Econ 219B

Psychology and Economics: Applications
(Lecture 10)

Stefano DellaVigna

April 17, 2013

Outline

1. Methodology: Clustering Standard Errors II
2. Menu Effects: Choice Avoidance
3. Menu Effects: Preference for Familiar
4. Menu Effects: Preference for Salient
5. Menu Effects: Confusion
6. Persuasion
7. Emotions: Mood

1 Methodology: Clustering Standard Errors

- Calculation of Adjustment of Standard Errors due to Clustering
- T observations within cluster
- Within-cluster correlation of $x_{s}: \rho_{x}$
- Within-cluster correlation of $\varepsilon: \rho_{\varepsilon}$
- Compare $\operatorname{Var}(\hat{\beta})_{C l u s t}$ and $\operatorname{Var}(\hat{\beta})_{O L S}$:

$$
\operatorname{Var}(\hat{\beta})_{C l u s t}=\operatorname{Var}(\hat{\beta})_{O L S} *\left(1+(T-1) \rho_{x} \varrho_{\varepsilon}\right)
$$

- Standard errors downward biased with $O L S$ if $\rho_{x} \varrho_{\varepsilon}>0$, or positive correlations (as above)
- No bias if no correlation in either x or ε
- Bias larger the larger is T
- Illustrative case: Suppose all observations within cluster identical ($\rho_{x}=$ $\left.\rho_{\varepsilon}=1\right)->$ Bias $=T$
- Issues with clustering:
- Issue 1. Number of clusters
- Convergence with speed $I->$ Need a large number of clusters I to apply LLN
- Beware of papers that apply clustering with <20 clusters
- Cameron-Gelbach-Miller (REStat 2008): Test with good finite sample properties even for $I \approx 10$
- Issue 2. Cluster in only one dimension
- Clustering by I controls for autocorrelation
- Clustering by T controls for cross-sectional correlation
- How can control for both? Next slide
- Cameron-Gelbach-Miller (JBES 2011). Double-clustered standard errors with respect to I and T
- Procedure:

1. Compute standard errors clustering by $I \rightarrow$ Compute $V(\hat{\beta})_{C l-I}$
2. Compute standard errors clustering by $T->$ Compute $V(\hat{\beta})_{C l-T}$
3. Compute standard errors clustering by $T * I$ (this typically means s.e.s not clustered, just robust)-> Compute $V(\hat{\beta})_{C l-T * I}$
4. Final variance and covariance matrix is

$$
V(\hat{\beta})_{D o u b l e C l}=V(\hat{\beta})_{C l-I}+V(\hat{\beta})_{C l-T}-V(\hat{\beta})_{C l-T * I}
$$

- Intuition: It's variance obtained clustering along one dimension (say, I), plus the additional piece of variance along the other dimension that goes beyond the robust s.e.s
- Readings on clustered standard errors:
- Stata Manual -> basic, intuitive
- Bertrand-Duflo-Mullainathan (QJE, 2004) -> Excellent discussion of practical issues with autocorrelation in diff-in-diff papers, good intuition
- Peterson (RFS 2009) -> Fairly intuitive, applied to finance
- Cameron-Trivedi (2006) and Wooldridge (2003) -> More serious treatment
- Colin Cameron (Davis)'s website $->$ Updates

2 Menu Effects: Choice Avoidance

- Second heuristic: Refusal to choose with choice overload
- Choice Avoidance. Classical Experiment (Yiengar-Lepper, JPSP 2000)
- Up-scale grocery store in Palo Alto
- Randomization across time of day of number of jams displayed for taste
* Small number: 6 jams
* Large number: 24 jams
- Results:
* More consumers sample with Large no. of jams (145 vs. 104 customers)
* Fewer consumers buy with Large no. of jams (4 vs. 31 customers)
- Field Evidence 1: Iyengar-Huberman-Lepper (2006)
- Data set from Fidelity on choice of 401(k) plans
- (Same as for Huberman-Jiang on $1 / \mathrm{N}$)
- Comparison of plans with few options and plans with many options
- Focus on participation rate - Fractions of employees that invest

- Suggestive evidence: Participation rate is decreasing in number of funds
- However, number of funds offered is endogenous: perhaps higher where people are close to indifference $->$ Lower participation
- Field evidence 2: Choi-Laibson-Madrian (2006): Natural experiment
- Introduce in company A of Quick Enrollment
- Previously: Default no savings
- 7/2003: Quick Enrollment Card:
* Simplified investment choice: 1 Savings Plan
* Deadline of 2 weeks
- In practice: Examine from 2/2004
- Company B:
- Previously: Default no savings
- 1/2003: Quick Enrollment Card
- Notice: This affects
- Simplicity of choice
- But also cost of investing + deadline (self-control)

- 15 to 20 percentage point increase in participation - Large effect
- Increase in participation all on opt-in plan

- Very similar effect for Company B
- What is the effect due to?
- Increase may be due to a reminder effect of the card
- However, in other settings, reminders are not very powerful.
- Example: Choi-Laibson-Madrian (2005):
- Sent a survey including 5 questions on the benefits of employer match
- Treatment group: 345 employees that were not taking advantage of the match
- Control group: 344 employees received the same survey except for the 5 specific questions.
- Treatment had no significant effect on the savings rate.
- Field Evidence 3: Bertrand, Karlan, Mullainathan, Shafir, Zinman (2006)
- Field Experiment in South Africa
- South African lender sends 50,000 letters with offers of credit
- Randomization of interest rate (economic variable)
- Randomization of psychological variables
- Crossed Randomization: Randomize independently on each of the n dimensions
* Plus: Use most efficiently data
* Minus: Can easily lose control of randomization

