

- Plot $y=x^{3}$.
- Sufficient condition for a (local) maximum:

$$
\begin{equation*}
\frac{\partial f\left(x^{*}\right)}{\partial x}=0 \text { and }\left.\frac{\partial^{2} f(x)}{\partial^{2} x}\right|_{x^{*}}<0 \tag{2}
\end{equation*}
$$

- Proof: At a maximum, $f\left(x^{*}+h\right)-f\left(x^{*}\right)<0$ for all h.
- Taylor Rule: $f\left(x^{*}+h\right)-f\left(x^{*}\right)=\frac{\partial f\left(x^{*}\right)}{\partial x} h+\frac{1}{2} \frac{\partial^{2} f\left(x^{*}\right)}{\partial^{2} x} h^{2}+$ higher order terms.
- Notice: $\frac{\partial f\left(x^{*}\right)}{\partial x}=0$.

$$
\begin{aligned}
& \text { - } f\left(x^{*}+h\right)-f\left(x^{*}\right)<0 \text { for all } h \Longrightarrow \frac{\partial^{2} f\left(x^{*}\right)}{\partial^{2} x} h^{2}< \\
& 0 \Longrightarrow \frac{\partial^{2} f\left(x^{*}\right)}{\partial^{2} x}<0
\end{aligned}
$$

- Careful: Maximum may not exist: $y=\exp (x)$
- Tricky examples:
- Minimum. $y=x^{2}$
- No maximum. $y=\exp (x)$ for $x \in(-\infty,+\infty)$
- Corner solution. $y=x$ for $x \in[0,1]$

2 Multivariate optimization

- Nicholson, Ch.2, pp. 26-31 and 33-35
- Function from R^{n} to $R: y=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Partial derivative with respect to x_{i} :

$$
\begin{aligned}
& \frac{\partial f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{i}} \\
= & \lim _{h \rightarrow 0} \frac{f\left(x_{\left.1, \ldots, x_{i}+h, \ldots x_{n}\right)-f\left(x_{\left.1, \ldots, x_{i}, \ldots x_{n}\right)}^{h}\right.}^{h}\right.}{}
\end{aligned}
$$

- Slope along dimension i
- Total differential:

$$
d f=\frac{\partial f(x)}{\partial x_{1}} d x_{1}+\frac{\partial f(x)}{\partial x_{2}} d x_{2}+\ldots+\frac{\partial f(x)}{\partial x_{n}} d x_{n}
$$

- One important economic example
- Example 1: Partial derivatives of $y=f(L, K)=$ $L^{5} K^{.5}$
- $f_{L}^{\prime}=$
(marginal productivity of labor)
- $f_{K}^{\prime}=$
(marginal productivity of capital)
- $f_{L, K}^{\prime \prime}=$

Maximization over an open set (like R)

- Necessary condition for maximum x^{*} is

$$
\begin{equation*}
\frac{\partial f\left(x^{*}\right)}{\partial x_{i}}=0 \forall i \tag{3}
\end{equation*}
$$

or in vectorial form

$$
\nabla f(x)=0
$$

- These are commonly referred to as first order conditions (f.o.c.)
- Sufficient conditions? Define Hessian matrix H :

$$
H=\left(\begin{array}{cccc}
f_{x_{1}, x_{1}}^{\prime \prime} & f_{x_{1}, x_{2}}^{\prime \prime} & \cdots & f_{x_{1}, x_{n}}^{\prime \prime} \\
\ldots & \cdots & \cdots & \ldots \\
f_{x_{n}, x_{1}}^{\prime \prime} & f_{x_{n}, x_{2}}^{\prime \prime} & \cdots & f_{x_{n}, x_{n}}^{\prime \prime}
\end{array}\right)
$$

- Subdeterminant $|H|_{i}$ of Matrix H is defined as the determinant of submatrix formed by first i rows and first i columns of matrix H.
- Examples.
- $|H|_{1}$ is determinant of $f_{x_{1}, x_{1}}^{\prime \prime}$, that is, $f_{x_{1}, x_{1}}^{\prime \prime}$
- $|H|_{2}$ is determinant of

$$
H=\left(\begin{array}{cc}
f_{x_{1}, x_{1}}^{\prime \prime} & f_{x_{1}, x_{2}}^{\prime \prime} \\
f_{x_{2}, x_{1}}^{\prime \prime} & f_{x_{2}, x_{2}}^{\prime \prime}
\end{array}\right)
$$

- Sufficient condition for maximum x^{*}.

1. x^{*} must satisy first order conditions;
2. Subdeterminants of matrix H must have alternating signs, with subdeterminant of H_{1} negative.

- Case with $n=2$
- Condition 2 reduces to $f_{x_{1}, x_{1}}^{\prime \prime}<0$ and $f_{x_{1}, x_{1}}^{\prime \prime} f_{x_{2}, x_{2}}^{\prime \prime}-$ $\left(f_{x_{1}, x_{2}}^{\prime \prime}\right)^{2}>0$.
- Example 2: $h\left(x_{1}, x_{2}\right)=p_{1} * x_{1}^{2}+p_{2} * x_{2}^{2}-2 x_{1}-5 x_{2}$
- First order condition $w /$ respect to x_{1} ?
- First order condition $w /$ respect to x_{2} ?
- $x_{1}^{*}, x_{2}^{*}=$
- For which p_{1}, p_{2} is it a maximum?
- For which p_{1}, p_{2} is it a minimum?

