Econ 219B
 Psychology and Economics: Applications

(Lecture 4)

Stefano DellaVigna

February 12, 2013

Outline

1. Methodology: Errors in Applying Present-Biased Preferences
2. Reference Dependence: Introduction
3. Reference Dependence: Housing
4. Reference Dependence: Mergers
5. Reference Dependence: Employment and Effort
6. Reference Dependence: Insurance

1 Methodology: Errors in Applying Present-Biased

Preferences

- Present-Bias model very successful
- Quick adoption at cost of incorrect applications
- Four common errors
- Error 1. Procrastination with Sophistication
- 'Self-Control leads to Procrastination'
- This is not accurate in two ways
- Issue 1.
* (β, δ) Sophisticates do not delay for long (see our calibration)
* Need Self-control + Naiveté (overconfidence) to get long delay
- Issue 2. (Definitional issue) We distinguished between:
* Delay. Task is not undertaken immediately
* Procrastination. Delay systematically beyond initial expectations
* Sophisticates and exponentials do not procrastinate, they delay
- Error 2. Naives with Yearly Decisions
- 'We obtain similar results for naives and sophisticates in our calibrations'
- Example 1. Fang, Silverman (IER, 2009)
- Single mothers applying for welfare. Three states:

1. Work
2. Welfare
3. Home (without welfare)

- Welfare dominates Home - So why so many mothers stay Home?

	Choice at t		
Choice at $t-1$	Welfare	Work	Home
Welfare			
Row \%	84.3	3.5	12.3
Column \%	76.7	6.3	17.9
Work			
Row \%	5.3	79.3	15.3
Column \%	2.6	76.4	12.1
Home			
Row \%	28.3	12.0	59.7
Column \%	20.7	17.3	70.0

- - Model:
* Immediate cost ϕ (stigma, transaction cost) to go into welfare
* For ϕ high enough, can explain transition
* Simulate Exponentials, Sophisticates, Naives
- However: Simulate decision at yearly horizon.
- BUT: At yearly horizon naives do not procrastinate:
* Compare:
- Switch now
- Forego one year of benefits and switch next year
- Result:
* Very low estimates of β
* Very high estimates of switching cost ϕ
* Naives are same as sophisticates

Parameters		(1)		(2)		(3)	
		Time Consistent		Present-Biased (sophisticated)		Present-Biased (Naive)	
		Estimate	S.E.	Estimate	S.E.	Estimate	S.E.
Preference Parameters							
Discount Factors	β	1	n.a.	0.33802	0.06943	0.355	0.0983
	δ	0.41488	0.07693	0.87507	0.01603	0.868	0.02471
Net Stigma	$\phi^{(1)}$	7537.04	774.81	8126.19	834.011	8277.46	950.77
(by type)	$\phi^{(2)}$	10100.9	1064.83	10242.01	955.878	10350.20	1185.27
	$\phi^{(3)}$	13333.2	1640.18	12697.25	1426.40	12533.69	1685.92

- - Conjecture: If allowed daily or weekly decision, would get:
* Naives fit much better than sophisticates
* β much closer to 1
* ϕ much smaller
- Example 2. Shui and Ausubel (2005) -> Estimate Ausubel (1999)
* Cost k of switching from credit card to credit card
* Again: Assumption that can switch only every quarter
* Results of estimates (again):
- Quite low β
- Naives do not do better than sophisticates
- Very high switching costs

Table 4: Estimated Parameters ${ }^{a}$

	Sophisticated Hyperbolic	Naive Hyperbolic	Exponential
β	0.7863	0.8172	
δ	(0.00192)	(0.003)	
k	0.9999	0.9999	0.9999
	(0.00201)	(0.0017)	(0.00272)
0.02927	0.0326	0.1722	
	$\$ 293$	$\$ 326$	$\$ 1,722$
	(0.00127)	(0.00139)	(0.0155)

- Error 3. Present-Bias over Money
- 'We offer the choice between $\$ 10$ today and $\$ 15$ in a week'
- Experiments supporting (β, δ) usually of the above type (Ainslie, 1956; Benhabib, Bisin, and Schotter, 2006; Andreoni and Sprenger, 2009)
- BUT: Discounting applies to consumption, not income (Mulligan, 1999):

$$
U_{0}=u\left(c_{0}\right)+\beta \delta E u\left(c_{1}\right)+\beta \delta^{2} E u\left(c_{2}\right)
$$