Table 2
Summary of Randomized Interventions ${ }^{a}$

	(1)	(2)	(3)	(4)	(5)
Sample:	All	Customers who did not take up	Customers who took up	"High attention" customer	"Low attention" customer
September wave	$\begin{gathered} 0.395 \\ (0.49) \end{gathered}$	$\begin{aligned} & 0.394 \\ & (0.49) \end{aligned}$	$\begin{gathered} 0.401 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.398 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.393 \\ (0.49) \end{gathered}$
October wave	$\begin{gathered} 0.605 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.606 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.599 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.602 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.607 \\ (0.49) \end{gathered}$
Offer Interest	7.929	7.985	7.233	6.970	8.384
Rate	(2.42)	(2.42)	(2.31)	(2.11)	(2.43)
Small option table	$\begin{gathered} 0.432 \\ (0.50) \end{gathered}$	$\begin{aligned} & 0.438 \\ & (0.50) \end{aligned}$	$\begin{gathered} 0.349 \\ (0.48) \end{gathered}$	$\begin{gathered} 0.250 \\ (0.43) \end{gathered}$	$\begin{gathered} 0.518 \\ (0.50) \end{gathered}$
No comparison to competitor	$\begin{gathered} 0.200 \\ (0.40) \end{gathered}$	$\begin{gathered} 0.200 \\ (0.40) \end{gathered}$	$\begin{gathered} 0.200 \\ (0.40) \end{gathered}$	$\begin{gathered} 0.202 \\ (0.40) \end{gathered}$	$\begin{gathered} 0.199 \\ (0.40) \end{gathered}$
comparison expressed	0.401 (0.49)	0.400	0.408	0.397	0.403
No photo on mailing	$\begin{gathered} 0.202 \\ (0.40) \end{gathered}$	$\begin{aligned} & 0.202 \\ & (0.40) \end{aligned}$	$\begin{aligned} & 0.206 \\ & (0.40) \end{aligned}$	$\begin{aligned} & 0.198 \\ & (0.40) \end{aligned}$	$\begin{aligned} & (0.49) \\ & 0.204 \\ & (0.40) \end{aligned}$
Black photo	$\begin{gathered} 0.477 \\ (0.50) \end{gathered}$	$\begin{aligned} & 0.477 \\ & (0.50) \end{aligned}$	$\begin{gathered} 0.476 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.488 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.472 \\ (0.50) \end{gathered}$
Coloured photo	$\begin{gathered} 0.071 \\ (0.26) \end{gathered}$	$\begin{aligned} & 0.071 \\ & (0.26) \end{aligned}$	$\begin{gathered} 0.071 \\ (0.26) \end{gathered}$	$\begin{gathered} 0.072 \\ (0.26) \end{gathered}$	$\begin{gathered} 0.071 \\ (0.26) \end{gathered}$
Indian photo	$\begin{gathered} 0.125 \\ (0.33) \end{gathered}$	$\begin{aligned} & 0.125 \\ & (0.33) \end{aligned}$	$\begin{aligned} & 0.122 \\ & (0.33) \end{aligned}$	$\begin{gathered} 0.123 \\ (0.33) \end{gathered}$	$\begin{aligned} & 0.126 \\ & (0.33) \end{aligned}$
White photo	$\begin{gathered} 0.124 \\ (0.33) \end{gathered}$	$\begin{aligned} & 0.124 \\ & (0.33) \end{aligned}$	$\begin{aligned} & 0.125 \\ & (0.33) \end{aligned}$	$\begin{gathered} 0.120 \\ (0.32) \end{gathered}$	$\begin{aligned} & 0.127 \\ & (0.33) \end{aligned}$
Female photo	$\begin{gathered} 0.399 \\ (0.49) \end{gathered}$	$\begin{aligned} & 0.398 \\ & (0.49) \end{aligned}$	$\begin{aligned} & 0.411 \\ & (0.49) \end{aligned}$	$\begin{gathered} 0.398 \\ (0.49) \end{gathered}$	$\begin{aligned} & 0.399 \\ & (0.49) \end{aligned}$
Male photo	$\begin{gathered} 0.399 \\ (0.49) \end{gathered}$	$\begin{aligned} & 0.400 \\ & (0.49) \end{aligned}$	$\begin{aligned} & 0.383 \\ & (0.49) \end{aligned}$	$\begin{gathered} 0.404 \\ (0.49) \end{gathered}$	$\begin{aligned} & 0.397 \\ & (0.49) \end{aligned}$
Photo matches customer's race?	$\begin{gathered} 0.534 \\ (0.50) \end{gathered}$	$\begin{aligned} & 0.535 \\ & (0.50) \end{aligned}$	$\begin{aligned} & 0.531 \\ & (0.50) \end{aligned}$	$\begin{gathered} 0.537 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.533 \\ (0.50) \end{gathered}$
Photo matches customer's gender?	$\begin{gathered} 0.401 \\ (0.49) \end{gathered}$	$\begin{aligned} & 0.402 \\ & (0.49) \end{aligned}$	$\begin{gathered} 0.388 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.403 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.400 \\ (0.49) \end{gathered}$
Promotional lottery	$\begin{gathered} 0.250 \\ (0.43) \end{gathered}$	$\begin{aligned} & 0.251 \\ & (0.43) \end{aligned}$	$\begin{array}{r} 0.246 \\ (0.43) \end{array}$	$\begin{array}{r} 0.250 \\ (0.43) \end{array}$	$\begin{gathered} 0.251 \\ (0.43) \end{gathered}$
Suggestion call	$\begin{gathered} 0.003 \\ (0.05) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.05) \end{gathered}$	$\begin{aligned} & 0.005 \\ & (0.07) \end{aligned}$	$\begin{array}{r} 0.003 \\ (0.05) \end{array}$	$\begin{gathered} 0.003 \\ (0.05) \end{gathered}$
Sample	53194	49250	3944	17108	36086

- Manipulation of interest here:
- Vary number of options of repayment presented
* Small Table: Single Repayment option
* Big Table 1: 4 loan sizes, 4 Repayment options, 1 interest rate
* Big Table 2: 4 loan sizes, 4 Repayment options, 3 interest rates
* Explicit statement that "other loan sizes and terms were available"
- Compare Small Table to other Table sizes
- Small Table increases Take-Up Rate by .603 percent
- One additional point of (monthly) interest rate decreases take-up by . 258

Table 3 Effect of Simplicity of Offer Description on Take-Up ${ }^{a}$

Dependent Variable: Take-Up Dummy Sample:			
All	High attention	Low attention	
	(1)	(2)	(3)
Small option table	0.603	1.146	0.407
	(0.239)	(0.674)	(0.219)
Δ interest rate equivalent	$[2.337]$	$[3.570]$	$[1.887]$
Interest rate	-0.258	-0.321	-0.215
	(0.049)	(0.145)	(0.044)
Risk category F.E.?	yes	yes	yes
Experimental wave F.E.?	yes	yes	yes
Sample size	53194	17108	36086

- Small-option Table increases take-up by equivalent of 2.33 pct. interest
- Strong effect of behavioral factor, compared with effect of interest rate
- Effect larger for 'High-Attention' group (borrow at least twice in the past, once within 8 months)
- Authors also consider effect of a number of other psychological variables:
- Content of photo (large effect of female photo on male take-up)
- Promotional lottery (no effect)
- Deadline for loan (reduces take-up)

3 Menu Effects: Preference for Familiar

- Third Heuristic: Preference for items that are more familiar
- Choice of stocks by individual investors (French-Poterba, AER 1991)
- Allocation in domestic equity: Investors in the USA: 94\%
- Explanation 1: US equity market is reasonably close to world equity market
- BUT: Japan allocation: 98\%
- BUT: UK allocation: 82\%
- Explanation 2: Preference for own-country equity may be due to costs of investments in foreign assets
- Test: Examine within-country investment: Huberman (RFS, 2001)
- Geographical distribution of shareholders of Regional Bell companies
- Companies formed by separating the Bell monopoly
- Fraction invested in the own-state Regional Bell is 82 percent higher than the fraction invested in the next Regional Bell company
- Third, extreme case: Preference for own-company stock
- On average, employees invest 20-30 percent of their discretionary funds in employer stocks (Benartzi JF, 2001)

Panel C: Company Stock Allocation as a Percentage of the Employee Contributions			
Number of plans	78	58	136
Mean: equally weighted	18	29	23
Mean: weighted by employee contributions	21	33	24
Mean: weighted by the number of active participants	21	31	24

- - Notice: This occurs despite the fact that the employees' human capital is already invested in their company
- Also: This choice does not reflect private information about future performance
- Companies where a higher proportion of employees invest in employer stock have lower subsequent one-year returns, compared to companies with a lower proportion of employee investment

	Allocation to Company Stock					Observed Difference							
$(5-1)$									(Low) 1	2	3	4	$5(\mathrm{High})$
:---	:---:	:---:	:---:	:---:	:---:								

- Possible Explanation? Ambiguity aversion
- Ellsberg (1961) paradox:
- Investors that are ambiguity-averse prefer:
* Investment with known distribution of returns
* To investment with unknown distribution
- This occurs even if the average returns are the same for the two investments, and despite the benefits of diversification.

4 Menu Effects: Preference for Salient

- What happens with large set of options if decision-maker uninformed?
- Possibly use of irrelevant, but salient, information to choose
- Ho-Imai (2004). Order of candidates on a ballot
- Exploit randomization of ballot order in California
- Years: 1978-2002, Data: 80 Assembly Districts
- Notice: Similar studies go back to Bain-Hecock (1957)
- Areas of randomization

- Use of randomized alphabet to determine first candidate on ballot

Table 1: Randomized Alphabets Used for the Califormia Statewide Elections Since 1982.