3 Comparative statics

- Economics is all about 'comparative statics'
- What happens to optimal economic choices if we change one parameter?
- Example: Car production. Consumer:

1. Car purchase and increase in oil price
2. Car purchase and increase in income

- Producer:

1. Car production and minimum wage increase
2. Car production and decrease in tariff on Japanese cars

- Next two sections

4 Implicit function theorem

- Implicit function: Ch. 2, pp. 31-32
- Consider function $x_{2}=g\left(x_{1}, p\right)$
- Can rewrite as $x_{2}-g\left(x_{1}, p\right)=0$
- Implicit function has form: $h\left(x_{2}, x_{1}, p\right)=0$
- Often we need to go from implicit to explicit function
- Example 3: $1-x_{1} * x_{2}-e^{x_{2}}=0$.
- Write x_{1} as function of x_{2} :
- Write x_{2} as function of x_{1} :
- Univariate implicit function theorem (Dini): Consider an equation $f(p, x)=0$, and a point $\left(p_{0}, x_{0}\right)$ solution of the equation. Assume:

1. f continuously differentiable in a neighbourhood of $\left(p_{0}, x_{0}\right)$;
2. $f_{x}^{\prime}\left(p_{0}, x_{0}\right) \neq 0$.

- Then:

1. There is one and only function $x=g(p)$ defined in a neighbourhood of p_{0} that satisfies $f(p, g(p))=$ 0 and $g\left(p_{0}\right)=x_{0}$;
2. The derivative of $g(p)$ is

$$
g^{\prime}(p)=-\frac{f_{p}^{\prime}(p, g(p))}{f_{x}^{\prime}(p, g(p))}
$$

- Example 3 (continued): $1-x_{1} * x_{2}-e^{x_{2}}=0$
- Find derivative of $x_{2}=g\left(x_{1}\right)$ implicitely defined for $\left(x_{1}, x_{2}\right)=(1,0)$
- Assumptions:

1. Satisfied?
2. Satisfied?

- Compute derivative
- Multivariate implicit function theorem (Dini): Consider a set of equations $\left(f_{1}\left(p_{1}, \ldots, p_{n} ; x_{1}, \ldots, x_{s}\right)=\right.$ $\left.0 ; \ldots ; f_{s}\left(p_{1}, \ldots, p_{n} ; x_{1}, \ldots, x_{s}\right)=0\right)$, and a point (p_{0}, x_{0}) solution of the equation. Assume:

1. f_{1}, \ldots, f_{s} continuously differentiable in a neighbourhood of (p_{0}, x_{0});
2. The following Jakobian matrix $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ evaluated at (p_{0}, x_{0}) has determinant different from 0 :

$$
\frac{\partial \mathbf{f}}{\partial \mathbf{x}}=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & & \frac{\partial f_{1}}{\partial x_{s}} \\
\dddot{\partial} & \cdots & \dddot{f_{s}} \\
\frac{\partial f_{s}}{\partial x_{1}} & \cdots & \frac{\partial \tilde{f}_{s}}{\partial x_{s}}
\end{array}\right)
$$

- Then:

1. There is one and only set of functions $x=\mathbf{g}(p)$ defined in a neighbourhood of p_{0} that satisfy $\mathbf{f}(p, \mathbf{g}(p))=\mathbf{0}$ and $\mathbf{g}\left(p_{0}\right)=x_{0} ;$
2. The partial derivative of x_{i} with respect to p_{k} is

$$
\frac{\partial g_{i}}{\partial p_{k}}=-\frac{\operatorname{det}\left(\frac{\partial\left(f_{1}, \ldots, f_{s}\right)}{\partial\left(x_{1}, \ldots x_{i-1}, p_{k}, x_{i+1} \cdots, x_{s}\right)}\right)}{\operatorname{det}\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)}
$$

- Example 2 (continued): $\operatorname{Max} h\left(x_{1}, x_{2}\right)=p_{1} * x_{1}^{2}+$ $p_{2} * x_{2}^{2}-2 x_{1}-5 x_{2}$
- f.o.c. $x_{1}: 2 p_{1} * x_{1}-2=0=f_{1}(p, x)$
- f.o.c. $x_{2}: 2 p_{2} * x_{2}-5=0=f_{2}(p, x)$
- Comparative statics of x_{1}^{*} with respect to p_{1} ?
- First compute $\operatorname{det}\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)$

$$
\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right)=(
$$

- Then compute $\operatorname{det}\left(\frac{\partial\left(f_{1}, \ldots, f_{s}\right)}{\partial\left(x_{1}, \ldots x_{i-1}, p_{k}, x_{i+1} \ldots, x_{s}\right)}\right)$

$$
\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial p_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial p_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right)=(
$$

- Finally, $\frac{\partial x_{1}}{\partial p_{1}}=$
- Why did you compute $\operatorname{det}\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)$ already?

5 Next Class

- Next class:
- Envelope Theorem
- Convexity and Concavity
- Constrained Maximization
- Envelope Theorem II
- Going toward:
- Preferences
- Utility Maximization (where we get to apply maximization techniques the first time)