- Assume that individual consume the $\$ 10$ in the future $->$ Then the choice is between
* $u(10)$
* $\beta \delta E u(15)$
- Credit constraints $->$ Consume immediately, remove this problem to good extent (but confound with another problem)
- In addition: Uncertainty over future shocks, not in present
- Ideally: Do experiments with goods to be consumed right away:
* Low- and High-brow movies (Read and Loewenstein, 1995)
* Squirts of juice for thirsty subjects (McClure et al., 2005)
- Same problem applies to models
* Notice: Transaction costs of switching k in above models are real effort, apply immediately
* Effort cost c of attending gym also 'real' (not monetary)
* Consumption-Savings models: Utility function of consumption c, not income I
- Error 4. Getting the Intertemporal Payoff Wrong
- 'Costs are in the present, benefits are in the future'
- (β, δ) models very sensitive to timing of payoffs
- Sometimes, can easily turn investment good into leisure good
- Need to have strong intuition on timing
- Example: Carrillo (1999) on nuclear plants as leisure goods
* Immediate benefits of energy
* Delayed cost to environment
- BUT: 'Immediate' benefits come after 10 years of construction costs!

2 Reference Dependence: Introduction

- Kahneman and Tversky (1979) - Anomalous behavior in experiments:

1. Concavity over gains. Given $\$ 1000, A=(500,1) \succ B=(1000,0.5 ; 0,0.5)$
2. Convexity over losses. Given $\$ 2000, \mathrm{C}=(-1000,0.5 ; 0,0.5) \succ \mathrm{D}=(-$ 500,1)
3. Framing Over Gains and Losses. Notice that $A=D$ and $B=C$
4. Loss Aversion. $(0,1) \succ(-8, .5 ; 10, .5)$
5. Probability Weighting. $(5000, .001) \succ(5,1)$ and $(-5,1) \succ(-5000, .001)$

- Can one descriptive model theory fit these observations?
- Prospect Theory (Kahneman and Tversky, 1979)
- Subjects evaluate a lottery $(y, p ; z, 1-p)$ as follows: $\pi(p) v(y-r)+$ $\pi(1-p) v(z-r)$
- Five key components:

1. Reference Dependence

- Basic psychological intuition that changes, not levels, matter (applies also elsewhere)
- Utility is defined over differences from reference point $r->$ Explains Exp. 3

2. Diminishing sensitivity.

- Concavity over gains of $v->$ Explains $(500,1) \succ(1000,0.5 ; 0,0.5)$
- Convexity over losses of $v->$ Explains (-1000,0.5;0,0.5) $\succ(-500,1)$

3. Loss Aversion $->$ Explains $(0,1) \succ(-8, .5 ; 10, .5)$

4. Probability weighting function π non-linear $->$ Explains $(5000, .001) \succ$ $(5,1)$ and $(-5,1) \succ(-5000, .001)$

- Overweight small probabilities + Premium for certainty

5. Narrow framing (Barberis, Huang, and Thaler, 2006; Rabin and Weizsäcker, forthcoming)

- Consider only risk in isolation (labor supply, stock picking, house sale)
- Neglect other relevant decisions
- Tversky and Kahneman (1992) propose calibrated version

$$
v(x)=\left\{\begin{array}{cl}
(x-r)^{.88} & \text { if } x \geq r \\
-2.25(-(x-r))^{.88} & \text { if } x<r
\end{array}\right.
$$

and

$$
w(p)=\frac{p^{.65}}{\left(p^{.65}+(1-p)^{.65}\right)^{1 / .65}}
$$

- Reference point r ?
- Open question - depends on context
- Koszegi-Rabin (2006 on): personal equilibrium with rational expectation outcome as reference point
- Most field applications use only (1) $+(3)$, or $(1)+(2)+(3)$

$$
v(x)=\left\{\begin{array}{cl}
x-r & \text { if } x \geq r \\
\lambda(x-r) & \text { if } x<r
\end{array}\right.
$$

- Assume backward looking reference point depending on context

3 Reference Dependence: Housing

- Genesove-Mayer (QJE, 2001)
- For houses sales, natural reference point is previous purchase price
- Loss Aversion -> Unwilling to sell house at a loss
- Formalize intuition.
- Seller chooses price P at sale
- Higher Price P
* lowers probability of sale $p(P)$ (hence $\left.p^{\prime}(P)<0\right)$
* increases utility of sale $U(P)$
- If no sale, utility is $\bar{U}<U(P)$ (for all relevant P)
- Maximization problem:

$$
\max _{P} p(P) U(P)+(1-p(P)) \bar{U}
$$

- F.o.c. implies

$$
M G=p\left(P^{*}\right) U^{\prime}\left(P^{*}\right)=-p^{\prime}\left(P^{*}\right)\left(U\left(P^{*}\right)-\bar{U}\right)=M C
$$

- Interpretation: Marginal Gain of increasing price equals Marginal Cost
- S.o.c are

$$
2 p^{\prime}\left(P^{*}\right) U^{\prime}\left(P^{*}\right)+p\left(P^{*}\right) U^{\prime \prime}\left(P^{*}\right)+p^{\prime \prime}\left(P^{*}\right)\left(U\left(P^{*}\right)-\bar{U}\right)<0
$$