- Observe each candidate in different orders in different districts
- Compute absolute vote (Y) gain

$$
E[Y(i=1)-Y(i \neq 1)]
$$

and percentage vote gain

$$
E[Y(i=1)-Y(i \neq 1)] / E[Y(i \neq 1)]
$$

- Result:
- Small to no effect for major candidates
- Large effects on minor candidates

Primary Elections, 1998 \& 2000

	General				Primary			
	Absolute		Relative		Absolute		Relative	
	ATE	SE	ATE	SE	ATE	SE	ATE	SE
Democratic	0.05	0.46	0.25	0.90	1.89	0.32	43.58	5.53
Republican	-0.06	0.53	-0.43	1.29	2.16	0.46	33.62	5.91
American Independent	0.16	0.02	20.83	1.39	2.33	0.15	26.76	3.55
Green	0.56	0.17	21.18	5.82	3.15	1.16	6.24	3.54
Libertarian	0.23	0.02	14.56	1.03	6.59	1.42	71.92	13.55
Natural Law	0.31	0.06	26.13	2.85	0.40	0.08	44.78	5.45
Peace and Freedom	0.28	0.03	25.49	2.15	6.31	0.53	14.75	1.43
Reform	0.26	0.07	19.57	2.23	4.11	1.56	48.45	9.66
Nonpartisan	1.95	0.30	9.21	3.31	3.44	0.78	19.42	4.05

Table 3: Party-Specific Average Causal Effects of Being Listed in First Position on Ballots Using All Races from 1978 to 2002. ATE and SE represent the average causal effects and their standard errors, respectively. For general and primary elections, the left two columns present the estimates of average absolute gains in terms of the total or party vote, respectively, while the right two columns show those of average relative gains. Each candidate-specific effect is averaged over different races to obtain the overall average effect for each party. In general elections, only minor party and nonpartisan candidates are affected by the ballot order. In primaries, however, the candidates of all parties are affected. The largest effects are found for nonpartisan candidates.

- Barber-Odean (2004). Investor with limited attention
- Stocks in portfolio: Monitor continuously
- Other stocks: Monitor extreme deviations (salience)
- Which stocks to purchase? High-attention (salient) stocks. On days of high attention, stocks have
- Demand increase
- No supply increase
- Increase in net demand
- Heterogeneity:
- Small investors with limited attention attracted to salient stocks
- Institutional investors less prone to limited attention
- Market interaction: Small investors are:
- Net buyers of high-attention stocks
- Net sellers of low-attention stocks.
- Measure of net buying is Buy-Sell Imbalance:

$$
B S I_{t}=100 * \frac{\sum_{i} N e t B \text { uy }_{i, t}-\sum_{i} N^{2} \text { etSell }_{i, t}}{\sum_{i} N e t B \text { uy }_{i, t}+\sum_{i} N e t S e l l_{i, t}}
$$

- Notice: Unlike in most financial data sets, here use of individual trading data
- In fact: No obvious prediction on prices
- Measures of attention:
- same-day (abnormal) volume V_{t}
- previous-day return r_{t-1}
- stock in the news (Using Dow Jones news service)
- Use of sorting methodology
- Sort variable (V_{t}, r_{t-1}) and separate into equal-sized bins (in this case, deciles)
* Example: $V_{t}^{1}, V_{t}^{2}, V_{t}^{3}, \ldots, V_{t}^{10 a}, V_{t}^{10 b}$
* (Finer sorting at the top to capture top 5 percent)
- Classical approach in finance
- Benefit: Measures variables in a non-parametric way
- Cost: Loses some information and magnitude of variable
- Effect of same-day (abnormal) volume V_{t} monotonic (Volume captures 'attention')

Figure 2a

Volume

- Effect of previous-day return r_{t-1} U-shaped (Large returns-positive or negative-attract attention)

Figure 2b

- Notice: Pattern is consistent across different data sets of investor trading
- Figures 2 a and 2 b are 'univariate' - Figure 3 is 'multivariate'

_- high volume, news	_-mid volume, news	_- low volume, news
- high volume, no news	$-\quad$ mid volume, no news	-- low volume, no news

- Patterns are the opposite for institutional investors (Fund managers)

- Alternative interpretations of results:
- Small investors own few stocks, face short-selling constraints
- (To sell a stock you do not own you need to borrow it first, then you sell it, and then you need to buy it back at end of lending period)
- If new information about the stock:
- buy if positive news
- do nothing otherwise
- If no new information about the stock:
- no trade
- Large investors are not constrained

- Study pattern for stocks that investors already own

Panel A: Buy-sell imbalance for Stocks Already Owned Sorted on Current Day's Abnormal Trading Volume.

	Large Discount Brokerage		Large Retail Brokerage		Small Discount Brokerage	
Decile	Number Imbalance	Value Imbalance	Number Imbalance	Value Imbalance	Number Imbalance	Value Imbalance
1 (lowest volume)	$\begin{aligned} & \hline-54.22 \\ & (1.43) \end{aligned}$	$\begin{aligned} & \hline-55.64 \\ & (1.89) \end{aligned}$	$\begin{aligned} & \hline-28.74 \\ & (1.42) \end{aligned}$	$\begin{aligned} & -33.99 \\ & (1.84) \end{aligned}$	$\begin{aligned} & -24.25 \\ & (6.28) \end{aligned}$	$\begin{aligned} & -33.22 \\ & (7.58) \end{aligned}$
2	$\begin{aligned} & -51.13 \\ & (0.78) \end{aligned}$	$\begin{aligned} & -53.20 \\ & (1.07) \end{aligned}$	$\begin{aligned} & -29.46 \\ & (1.09) \end{aligned}$	$\begin{aligned} & -34.09 \\ & (1.36) \end{aligned}$	$\begin{aligned} & -33.80 \\ & (3.18) \end{aligned}$	$\begin{aligned} & -29.67 \\ & (4.47) \end{aligned}$
3	$\begin{aligned} & -48.27 \\ & (0.64) \end{aligned}$	$\begin{aligned} & -49.69 \\ & (0.95) \end{aligned}$	$\begin{aligned} & -29.54 \\ & (1.04) \end{aligned}$	$\begin{aligned} & -31.25 \\ & (1.31) \end{aligned}$	$\begin{aligned} & -31.76 \\ & (1.71) \end{aligned}$	$\begin{aligned} & -30.05 \\ & (2.44) \end{aligned}$
4	$\begin{aligned} & -47.19 \\ & (0.56) \end{aligned}$	$\begin{aligned} & -49.51 \\ & (0.88) \end{aligned}$	$\begin{aligned} & -28.69 \\ & (0.94) \end{aligned}$	$\begin{aligned} & -32.96 \\ & (1.11) \end{aligned}$	$\begin{aligned} & -35.65 \\ & (1.26) \end{aligned}$	$\begin{aligned} & -33.93 \\ & (1.96) \end{aligned}$
5	$\begin{aligned} & -45.95 \\ & (0.53) \end{aligned}$	$\begin{aligned} & -47.59 \\ & (0.81) \end{aligned}$	$\begin{aligned} & -26.71 \\ & (0.90) \end{aligned}$	$\begin{aligned} & -31.04 \\ & (1.07) \end{aligned}$	$\begin{aligned} & -32.34 \\ & (1.12) \end{aligned}$	$\begin{aligned} & -30.01 \\ & (1.63) \end{aligned}$
6	$\begin{aligned} & -45.01 \\ & (0.49) \end{aligned}$	$\begin{aligned} & -48.65 \\ & (0.71) \end{aligned}$	$\begin{aligned} & -24.32 \\ & (0.90) \end{aligned}$	$\begin{aligned} & -29.71 \\ & (1.04) \end{aligned}$	$\begin{aligned} & -30.00 \\ & (0.97) \end{aligned}$	$\begin{aligned} & -26.50 \\ & (1.42) \end{aligned}$
7	$\begin{aligned} & -42.36 \\ & (0.50) \end{aligned}$	$\begin{aligned} & -45.85 \\ & (0.71) \end{aligned}$	$\begin{aligned} & -21.83 \\ & (0.84) \end{aligned}$	$\begin{aligned} & -30.29 \\ & (0.89) \end{aligned}$	$\begin{aligned} & -29.85 \\ & (0.95) \end{aligned}$	$\begin{aligned} & -26.21 \\ & (1.33) \end{aligned}$
8	$\begin{aligned} & -39.43 \\ & (0.51) \end{aligned}$	$\begin{aligned} & -43.75 \\ & (0.71) \end{aligned}$	$\begin{aligned} & -18.72 \\ & (0.81) \end{aligned}$	$\begin{aligned} & -27.21 \\ & (0.87) \end{aligned}$	$\begin{aligned} & -28.20 \\ & (0.87) \end{aligned}$	$\begin{aligned} & -26.23 \\ & (1.22) \end{aligned}$
9	$\begin{aligned} & -35.64 \\ & (0.52) \end{aligned}$	$\begin{aligned} & -40.68 \\ & (0.70) \end{aligned}$	$\begin{aligned} & -15.45 \\ & (0.78) \end{aligned}$	$\begin{aligned} & -21.79 \\ & (0.91) \end{aligned}$	$\begin{aligned} & -27.07 \\ & (0.85) \end{aligned}$	$\begin{aligned} & -24.99 \\ & (1.21) \end{aligned}$
10a	$\begin{aligned} & -33.03 \\ & (0.63) \end{aligned}$	$\begin{aligned} & -39.31 \\ & (0.85) \end{aligned}$	$\begin{aligned} & -12.27 \\ & (0.97) \end{aligned}$	$\begin{aligned} & -19.97 \\ & (1.12) \end{aligned}$	$\begin{aligned} & -26.81 \\ & (1.06) \end{aligned}$	$\begin{aligned} & -27.99 \\ & (1.42) \end{aligned}$
10b (highest volume)	$\begin{aligned} & -24.97 \\ & (0.69) \end{aligned}$	$\begin{aligned} & -32.82 \\ & (0.92) \end{aligned}$	$\begin{aligned} & -15.01 \\ & (1.04) \end{aligned}$	$\begin{aligned} & -20.04 \\ & (1.19) \end{aligned}$	$\begin{aligned} & -17.32 \\ & (0.98) \end{aligned}$	$\begin{aligned} & -19.38 \\ & (1.42) \end{aligned}$

5 Menu Effects: Confusion

- Previous heuristics reflect preference to avoid difficult choices or for salient options
- Confusion is simply an error in the implementation of the preferences
- Different from most behavioral phenomena which are directional biases
- How common is it?
- Application 1. Shue-Luttmer (2007)
- Choice of a political candidate among those in a ballot
- California voters in the 2003 recall elections
- Do people vote for the candidate they did not mean to vote for?

Candidates to succeed GRAY DAVI3 as Governio if he is recalled:
Vote for One

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Design:
- Exploit closeness on ballot
- Exploit specific features of closeness
- Exploit random variation in placement of candidates on the ballot (as in Ho-Imai)
- First evidence: Can this matter?
- If so, it should affect most minor party candidates

- Model:
- Share β_{1} of voters meaning to vote for major candidate j vote for neighboring candidate i
- Estimate β_{1} by comparing voting for i when close to j and when far from j
- Notice: The impact depends on vote share of j
- Specification:

$$
\text { VoteShare }_{i}=\beta_{0}+\beta_{1} * \text { VSAdjacent }_{j}+\text { Controls }+\varepsilon
$$

- Rich set of fixed effects, so identify off changes in order

Table 2: Primary Results

Dependent Variable: Voteshare $=($ votes $/$ total votes $) \times 100$	(1)	(2)	(3)
Adjacent	$0.104^{* *}(0.018)$		
Adjacent \times Schwarzenegger		$0.088^{* *}(0.025)$	
Adjacent \times Bustamante		$0.143^{* *}(0.025)$	
Adjacent \times McClintock	$0.107^{*}(0.045)$		
Adjacent Dummy		$0.037^{* *}(0.006)$	
Observations	$1,817,904$	$1,817,904$	$1,817,904$
R-Squared	0.8676	0.8676	0.8676

- Results:
- 1 in 1,000 voters vote for adjacent candidate
- Difference in error rate by candidate (see below)
- Notice: Each candidate has 2.5 adjacent candidates -> Total misvoting is 1 in 400 voters
- Interpretations:

1. Limited Attention: Candidates near major candidate get reminded in my memory
2. Trembling Hand: Pure error

- To distinguish, go back to structure of ballot.
- Much more likely to fill-in the bubble on right side than on left side if (2)
- No difference if (1)

Table 3: Robustness Checks

Dependent Variable: Voteshare $=($ votes $/$ total votes $) \times 100$	(1)	(2)	(3)	(4)	(5)	(6)
Adjacent	$\begin{aligned} & \hline 0.082^{* *} \\ & (0.027) \end{aligned}$			$\begin{aligned} & \hline 0.104^{* *} \\ & (0.018) \end{aligned}$	$\begin{aligned} & \hline 0.113^{* *} \\ & (0.018) \end{aligned}$	
Adjacent Dummy	$\begin{aligned} & 0.010 \\ & (0.007) \end{aligned}$					
Adjacent Dummy \times CA Voteshare		$\begin{aligned} & 0.112^{* *} \\ & (0.019) \end{aligned}$				
North Adjacent			$\begin{aligned} & 0.082^{* *} \\ & (0.022) \end{aligned}$			$\begin{aligned} & 0.082^{* *} \\ & (0.022) \end{aligned}$
South Adjacent			$\begin{aligned} & 0.111^{* *} \\ & (0.033) \end{aligned}$			$\begin{aligned} & 0.111^{* *} \\ & (0.033) \end{aligned}$
East Adjacent			$\begin{aligned} & 0.143^{* *} \\ & (0.035) \end{aligned}$			
West Adjacent			$\begin{aligned} & 0.038^{* *} \\ & (0.011) \end{aligned}$			
Diagonally Adjacent				$\begin{aligned} & 0.002 \\ & (0.003) \end{aligned}$		
Punchcard Adjacent					$\begin{aligned} & 0.030+ \\ & (0.018) \end{aligned}$	
Horizontally Adjacent						$\begin{aligned} & 0.031^{* *} \\ & (0.008) \end{aligned}$
Horizontally Adjacent \times Confusing Side						$\begin{aligned} & 0.123^{* *} \\ & (0.038) \end{aligned}$
Observations	1,817,904	1,817,904	1,817,904	1,817,904	1,817,904	1,817,904
R-Squared	0.8676	0.8676	0.8677	0.8676	0.8677	0.8677

- Effect is mostly due to Trembling hand / Confusion
- Additional results:
- Spill-over of votes larger for more confusing voting methods (such as punch-cards)

Table 7: Interactions with Voting Technology

Dependent Variable:	(1)	(2)	(3)	(4)
Voteshare $=($ votes $/$ total votes $) \times 100$	$0.197^{* *}$	$0.200^{* *}$		
Adjacent \times punch card	(0.020)	(0.019)		
	$0.100^{* *}$	$0.108^{* *}$		
Adjacent \times optical scan	(0.020)	(0.019)		
	$0.065^{* *}$	$0.067^{* *}$		
Adjacent \times touch screen	(0.016)	(0.015)		

- - Spill-over of votes larger for precincts with a larger share of lowereducation demographics $->$ more likely to make errors when faced with large number of option

Table 4: Overall Effect of Precinct Demographic Ch

Dependent Variable: Voteshare $=$ (votes $/$ total votes) $\times 100$ Adjacent	(1)	(2)	(3)
Adjacent $\times \%$ HS Graduates	$0.6368^{* *}$	$0.0544^{* *}$	$0.3353^{* *}$
Adjacent $\times \%$ College Graduates	(0.1012)	(0.0162)	(0.0467)
	$\left(0.00132^{* *}\right.$		
	$\left(0.0056^{* *}\right.$		
	(0.0010)		

- This implies (small) aggregate effect: confusion has a different prevalence among the voters of different major candidates
- Rashes (JF, 2001) Similar issue of confusion for investor choice
- Two companies:
- Major telephone company MCI (Ticker MCIC)
- Small investment company (ticker MCI)
- Investors may confuse them
- MCIC is much bigger $->$ this affects trading of company MCl

Summary Statistics
Daily return and volume information is shown for Massmutual Corporate Investors fund (MCI), MCI Communications (MCIC), and AT\&T (T) for the sample period $11 / 21 / 94-11 / 13 / 97$. The return for security j is expressed in percentages and defined as $\log \left[\left(P_{j, t+1}+D_{j, t+1}\right) / P_{j, t}\right]$, where $P_{j, t}$ and $D_{j, t}$ are the price and dividend, respectively, for security j on day t.