- Need $p^{\prime \prime}\left(P^{*}\right)\left(U\left(P^{*}\right)-\bar{U}\right)<0$ or not too positive
- Reference-dependent preferences with reference price P_{0} :

$$
v\left(P \mid P_{0}\right)=\left\{\begin{array}{cl}
P-P_{0} & \text { if } P \geq P_{0} \\
\lambda\left(P-P_{0}\right) & \text { if } P<P_{0}
\end{array}\right.
$$

- Can write as

$$
\begin{aligned}
p(P) & =-p^{\prime}(P)\left(P-P_{0}-\bar{U}\right) \text { if } P \geq P_{0} \\
p(P) \lambda & =-p^{\prime}(P)\left(\lambda\left(P-P_{0}\right)-\bar{U}\right) \text { if } P<P_{0}
\end{aligned}
$$

- Plot Effect on MG and MC of loss aversion
- Compare $P_{\lambda=1}^{*}$ (equilibrium with no loss aversion) and $P_{\lambda>1}^{*}$ (equilibrium with loss aversion)
- Case 1. Loss Aversion λ increase price $\left(P_{\lambda=1}^{*}<P_{0}\right)$
- Case 2. Loss Aversion λ induces bunching at $P=P_{0}\left(P_{\lambda=1}^{*}<P_{0}\right)$
- Case 3. Loss Aversion has no effect $\left(P_{\lambda=1}^{*}>P_{0}\right)$
- General predictions. When aggregate prices are low:
- High prices P relative to fundamentals
- Bunching at purchase price P_{0}
- Lower probability of sale $p(P)$
- Longer waiting on market
- Evidence: Data on Boston Condominiums, 1990-1997
- Substantial market fluctuations of price

Figure I
Boston Condominium Price Index

- Observe:
- Listing price $L_{i, t}$ and last purchase price P_{0}
- Observed Characteristics of property X_{i}
- Time Trend of prices δ_{t}
- Define:
- $\hat{P}_{i, t}$ is market value of property i at time t
- Ideal Specification:

$$
\begin{aligned}
L_{i, t} & =\hat{P}_{i, t}+m 1_{\hat{P}_{i, t}<P_{0}}\left(P_{0}-\hat{P}_{i, t}\right)+\varepsilon_{i, t} \\
& =\beta X_{i}+\delta_{t}+v_{i}+m \text { Loss }^{*}+\varepsilon_{i, t}
\end{aligned}
$$

- However:
- Do not observe $\hat{P}_{i, t}$, given v_{i} (unobserved quality)
- Hence do not observe Loss*
- Two estimation strategies to bound estimates. Model 1:

$$
L_{i, t}=\beta X_{i}+\delta_{t}+m 1_{\hat{P}_{i, t}<P_{0}}\left(P_{0}-\beta X_{i}-\delta_{t}\right)+\varepsilon_{i, t}
$$

- This model overstate the loss for high unobservable homes (high v_{i})
- Bias upwards in \hat{m}, since high unobservable homes should have high $L_{i, i}$
- Model 2:

$$
L_{i, t}=\beta X_{i}+\delta_{t}+\alpha\left(P_{0}-\beta X_{i}-\delta_{t}\right)+m 1_{\hat{P}_{i, t}<P_{0}}\left(P_{0}-\beta X_{i}-\delta_{t}\right)+\varepsilon_{i, t}
$$

- Estimates of impact on sale price

TABLE II
Loss Aversion and List Prices
Dependent Variable: Log (Original Asking Price),
OLS equations, standard errors are in parentheses.