	Mean (Return)	$S D$ (Return)	Mean (Volume)	$S D$ (Volume)	Mean (Price)
MCI	0.078	0.7136	4,155	4,497	36.14
MCIC	0.087	2.3645	4.154×10^{6}	4.713×10^{6}	28.07
T	0.055	1.6440	4.810×10^{6}	2.837×10^{6}	38.64

- Check correlation of volume (Table III)
- High correlation
- What if two stocks have similar underlying fundamentals?
- No correlation of MCl with another telephone company (AT\&T)

Table III

Daily Volume Correlation Coefficient Matrices

This table presents the correlation of daily volumes between Massmutual Corporate Investors fund (MCI), MCI Communications (MCIC), AT\&T (T) and the New York Stock Exchange Composite Index (NYSE). The pairwise Pearson product-moment correlations are shown with the standard error of these coefficients in parentheses.

	MCI	MCIC	T	NYSE
Panel A: Sample Period $11 / 21 / 94-11 / 13 / 97$				
MCI	1			
MCIC	0.5592	1	1	
	(0.0302)			
T	0.0291	0.1566	0.3397	1
NYSE	(0.0364)	(0.0360)	(0.0343)	
	0.1162	0.2817		

- Predict returns of smaller company with bigger company (Table IV)
- Returns Regression:

$$
r_{M C I, t}=\alpha_{0}+\alpha_{1} r_{M C I C, t}+\beta X_{t}+\varepsilon_{t}
$$

Constant	MCIC Return	(MCIC Return) * dummy (MCIC return <0)	$\begin{gathered} \mathrm{T} \\ \text { Return } \end{gathered}$	$\begin{gathered} \text { S\&P } \\ 500 \\ \text { Return } \end{gathered}$	S\&P Smallcap Return Residual	Lehman Long Bond Index Return	R^{2}
Panel A: Sample Period 11/22/94-11/13/97							
0.0956				0.0372	0.1011	0.0932	0.0286
(2.6223)				(0.9370)	(1.9233)	(2.3438)	0.0247
0.0954	0.0862			0.0128	0.1068	0.0905	0.0353
(2.6243)	(2.2779)			(0.3128)	(2.0356)	(2.2818)	0.0301
0.0957	0.0851		0.0171	0.0052	0.1077	0.0907	0.0355
(2.6306)	(2.2430)		(0.4190)	(0.1166)	(2.0501)	(2.2862)	0.0290
0.0721	0.1205	-0.0722		0.0149	0.1070	0.0913	0.0360
(1.5202)	(2.0557)	(-0.7664)		(0.3630)	(2.0375)	(2.3015)	0.0296

- Results:
- Positive correlation $\alpha_{1}->$ The swings in volume have some impact on prices.
- Difference between reaction to positive and negative news:

$$
r_{M C I, t}=\alpha_{0}+\alpha_{1} r_{M C I C, t}+\alpha_{2} r_{M C I C, t} * \mathbf{1}\left(r_{M C I C, t}<0\right)+\beta X_{t}+\varepsilon_{t}
$$

- Negative α_{2}. Effect of arbitrage $->$ It is much easier to buy by mistake than to short a stock by mistake
- Size of confusion? Use relation in volume.
- We would like to know the result (as in Luttmer-Shue) of

$$
V_{M C I, t}=\alpha+\beta V_{M C I C, t}+\varepsilon_{t}
$$

- Remember: $\beta=\operatorname{Cov}\left(V_{M C I, t}, V_{M C I C, t}\right) / \operatorname{Var}\left(V_{M C I C, t}\right)$
- We know (Table I)

$$
\begin{aligned}
.5595 & =\rho_{M C I, M C I C}=\frac{\operatorname{Cov}\left(V_{M C I, t}, V_{M C I C, t}\right)}{\sqrt{\operatorname{Var}\left(V_{M C I, t}\right) \operatorname{Var}\left(V_{M C I C, t}\right)}}= \\
& =\beta * \frac{\sqrt{\operatorname{Var}\left(V_{M C I C, t}\right)}}{\sqrt{\operatorname{Var}\left(V_{M C I, t}\right)}}
\end{aligned}
$$

- Hence, $\beta=.5595 * \sqrt{\operatorname{Var}\left(V_{M C I, t}\right)} / \sqrt{\operatorname{Var}\left(V_{M C I C, t}\right)}=.5595 *$ $10^{-3}=5 * 10^{-4}$
- Hence, the error rate is approximately $5 * 10^{-4}$, that is, 1 in 2000
- Conclusion
- Deviation from standard model: confusion.
- Can have an aggregate impact, albeit a small one
- Can be moderately large for error from common choice to rare choice
- Other applications: eBay bidding on misspelled names (find cheaper items when looking for 'shavre' [shaver] or 'tyo' [toy]

6 Persuasion

- Persuasion and Social Pressure: Change in opinion/action beyond prediction of Bayesian model
- Persuasion: Sender attempts to convince Receiver with words/images to take an action
- Rational persuasion through Bayesian updating
- Non-rational persuasion, i.e.: neglect of incentives of person presenting information
- Effect of persuasion directly on utility function (advertising/emotions)
- Social Pressure: Presence of Sender exerts pressure to take an action
- DellaVigna and Gentzkow (2010): Overview on Persuasion:
- Persuading consumers: Marketing
- Persuading voters: Political Communication
- Persuading donors: Fund-raising
- Persuading investors: Financial releases
- First problem: How to measure when persuasion occurs?
- Treatment group T, control group C, Persuasion Rate is

$$
f=100 * \frac{y_{T}-y_{C}}{e_{T}-e_{C}} \frac{1}{1-y_{0}}
$$

- e_{i} is the share of group i receiving the message,
- y_{i} is the share of group i adopting the behavior of interest,
- y_{0} is the share that would adopt if there were no message

TABLE 1, PART A
Persuasion Rates: summary of Studies

Paper	Treatment (1)	Control (2)	Variable t (4)	Time Horizon (7)	Treatment group t_{T} (9)	Control group t_{C} (10)	Exposure rate $e_{T}-e_{C}$ (11)	Persuasion rate f (12)
Persuading Consumers								
Simester et al. (2007) (NE)	17 clothing catalogs sent	12 catalogs	Share Purchasing $>=1$ item	1 year	$\begin{aligned} & 36.7 \% \\ & 69.1 \% \end{aligned}$	$\begin{aligned} & 33.9 \% \\ & 66.8 \% \end{aligned}$	$\begin{aligned} & 100 \% * \\ & 100 \% * \end{aligned}$	$\begin{aligned} & 4.2 \% \\ & 6.9 \% \end{aligned}$
Bertrand, Karlan, Mullainathan, Shafir, and Zinman (2010) (FE)	Mailer with female photo Mailer with 4.5% interest rate	Mailer no photo Mailer 6.5\% i.r.	Applied for loan	1 month	$\begin{aligned} & 9.1 \% \\ & 9.1 \% \end{aligned}$	$\begin{aligned} & 8.5 \% \\ & 8.5 \% \end{aligned}$	$\begin{aligned} & \text { 100\%* } \\ & \text { 100\%* } \end{aligned}$	$\begin{aligned} & 0.7 \% \\ & 0.7 \% \end{aligned}$
Persuading Voters								
Gosnell (1926)	Card reminding of registration	No card	Registration	Few days	42.0\%	33.0\%	100.0\%	13.4\%
Gerber and Green (2000) (FE)	Door-to-Door GOTV Canvassing GOTV Mailing of 1-3 Cards	No GOTV No GOTV	Turnout	Few days	$\begin{aligned} & 47.2 \% \\ & 42.8 \% \end{aligned}$	$\begin{aligned} & 44.8 \% \\ & 42.2 \% \end{aligned}$	$\begin{aligned} & \text { 27.9\% } \\ & \text { 100\%* } \end{aligned}$	$\begin{gathered} 15.6 \% \\ 1.0 \% \end{gathered}$
Green, Gerber, and Nickerson (2003) (FE)	Door-to-Door Canvassing	No GOTV	Turnout	Few days	31.0\%	28.6\%	29.3\%	11.5\%
Green and Gerber (2001) (FE)	Phone Calls By Youth Vote	No GOTV	Turnout	Few days	71.1\%	66.0\%	73.7\%	20.4\%
	Phone Calls 18-30 Year-Olds	No GOTV	Turnout		41.6\%	40.5\%	41.4\%	4.5\%
DellaVigna and Kaplan (2007) (NE)	Availab. of Fox News Via Cable	No F.N. via cable	Rep. Vote Share	0-4 years	56.4\%	56.0\%	3.7\%	$11.6 \%{ }^{+}$
Enikolopov, Petrova, and Zhuravskaya (2010) (NE)	Availability of independent antiPutin TV station (NTV)	No NTV	Vote Share of anti-Putin parties	3 months	17.0\%	10.7\%	47.0\%	7.7\% ${ }^{+}$
Knight and Chiang (2010) (NE)	Unsurprising Dem. Endors. (NYT)	No endors.	Support for Gore	Few	75.5\%	75.0\%	100.0\%	2.0\%
	Surprising Dem. Endors. (Denver)	No endors.		weeks	55.1\%	52.0\%	100.0\%	6.5\%
Gerber, Karlan, and Bergan (2009) (FE)	Free 10-week subscription to Washington Post	No Subscr.	Dem. Vote Share (stated in survey)	2 months	67.2\%	56.0\%	94.0\%	19.5\% ${ }^{+}$
Gentzkow (2006) (NE)	Exposure to Television	No Television	Turnout	10 years	54.5\%	56.5\%	80.0\%	4.4\%
Gentzkow and Shapiro (2009) (NE)	Read Local Newspaper	No local paper	Turnout	0-4 years	70.0\%	69.0\%	25.0\%	12.9\%

TABLE 1, PART B
Persuasion Rates: summary of Studies

Paper	Treatment (1)	Control (2)	Variable t (4)	Time Horizon (7)	Treatment group t_{T} (9)	Control group t_{C} (10)	Exposure rate $e_{T}-e_{C}$ (11)	Persuasion rate f (12)
Persuading Donors								
List and Lucking-Reiley	Fund-raiser mailer with low seed	No mailer	Share	1-3 weeks	3.7\%	0\%	100\%*	3.7\%
(2002) (FE)	Fund-raiser mailer with high seed	No mailer	Giving Money		8.2\%	0\%	100\%*	8.2\%
Landry, Lange, List, Price, and Rupp (2006) (FE)	Door-To-Door Fund-raising Campaign for University Center	No visit	Share Giving Money	immediate	10.8\%	0\%	36.3\%	29.7\%
DellaVigna, List, and Malmendier (2009) (FE)	Door-To-Door Fund-raising Campaign for Out-of-State Charity	No visit	Share Giving Money	immediate	4.6\%	0\%	41.7\%	11.0\%
Falk (2007) (FE)	Fund-raiser mailer with no gift	No mailer	Share	1-3 weeks	12.2\%	0\%	100\%*	12.2\%
	Mailer with gift (4 post-cards)	No mailer	Giving Money		20.6\%	0\%	100\%*	20.6\%
Persuading Investors								
Engelberg and Parsons (2009) (NE)	Coverage of Earnings News in Local Paper	No coverage	Trading of Shares of Stock in News	3 days	0.023\%	0.017\%	60.0\%	0.010\%

- Persuasion rate helps reconcile seemingly very different results, e.g. persuading voters
- More in detail: DellaVigna-Kaplan (QJE, 2007), Fox News natural experiment

1. Fast expansion of Fox News in cable markets

- October 1996: Launch of 24-hour cable channel
- June 2000: 17 percent of US population listens regularly to Fox News (Scarborough Research, 2000)

2. Geographical differentiation in expansion

- Cable markets: Town-level variation in exposure to Fox News
- 9,256 towns with variation even within a county

3. Conservative content

- Unique right-wing TV channel (Groseclose and Milyo, 2004)
- Empirical Results
- Selection. In which towns does Fox News select? (Table 3):

$$
\begin{aligned}
d_{k, 2000}^{F O X}= & \alpha+\beta v_{k, 1996}^{R, \text { Pres }}+\beta \text { Contr }_{k, 1996}^{R}+\Gamma_{2000} X_{k, 2000}+ \\
& \Gamma_{00-90} X_{k, 00-90}+\Gamma_{C} C_{k, 2000}+\varepsilon_{k}
\end{aligned}
$$

- Controls X
- Cable controls (Number of channels and potential subscribers)
- US House district or county fixed effects
- Conditional on X, Fox News availability is orthogonal to
- political variables
- demographic variables

TABLE III
Determinants of Fox News Availability, Linear Probability Model

Dep. var.	Availability of Fox News via cable in 2000				
	(1)	(2)	(3)	(4)	(5)
Pres. republican vote share in 1996	$\begin{gathered} 0.1436 \\ (0.1549) \end{gathered}$	$\begin{aligned} & 0.6363 \\ & (0.2101)^{* * * *} \end{aligned}$	$\begin{aligned} & 0.3902 \\ & (0.1566)^{* *} \end{aligned}$	$\begin{gathered} -0.0343 \\ (0.0937) \end{gathered}$	$\begin{gathered} -0.0442 \\ (0.1024) \end{gathered}$
Pres. log turnout in 1996	$\begin{gathered} 0.1101 \\ (0.0557)^{* *} \end{gathered}$	$\begin{aligned} & 0.0909 \\ & (0.0348)^{* * * *} \end{aligned}$	$\begin{aligned} & 0.0656 \\ & (0.0278)^{* *} \end{aligned}$	$\begin{gathered} 0.0139 \\ (0.0124) \end{gathered}$	$\begin{gathered} -0.0053 \\ (0.0173) \end{gathered}$
Pres. Rep. vote share change1998-1992					
Control variables					
Census controls: 1990 and 2000	-	X	X	X	X
Cable system controls	-	-	X	X	X
U. S. House district fixed effects	-	-	-	X	-
County fixed effects	-	-	-	-	X
F-test: Census controls $=0$		$F=3.54^{* * *}$	$F=2.73^{* * *}$	$F=1.11$	$F=1.28$
F-test: Cable controls $=0$			$F=18.08^{* * *}$	$F=21.09^{* * *}$	$F=18.61^{* * *}$
R^{2}	0.0281	0.0902	0.4093	0.6698	0.7683
N	$N=9,256$	$N=9,256$	$N=9,256$	$N=9,256$	$N=9,256$

- Baseline effect - Presidential races
- Effect on Presidential Republican vote share (Table 4):

$$
\begin{aligned}
v_{k, 2000}^{R, \text { Pres }}-v_{k, 1996}^{R, \text { Pres }}= & \alpha+\beta_{F} d_{k, 2000}^{F O X}+\Gamma_{2000} X_{k, 2000}+ \\
& \Gamma_{00-90} X_{k, 00-90}+\Gamma_{C} C_{k, 2000}+\varepsilon_{k} .
\end{aligned}
$$

- Results:
- Significant effect of Fox News with district (Column 3) and county fixed effects (Column 4)
- .4-. 7 percentage point effect on Republican vote share in Pres. elections
- Similar effect on Senate elections -> Effect is on ideology, not personspecific
- Effect on turnout