Variable	(1) All listings	(2) All listings	(3) All listings	(4) All listings	(5) All listings	(6) All listings
LOSS	$\begin{gathered} 0.35 \\ (0.06) \end{gathered}$	$\begin{gathered} 0.25 \\ (0.06) \end{gathered}$	$\begin{gathered} 0.63 \\ (0.04) \end{gathered}$	$\begin{gathered} 0.53 \\ (0.04) \end{gathered}$	$\begin{gathered} 0.35 \\ (0.06) \end{gathered}$	$\begin{gathered} 0.24 \\ (0.06) \end{gathered}$
LOSS-squared			$\begin{aligned} & -0.26 \\ & (0.04) \end{aligned}$	$\begin{aligned} & -0.26 \\ & (0.04) \end{aligned}$		
LTV	$\begin{gathered} 0.06 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.05 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.06 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.05 \\ (0.01) \end{gathered}$
Estimated value in 1990	$\begin{gathered} 1.09 \\ (0.01) \end{gathered}$					
Estimated price index at quarter of entry	$\begin{gathered} 0.86 \\ (0.04) \end{gathered}$	$\begin{gathered} 0.80 \\ (0.04) \end{gathered}$	$\begin{gathered} 0.91 \\ (0.03) \end{gathered}$	$\begin{gathered} 0.85 \\ (0.03) \end{gathered}$		
Residual from last sale price		$\begin{gathered} 0.11 \\ (0.02) \end{gathered}$		$\begin{gathered} 0.11 \\ (0.02) \end{gathered}$		$\begin{gathered} 0.11 \\ (0.02) \end{gathered}$
Months since last sale	$\begin{gathered} -0.0002 \\ (0.0001) \end{gathered}$	$\begin{aligned} & -0.0003 \\ & (0.0001) \end{aligned}$	$\begin{aligned} & -0.0002 \\ & (0.0001) \end{aligned}$	$\begin{aligned} & -0.0003 \\ & (0.0001) \end{aligned}$	$\begin{aligned} & -0.0002 \\ & (0.0001) \end{aligned}$	$\begin{aligned} & -0.0003 \\ & (0.0001) \end{aligned}$
Dummy variables for quarter of entry	No	No	No	No	Yes	Yes
Constant	$\begin{gathered} -0.77 \\ (0.14) \end{gathered}$	$\begin{gathered} -0.70 \\ (0.14) \end{gathered}$	$\begin{aligned} & -0.84 \\ & (0.13) \end{aligned}$	$\begin{aligned} & -0.77 \\ & (0.14) \end{aligned}$	$\begin{aligned} & -0.88 \\ & (0.10) \end{aligned}$	$\begin{gathered} -0.86 \\ (0.10) \end{gathered}$
R^{2}	0.85	0.86	0.86	0.86	0.86	0.86
Number of observations	5792	5792	5792	5792	5792	5792

- Effect of experience: Larger effect for owner-occupied

TABLE IV
Loss aversion and List Prices: Owner-Occupants versus Investors
DEPENDENT VARIABLE: LOG (ORIGINAL ASKING PRICE)
OLS equations, standard errors are in parentheses.

	(1)	(2)	(3)	(4)
Variable	All listings	All listings	All listings	All listings
	0.50	0.42	0.66	0.58
LOSS \times owner-occupant	(0.09)	(0.09)	(0.08)	(0.09)
	0.24	0.16	0.58	0.49
LOSS \times investor	(0.12)	(0.12)	(0.06)	(0.06)
			-0.16	-0.17
LOSS-squared \times owner-occupant			(0.14)	(0.15)
			-0.30	-0.29
LOSS-squared \times investor	0.03	0.03	(0.02)	(0.02)
	(0.02)	(0.02)	(0.01)	0.01
	0.053	0.053	0.02	$0.01)$
LTV \times owner-occupant	(0.027)	(0.027)	(0.02)	(0.02)
	-0.02	-0.02	-0.03	-0.03
LTV \times investor	(0.014)	(0.01)	(0.01)	(0.01)
	1.09	1.09	1.09	1.09
Dummy for investor	(0.01)	(0.01)	(0.01)	(0.01)
	0.84	0.80	0.86	0.82
Estimated value in 1990	(0.05)	(0.04)	(0.04)	(0.04)
		0.08		0.08
Estimated price index at quarter of		(0.02)		(0.02)

- Some effect also on final transaction price

TABLE VI
Loss Aversion and Transaction Prices
Dependent variable: Log (Transaction Price)
NLLS equations, standard errors are in parentheses.

Variable	(1) All listings	(2) All listings
LOSS	0.18	0.03
	(0.03)	(0.08)
LTV	0.07	0.06
	(0.02)	(0.01)
Residual from last sale price		0.16
		(0.02)
Months since last sale	-0.0001	-0.0004
	(0.0001)	(0.0001)
Dummy variables for quarter of entry	Yes	Yes
Number of observations	3413	3413

- Lowers the exit rate (lengthens time on the market)

TABLE VII Hazard Rate of Sale Duration variable is the number of weeks the property is listed on the market. Cox proportional hazard equations, standard errors are in parentheses.				
Variable	(1)	(2)	(3)	(4)
	All	All	All	All
	listings	listings	listings	listings
LOSS	-0.33	-0.63	-0.59	-0.90
	(0.13)	(0.15)	(0.16)	(0.18)
LOSS-squared			0.27	0.28
			(0.07)	(0.07)
LTV	-0.08	-0.09	-0.06	-0.06
	(0.04)	(0.04)	(0.04)	(0.04)
Estimated value in 1990	0.27	0.27	0.27	0.27
	(0.04)	(0.04)	(0.04)	(0.04)
Residual from last sale		0.29		0.29
		(0.07)		(0.07)

- - Overall, plausible set of results that show impact of reference point
- Important to tie to model (Gagnon-Bartsch, Rosato, and Xia, 2010)

4 Reference Dependence: Mergers

- On the appearance, very different set-up:
- Firm A (Acquirer)
- Firm T (Target)
- After negotiation, Firm A announces a price P for merger with Firm T
- Price P typically at a 20-50 percent premium over current price
- About 70 percent of mergers go through at price proposed
- Comparison price for P often used is highest price in previous 52 weeks, P_{52}
- Example of how Cablevision (Target) trumpets deal

Figure 1. Slide from Cablevision Presentation to Shareholders, October 24, 2007. The management of Cablevision recommended acceptance of a $\$ 36.26$ per share cash bid from the Dolan family. The slide compares this bid price to various recent prices including 52 -week highs.

Valuation Achieved

Market Premia

* Adjusted to reflect payment of $\$ 10 /$ share special dividend.
- Assume that Firm T chooses price P, and A decides accept reject
- As a function of price P, probability $p(P)$ that deal is accepted (depends on perception of values of synergy of A)
- If deal rejected, go back to outside value \bar{U}
- Then maximization problem is same as for housing sale:

$$
\max _{P} p(P) U(P)+(1-p(P)) \bar{U}
$$

- Can assume T reference-dependent with respect to

$$
v\left(P \mid P_{0}\right)=\left\{\begin{array}{cl}
P-P_{52} & \text { if } P \geq P_{52} \\
\lambda\left(P-P_{52}\right) & \text { if } P<P_{52}
\end{array}\right.
$$

- Obtain same predictions as in housing market
- (This neglects possible reference dependence of A)
- Baker, Pan, and Wurgler (2009): Test reference dependence in mergers
- Test 1: Is there bunching around P_{52} ? (GM did not do this)
- Test 2: Is there effect of P_{52} on price offered?
- Test 3: Is there effect on probability of acceptance?
- Test 4: What do investors think? Use returns at announcement
- Test 1: Offer price P around P_{52}
- Some bunching, missing left tail of distribution

- Notice that this does not tell us how the missing left tail occurs:
- Firms in left tail raise price to P_{52} ?
- Firms in left tail wait for merger until 12 months after past peak, so P_{52} is higher?
- Preliminary negotiations break down for firms in left tail
- Would be useful to compare characteristics of firms to right and left of P_{52}
- Test 2: Kernel regression of P_{52} on price offered P (Renormalized by price 30 days before, P_{-30}, to avoid heterosked.):

$$
\frac{P}{P_{-30}}=\alpha+\beta \frac{P_{52}}{P_{-30}}+\varepsilon
$$

- Test 3: Probability of final acquisition is higher when offer price is above P_{52} (Skip)
- Test 4: What do investors think of the effect of P_{52} ?
- Holding constant current price, investors should think that the higher P_{52}, the more expensive the Target is to acquire
- Standard methodology to examine this:
* 3-day stock returns around merger announcement: $C A R_{t-1, t+1}$
* This assumes investor rationality
* Notice that merger announcements are typically kept top secret until last minute $->$ On announcement day, often big impact
- Regression (Columns 3 and 5):

$$
C A R_{t-1, t+1}=\alpha+\beta \frac{P}{P_{-30}}+\varepsilon
$$

where P / P_{-30} is instrumented with P_{52} / P_{-30}

Table 8. Mergers and Acquisitions: Market Reaction. Ordinary and two-stage least squares regressions of the 3-day CAR of the bidder on the offer premium.

$$
r_{t-1 \rightarrow t+1}=a+b \frac{\frac{\partial f f e_{x}}{P_{t,-30}}}{}+e_{i t}
$$

where r is the market-adjusted return of the bidder for the three-day period centered on the announcement date, Offer is the offer price from Thomson, P is the target stock price from CRSP, and 52 WeekHigh is the high stock price over the 365 calendar days ending 30 days prior to the announcement date. The first, second, and fourth columns use ordinary least squares. The third and the fifth columns instrument for the offer premium using 52 WeekHigh . Robust t -statistics with standard errors clustered by month are in parentheses.

	OLS	OLS	IV	OLS	IV
	1	2	3	4	5
Offer Premium: b	$\begin{array}{r} -0.0186^{* * *} \\ (-2.64) \\ \hline \end{array}$	$\begin{array}{r} -0.0204^{* * *} \\ (-2.74) \end{array}$	$\begin{array}{r} -0.215^{* * *} \\ (-3.48) \\ \hline \end{array}$	$\begin{array}{r} -0.0443^{* * *} \\ (-4.21) \end{array}$	$\begin{array}{r} -0.253^{* * *} \\ (-4.39) \\ \hline \end{array}$

- Results very supportive of reference dependence hypothesis - Also alternative anchoring story