TABLE IV
The Effect of Fox News on the 2000-1996 Presidential Vote Share Changi

Dep. var.	Republican two-party vote share change between 2000 and 1				
	(1)	(2)	(3)	(4)	(5)
Availability of Fox News via cable in 2000	$\begin{gathered} -0.0025 \\ (0.0037) \end{gathered}$	$\begin{gathered} 0.0027 \\ (0.0024) \end{gathered}$	$\begin{aligned} & 0.008 \\ & (0.0026)^{* * *} \end{aligned}$	$\begin{aligned} & 0.0042 \\ & (0.0015)^{* * *} \end{aligned}$	$\begin{aligned} & 0.0069 \\ & (0.0014)^{* * * *} \end{aligned}$
Pres. Rep. vote share change1988-1992					
Constant	$\begin{aligned} & 0.0347 \\ & (0.0017)^{* * *} \end{aligned}$	$\begin{aligned} & -0.028 \\ & (0.0245) \end{aligned}$	$\begin{gathered} -0.0255 \\ (0.0236) \end{gathered}$	$\begin{gathered} 0.0116 \\ (0.0154) \end{gathered}$	$\begin{gathered} 0.0253 \\ (0.0185) \end{gathered}$
Control variables					
Census controls: 1990 and 2000	-	X	X	X	X
Cable system controls	-	-	X	X	X
U. S. House district fixed effects	-	-	-	X	-
County fixed effects	-	-	-	-	X
R^{2}	0.0007	0.5207	0.5573	0.7533	0.8119
N	$N=9,256$	$N=9,256$	$N=9,256$	$N=9,256$	$N=9,256$

- Magnitude of effect: How do we generalize beyond Fox News?
- Estimate audience of Fox News in towns that have Fox News via cable (First stage)
- Use Scarborough micro data on audience with Zip code of respondent
- Fox News exposure via cable increases regular audience by 6 to 10 percentage points
- How many people did Fox News convince?
- Heuristic answer: Divide effect on voting (.4-. 6 percentage point) by audience measure (. 6 to .10)
- Result: Fox News convinced 3 to 8 percent of audience (Recall measure) or 11 to 28 percent (Diary measure)
- How do we interpret the results?
- Benchmark model:

1. New media source with unknown bias β, with $\beta \sim N\left(\beta_{0}, \frac{1}{\gamma_{\beta}}\right)$
2. Media observes (differential) quality of Republican politician, $\theta_{t} \sim$ $N\left(0, \frac{1}{\gamma_{\theta}}\right)$, i.i.d., in periods $1,2, \ldots, T$
3. Media broadcast: $\psi_{t}=\theta_{t}+\beta$. Positive β implies pro-Republican media bias
4. Voting in period T. Voters vote Republican if $\hat{\theta}_{T}+\alpha>0$, with α ideological preference

- Signal extraction problem. New media (Fox News) says Republican politician (George W. Bush) is great
- Is Bush great?
- Or is Fox News pro-Republican?
- A bit of both, the audience thinks. Updated media bias after T periods:

$$
\hat{\beta}_{T}=\frac{\gamma_{\beta} \beta_{0}+T \gamma_{\theta} \bar{\psi}_{T}}{\gamma_{\beta}+T \gamma_{\theta}}
$$

- Estimated quality of Republican politician:

$$
\hat{\theta}_{T}=\frac{\gamma_{\theta} * 0+W\left[\psi_{T}-\hat{\beta}_{T}\right]}{\gamma_{\theta}+W}=\frac{W\left[\psi_{T}-\hat{\beta}_{T}\right]}{\gamma_{\theta}+W}
$$

- Persuasion. Voter with persuasion $\lambda(0 \leq \lambda \leq 1)$ does not take into account enough media bias:

$$
\hat{\theta}_{T}^{\lambda}=\frac{W^{\lambda}\left[\psi_{T}-(1-\lambda) \hat{\beta}_{T}\right]}{\gamma_{\theta}+W^{\lambda}}
$$

- Vote share for Republican candidate. $P\left(\alpha+\hat{\theta}_{T}^{\lambda} \geq 0\right)=1-F\left(-\hat{\theta}_{T}^{\lambda}\right)$
- Proposition 1. Three results:

1. Short-Run I: Republican media bias increases Republican vote share: $\partial\left[1-F\left(-\hat{\theta}_{T}^{\lambda}\right)\right] / \partial \beta>0$.
2. Short-Run II: Media bias effect higher if persuasion $(\lambda>0)$.
3. Long-run $(T \rightarrow \infty)$. Media bias effect \Longleftrightarrow persuasion $\lambda>0$.

- Intuition.
- Fox News enthusiastic of Bush
- Audience updates beliefs: "This Bush must be really good" (ShortRun I)
- Believe media more if credulous or persuadable (Short-Run II)
- But: Fox News enthusiastic also of Karl Rove, Rick Lazio, Bill Frist \rightarrow "They cannot be all good!"
- Make inference that Fox News is biased, stop believing it
- Fox News influences only individuals subject to persuasion (Long-Run)
- What is the evidence about persuasion bias?
- Cain-Loewenstein-Moore (JLegalStudies, 2005). Psychology Experiment
- Pay subjects for precision of estimates of number of coins in a jar
- Have to rely on the advice of second group of subjects: advisors
- (Advisors inspect jar from close)
- Two experimental treatments:
* Aligned incentives. Advisors paid for closeness of subjects' guess
* Mis-Aligned incentives, Common knowledge. Advisors paid for how high the subjects' guess is. Incentive common-knowledge
* (Mis-Aligned incentives, Not Common knowledge.)

Table 1. Payoff Function for Advisors in Accurate Condition and for All Estimators

Range of Estimator's Estimate from True Value (\$)	Payoff $(\$)$
$.00-.50$	5.00
$.51-1.00$	4.50
$1.01-1.50$	4.00
$1.51-2.00$	3.50
$2.01-2.50$	3.00
$2.51-3.00$	2.50
$3.01-3.50$	2.00
$3.51-4.00$	1.50
$4.01-4.50$	1.00
$4.51-5.00$.50

Table 2. Advisors' Payoff Function in Conflict-ofInterest Conditions

Range of Estimator's Estimate above True Value (\$)	Payoff $(\$)$
$.50-1.00$	1.00
$1.01-1.50$	1.90
$1.51-2.00$	2.70
$2.01-2.50$	3.40
$2.51-3.00$	4.00
$3.01-3.50$	4.50
$3.51-4.00$	4.90
$4.01-4.50$	5.20
$4.51-5.00$	5.40
$5.01+$	5.50

- Result 1: Advisors increase estimate in Mis-Aligned incentives treatment - Even more so when common knowledge

- Result 2. Estimate of subjects is higher in Treatment with Mis-Aligned incentives

Table 6. Estimator Estimates of Jar Values
$\left.\begin{array}{lccccc}\hline & & & \begin{array}{c}\text { Significance } \\ \text { of Advisor } \\ \text { Incentives }(p)\end{array} & & \\ \text { of Disclosure (} p \text {) }\end{array}\right]$

- Subjects do not take sufficiently into account incentives of information provider
- Effect even stronger when incentives are known $->$ Advisors feel free(er) to increase estimate
- Applications to many settings
- Application 1: Malmendier-Shantikumar (JFE, 2007).
- Field evidence that small investors suffer from similar bias
- Examine recommendations by analysts to investors
- Substantial upward distortion in recommendations (Buy=Sell, Hold=Sell, etc)

Panel A: Entire Sample	Sample size	Percentage within category					
			Strong				Strong
		Sell	Sell	Hold	Buy	Buy	
All	121,130	1.72	2.86	36.84	32.90	25.67	
Unaffiliated	112,664	1.79	2.96	37.68	32.40	25.17	

- Higher distortion for analysis working in Inv. Bank affiliated with company they cover (through IPO/SEO)
- Question: Do investors discount this bias?
- Analyze Trade Imbalance (essentially, whether trade is initiated by Buyer)
- Assume that
* large investors do large trades
* small investors do small trades
- See how small and large investors respond to recommendations
- Examine separately for affiliated and unaffiliated analysts