5 Reference Dependence: Employment and Ef-

fort

- Back to labor markets: Do reference points affect performance?
- Mas (QJE 2006) examines police performance
- Exploits quasi-random variation in pay due to arbitration
- Background
- 60 days for negotiation of police contract -> If undecided, arbitration
- 9 percent of police labor contracts decided with final offer arbitration
- Framework:
- pay is $w *(1+r)$
- union proposes r_{u}, employer proposes r_{e}, arbitrator prefers r_{a}
- arbitrator chooses r_{e} if $\left|r_{e}-r_{a}\right| \leq\left|r_{u}-r_{a}\right|$
$-P\left(r_{e}, r_{u}\right)$ is probability that arbitrator chooses r_{e}
- Distribution of r_{a} is common knowledge (cdf F)
- Assume $r_{e} \leq r_{a} \leq r_{u}->$ Then

$$
P=P\left(r_{a}-r_{e} \leq r_{u}-r_{a}\right)=P\left(r_{a} \leq\left(r_{u}+r_{e}\right) / 2\right)=F\left(\frac{r_{u}+r_{e}}{2}\right)
$$

- Nash Equilibrium:
- If r_{a} is certain, Hotelling game: convergence of r_{e} and r_{u} to r_{a}
- Employer's problem:

$$
\max _{r_{e}} P U\left(w\left(1+r_{e}\right)\right)+(1-P) U\left(w\left(1+r_{u}^{*}\right)\right)
$$

- Notice: $U^{\prime}<0$
- First order condition (assume $r_{u} \geq r_{e}$):

$$
\frac{P^{\prime}}{2}\left[U\left(w\left(1+r_{e}^{*}\right)\right)-U\left(w\left(1+r_{u}^{*}\right)\right)\right]+P U^{\prime}\left(w\left(1+r_{e}^{*}\right)\right) w=0
$$

$-r_{e}^{*}=r_{u}^{*}$ cannot be solution $->$ Lower r_{e} and increase utility $\left(U^{\prime}<0\right)$

- Union's problem: maximizes

$$
\max _{r_{u}} P V\left(w\left(1+r_{e}^{*}\right)\right)+(1-P) V\left(w\left(1+r_{u}\right)\right)
$$

- Notice: $V^{\prime}>0$
- First order condition for union:

$$
\frac{P^{\prime}}{2}\left[V\left(w\left(1+r_{e}^{*}\right)\right)-V\left(w\left(1+r_{u}^{*}\right)\right)\right]+(1-P) V^{\prime}\left(w\left(1+r_{e}^{*}\right)\right) w=0
$$

- To simplify, assume $U(x)=-b x$ and $V(x)=b x$
- This implies $V\left(w\left(1+r_{e}^{*}\right)\right)-V\left(w\left(1+r_{u}^{*}\right)\right)=-U\left(w\left(1+r_{e}^{*}\right)\right)-$ $U\left(w\left(1+r_{u}^{*}\right)\right)->$

$$
-b P^{*} w=-\left(1-P^{*}\right) b w
$$

- Result: $P^{*}=1 / 2$
- Prediction (i) in Mas (2006): "If disputing parties are equally risk-averse, the winner in arbitration is determined by a coin toss."
- Therefore, as-if random assignment of winner
- Use to study impact of pay on police effort
- Data:
- 383 arbitration cases in New Jersey, 1978-1995
- Observe offers submitted r_{e}, r_{u}, and ruling \bar{r}_{a}
- Match to UCR crime clearance data (=number of crimes solved by arrest)
- Compare summary statistics of cases when employer and when police wins
- Estimated $\hat{P}=.344 \neq 1 / 2->$ Unions more risk-averse than employers
- No systematic difference between Union and Employer cases except for r_{e}

Table I
Sample characteristics in the -12 to +12 month event time window
$\left.\left.\begin{array}{lcccc|}\hline \hline & (1) & (2) & (3) & \begin{array}{c}(4) \\ \text { Pre-arbitration: } \\ \text { Employer win- } \\ \text { Employer loss }\end{array} \\ & \text { Full-sample }\end{array} \begin{array}{cccc}\text { Pre-arbitration: } \\ \text { Employer wins }\end{array}\right) \begin{array}{c}\text { Pre-arbitration: } \\ \text { Employer loses }\end{array}\right)$

- Graphical evidence of effect of ruling on crime clearance rate

- Significant effect on clearance rate for one year after ruling
- Estimate of the cumulated difference between Employer and Union cities on clearance rates and crime

- Arbitration leads to an average increase of 15 clearances out of 100,000 each month

Table II
Event study estimates of the effect of arbitration rulings on clearances;
-12 to +12 month event time window