All Recommendations

	Large Trade	Small Trade	Difference S-L
Strong Sell	-0.103	-0.105	-0.002
	(0.040)	(0.050)	(0.064)
Sell	-0.118	-0.139	-0.021
	(0.034)	(0.046)	(0.057)
Hold	-0.091	0.007	0.099
	(0.011)	(0.014)	(0.018)
Buy	0.011	0.134	0.123
	(0.012)	(0.013)	(0.017)
Strong Buy	0.112	0.243	0.131
	(0.013)	(0.014)	(0.019)
(Strong Sell)*Affiliation	-0.196	-0.838	-0.643
	(0.255)	(0.331)	(0.418)
(Sell)*Affiliation	0.094	-0.087	-0.180
	(0.254)	(0.272)	(0.372)
(Hold)*Affiliation	-0.001	0.005	0.006
	(0.044)	(0.056)	(0.072)
(Buy)*Affiliation	-0.068	0.013	0.081
	(0.034)	(0.039)	(0.052)
(Strong Buy)*Affiliation	-0.129	-0.023	0.106
	(0.036)	(0.041)	(0.055)
Sample size	86.961	86.961	
R^{2}	0.0034	0.0085	

- Results:
- Small investor takes analyst recommendations literally (buy Buys, sell Sells)
- Large investors discount for bias (hold Buys, sell Holds)
- Difference is particularly large for affiliated analysts
- Small investors do not respond to affiliation information
- Strong evidence of distortion induced by incentives

7 Emotions: Mood

- Emotions play a role in several of the phenomena considered so far:
- Self-control problems -> Temptation
- Projection bias in food consumption $->$ Hunger
- Social preferences in giving -> Empathy
- Gneezy-List (2006) transient effect of gift $->$ Hot-Cold gift-exchange
- Psychology: Large literature on emotions (Loewenstein and Lerner, 2003)
- Message 1: Emotions are very important
- Message 1: Different emotions operate very differently: anger \neq mood \neq
- Consider two examples of emotions:
- Mood
- Arousal
- Psychology: even minor mood manipulations have a substantial impact on behavior and emotions
- On sunnier days, subjects tip more at restaurants (Rind, 1996)
- On sunnier days, subjects express higher levels of overall happiness (Schwarz and Clore, 1983)
- Should this impact economic decisions?
- Field: Impact of mood fluctuations on stock returns:
- Daily weather and Sport matches
- No effect on fundamentals
- However: If good mood leads to more optimistic expectations -> Increase in stock prices
- Evidence:
- Saunders (1993): Days with higher cloud cover in New York are associated with lower aggregate US stock returns
- Hirshleifer and Shumway (2003) extend to 26 countries between 1982 and 1997
* Use weather of the city where the stock market is located
* Negative relationship between cloud cover (de-trended from seasonal averages) and aggregate stock returns in 18 of the 26 cities

	OLS Regression			Logit Model		
Location	Observations	$\beta_{i C}$	t-Statistic	$\gamma_{i C}$	χ^{2}	P-Value
Amsterdam	3984	-0.007	-1.07	-0.024	2.76	0.0963
Athens	2436	0.012	0.71	-0.014	0.53	0.4649
Buenos Aires	2565	-0.030	-0.98	-0.019	1.60	0.2054
Bangkok	3617	0.009	0.45	-0.014	0.24	0.6259
Brussels	3997	-0.018^{*}	-3.25	-0.036^{*}	6.75	0.0094
Copenhagen	4042	-0.002	-0.30	-0.002	0.02	0.8999
Dublin	3963	-0.000	-0.02	-0.025	2.13	0.1445
Helsinki	2725	-0.016	-1.67	-0.034^{*}	4.01	0.0452
Istanbul	2500	0.007	0.32	-0.001	0.00	0.9488
Johannesburg	3999	0.004	0.47	-0.012	0.67	0.4124
Kuala Lumpur	3863	0.014	0.26	-0.109	1.99	0.1586
London	4003	-0.010	-1.52	-0.019	1.41	0.2355
Madrid	3760	-0.011	-1.60	-0.015	1.41	0.2353
Manila	2878	0.018	0.83	0.003	0.02	0.9023
Melbourne	3674	-0.013	-1.45	-0.008	0.26	0.6116
Milan	3961	-0.014^{*}	-2.03	-0.021	3.69	0.0549
New York	4013	-0.007	-1.28	-0.035^{*}	8.64	0.0033
Oslo	3877	-0.018	-1.92	-0.025	3.31	0.0688
Paris	3879	-0.009	-1.27	-0.027^{*}	3.93	0.0474
Rio de Janeiro	2988	-0.057	-1.93	-0.016	0.96	0.3267
Santiago	2636	0.000	0.05	-0.012	0.73	0.3935
Singapore	3890	0.008	0.37	-0.002	0.00	0.9588
Stockholm	3653	-0.014	-1.54	-0.025	2.89	0.0889
Taipei	3784	-0.016	-0.97	-0.013	0.66	0.4164
Vienna	3907	-0.013^{*}	-2.14	-0.026^{*}	4.11	0.0425
Zurich	3851	-0.007	-1.28	-0.012	0.89	0.3465
All Cities (naive)	92445	-0.011^{*}	-4.42	-0.019^{*}	41.30	0.0001
All Cities (PCSE)	92445	-0.010^{*}	-3.97	-	-	-

- - Magnitude:
- Days with completely covered skies have daily stock returns .11 percent lower than days with sunny skies
- Five percent of a standard deviation
- Small magnitude, but not negligible
- After controlling for cloud cover, other weather variables such as rain and snow are unrelated to returns
- Additional evidence (Edmans-Garcia-Norli, 2007): International soccer matches (39 countries, 1973-2004)

Panel A. Abnormal Raw Returns						
All games	638	0.016	0.27	524	-0.212	-3.27
Elimination games			0.046	0.43	138	-0.384
\quad World Cup elimination games	76	0.090	0.53	56	-0.494	-2.71
\quad Continental cups elimination games	101	0.013	0.09	82	-0.309	-1.99
				198	-0.168	-1.47
Group games	243	0.052	0.53	81	-0.380	-2.23
\quad World Cup group games	115	0.007	0.05	-0.022	-0.14	
\quad Continental cups group games	128	0.092	0.67	117	-0.1	
Close qualifying games	218	-0.049	-0.52	188	-0.131	-1.29
\quad World Cup close qualifying games	137	-0.095	-0.78	122	-0.132	-1.05
\quad European Championship close qualifying games	81	0.029	0.19	66	-0.130	-0.75

- Results:
- Compared to a day with no match, a loss lowers daily returns (significantly) by .21 percent. (Surprisingly, a win has essentially no effect)
- More important matches, such as World Cup elimination games, have larger effects
- Effect does not appear to depend on whether the loss was expected or not
- International matches in other sports have a consistent, though smaller, effect (24 countries)

	Wins			Losses		
	N	β_{W}	t-val	N	β_{L}	t-val
Panel A. Abnormal Returns						
All games	903	-0.013	-0.39	645	-0.084	-2.21
Cricket	153	-0.057	-0.73	88	-0.187	-1.85
Rugby	403	-0.086	-1.73	307	-0.095	-1.74
Ice hockey	238	0.105	1.57	148	0.083	1.02
Basketball	111	0.071	0.74	102	-0.208	-2.11

- Interpretations:
- Mood impacts risk aversion or perception of volatility
- Mood is projected to economic fundamentals
- Simonsohn (2007): Subtle role of mood
- Weather on the day of campus visit to a prestigious university (CMU)
- Students visiting on days with more cloud cover are significantly more likely to enroll
- Higher cloud cover induces the students to focus more on academic attributes versus social attributes of the school
- Support from laboratory experiment

Table 2. Regressions of enrollment and admission decisions on cloudcover (OLS)

8 Next Lecture

- Emotions: Arousal
- Methodology: Lab and Field