	All clearances			Violent crime clearances			Property crime clearances		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Constant	$\begin{aligned} & 118.57 \\ & (5.12) \end{aligned}$	$\begin{aligned} & 141.25 \\ & (9.94) \end{aligned}$		$\begin{aligned} & 63.16 \\ & (3.13) \end{aligned}$	$\begin{aligned} & 75.10 \\ & (6.86) \end{aligned}$		$\begin{aligned} & 55.42 \\ & (2.88) \end{aligned}$	$\begin{aligned} & 66.15 \\ & (4.55) \end{aligned}$	
Post-arbitration \times Employer win	$\begin{gathered} -6.79 \\ (2.62) \end{gathered}$	$\begin{gathered} -8.48 \\ (2.20) \end{gathered}$	$\begin{gathered} -9.75 \\ (2.70) \end{gathered}$	$\begin{gathered} -2.54 \\ (1.75) \end{gathered}$	$\begin{gathered} -3.10 \\ (1.35) \end{gathered}$	$\begin{gathered} -3.77 \\ (1.78) \end{gathered}$	$\begin{aligned} & -4.26 \\ & (1.62) \end{aligned}$	$\begin{gathered} -5.39 \\ (2.25) \end{gathered}$	$\begin{aligned} & -4.45 \\ & (1.87) \end{aligned}$
Post-arbitration \times Union win	$\begin{gathered} 4.99 \\ (2.09) \end{gathered}$	$\begin{gathered} 7.92 \\ (2.91) \end{gathered}$	$\begin{gathered} 5.96 \\ (2.65) \end{gathered}$	$\begin{gathered} 4.17 \\ (1.53) \end{gathered}$	$\begin{gathered} 5.62 \\ (1.95) \end{gathered}$	$\begin{gathered} 5.31 \\ (1.42) \end{gathered}$	$\begin{aligned} & 0.819 \\ & (1.24) \end{aligned}$	$\begin{gathered} 2.31 \\ (1.58) \end{gathered}$	$\begin{gathered} 2.19 \\ (1.37) \end{gathered}$
Row 3 - Row 2	$\begin{aligned} & 11.78 \\ & (3.35) \end{aligned}$	$\begin{aligned} & 16.40 \\ & (3.65) \end{aligned}$	$\begin{aligned} & 15.71 \\ & (3.75) \end{aligned}$	$\begin{gathered} 6.71 \\ (2.32) \end{gathered}$	$\begin{gathered} 8.71 \\ (2.37) \end{gathered}$	$\begin{gathered} 9.08 \\ (2.26) \end{gathered}$	$\begin{gathered} 5.08 \\ (2.04) \end{gathered}$	$\begin{gathered} 7.69 \\ (2.75) \end{gathered}$	$\begin{gathered} 6.40 \\ (2.30) \end{gathered}$
Employer Win (Yes $=1$)	$\begin{gathered} 3.71 \\ (9.46) \end{gathered}$	$\begin{gathered} -2.81 \\ (14.92) \end{gathered}$		$\begin{gathered} 2.14 \\ (6.11) \end{gathered}$	$\begin{aligned} & -5.73 \\ & (9.53) \end{aligned}$		$\begin{gathered} 1.57 \\ (4.93) \end{gathered}$	$\begin{gathered} 2.92 \\ (7.51) \end{gathered}$	
Fixed-effects?			Yes			Yes			Yes
Weighted sample?		Yes	Yes		Yes	Yes		Yes	Yes
Augmented sample?			Yes			Yes			Yes
Mean of the	120.31	120.31	130.82	64.79	64.79	72.15	55.51	55.51	58.63
Dependent variable	[106.65]	[106.65]	[370.58]	[71.28]	[71.28]	[294.78]	[58.72]	[58.72]	[180.55]
Sample Size	9,538	9,538	59,137	9,538	9,538	59,135	9,538	9,538	59,136
R^{2}	0.0008	0.005	0.63	0.0007	0.0078	0.59	0.001	0.0015	0.55

- Effects on crime rate more imprecise

Table IV
Event study estimates of the effect of arbitration rulings on crime;
-12 to +12 month event time window

	All crime		Violent crime		Property crime	
	(1)	(2)	(3)	(4)	(5)	(6)
Constant	$\begin{aligned} & 612.18 \\ & (63.98) \end{aligned}$		$\begin{aligned} & 150.26 \\ & (23.23) \end{aligned}$		$\begin{aligned} & 461.81 \\ & (42.00) \end{aligned}$	
Post-arbitration \times Employer win	$\begin{gathered} 26.86 \\ (25.29) \end{gathered}$	$\begin{gathered} 24.68 \\ (14.68) \end{gathered}$	$\begin{gathered} 7.75 \\ (7.85) \end{gathered}$	$\begin{gathered} 4.87 \\ (4.70) \end{gathered}$	$\begin{gathered} 19.19 \\ (18.17) \end{gathered}$	$\begin{gathered} 19.86 \\ (11.19) \end{gathered}$
Post-arbitration \times Union win	$\begin{gathered} 7.64 \\ (16.24) \end{gathered}$	$\begin{gathered} 6.68 \\ (11.42) \end{gathered}$	$\begin{gathered} 7.07 \\ (5.46) \end{gathered}$	$\begin{gathered} 2.49 \\ (4.46) \end{gathered}$	$\begin{gathered} 0.170 \\ (11.68) \end{gathered}$	$\begin{gathered} 4.40 \\ (7.87) \end{gathered}$
Row 3 - Row 2	$\begin{gathered} -19.21 \\ (30.06) \end{gathered}$	$\begin{gathered} -18.01 \\ (19.12) \end{gathered}$	$\begin{gathered} -0.68 \\ (9.56) \end{gathered}$	$\begin{gathered} -2.38 \\ (6.63) \end{gathered}$	$\begin{gathered} -19.02 \\ (21.60) \end{gathered}$	$\begin{aligned} & -15.46 \\ & (13.96) \end{aligned}$
Employer Win (Yes =1)	$\begin{aligned} & -31.81 \\ & (84.42) \end{aligned}$		$\begin{aligned} & -20.43 \\ & (27.57) \end{aligned}$		$\begin{aligned} & -11.35 \\ & (59.50) \end{aligned}$	
Fixed-effects?		Yes		Yes		Yes
Mean of the dependent variable	$\begin{gathered} 444.03 \\ {[364.23]} \end{gathered}$	$\begin{gathered} 519.42 \\ {[2037.4]} \end{gathered}$	$\begin{gathered} 95.49 \\ {[103.16]} \end{gathered}$	$\begin{gathered} 98.26 \\ {[363.76]} \end{gathered}$	$\begin{gathered} 348.45 \\ {[292.10]} \end{gathered}$	$\begin{gathered} 421.28 \\ {[1865.8]} \end{gathered}$
Sample size R^{2}	$\begin{aligned} & 9,528 \\ & 0.001 \\ & \hline \end{aligned}$	$\begin{gathered} 59,060 \\ 0.54 \\ \hline \end{gathered}$	$\begin{aligned} & 9,529 \\ & 0.007 \end{aligned}$	$\begin{gathered} 59,085 \\ 0.76 \\ \hline \end{gathered}$	$\begin{gathered} 9,537 \\ 0.0003 \end{gathered}$	$\begin{gathered} 59,119 \\ 0.42 \\ \hline \end{gathered}$

- Do reference points matter?
- Plot impact on clearances rates $(12,-12)$ as a function of $\bar{r}_{a}-\left(r_{e}+r_{u}\right) / 2$

Figure V
Estimated expected change in clearances conditional on the deviation of the award from the average of the offers

- Effect of loss is larger than effect of gain

Table VII
Heterogeneous effects of arbitration decisions on clearances by loss size, award, and

	(1)	(2)	(3)	(4)	(5) Police lose	(6) Police win
Post-Arbitration	$\begin{gathered} 5.72 \\ (2.31) \end{gathered}$	$\begin{aligned} & -8.17 \\ & (9.58) \end{aligned}$	$\begin{aligned} & 12.99 \\ & (8.45) \end{aligned}$	$\begin{aligned} & -7.42 \\ & (4.76) \end{aligned}$	$\begin{gathered} 4.97 \\ (3.14) \end{gathered}$	$\begin{gathered} 7.30 \\ (4.17) \end{gathered}$
Post-Arbitration \times Award		$\begin{gathered} 1.23 \\ (1.16) \end{gathered}$	$\begin{aligned} & -1.00 \\ & (0.98) \end{aligned}$			
Post-Arbitration \times Loss size	$\begin{aligned} & -10.31 \\ & (1.59) \end{aligned}$		$\begin{aligned} & -10.93 \\ & (1.89) \end{aligned}$		$\begin{aligned} & -0.20 \\ & (4.54) \end{aligned}$	
Post-Arbitration \times Union win				$\begin{aligned} & 13.38 \\ & (5.32) \end{aligned}$		
Post-Arbitration \times (expected award-award)					$\begin{aligned} & -17.72 \\ & (7.94) \end{aligned}$	$\begin{gathered} 2.82 \\ (4.13) \end{gathered}$
Post-Arbitration $\times \mathrm{p}(\text { loss size })^{\wedge}$				Included		
Sample Size	59,137	59,137	59,137	59,137	52,857	55,879
R^{2}	0.63	0.63	0.63	0.63	0.60	0.62

Standard errors, clustered on the intersection of arbitration window and city, are in parentheses. Standard deviations are in brackets. Observations are muricipality \times month cells. The sample is weighted by population size in 1976. The dependant variable is clearances per 100,000 capita. Loss size is defined as the union demand (percent increase on previous wage) less the arbitrator award. Amongst cities that underwent arbitration, the mean loss size is 0.489 with a standard deviation of 0.953 . The expected award is the mathematical expectation of the award given the union and employer offers and the predicted probability of an employer win. The predicted probability of an employer win is estimated with a probit model using as predictors year of of an employer win. The predicted probability of an employer win is estimated with a probir model using as predictors year of
arbirration dummies, the average of the final offers, log population, and the length of the contract. See text for details. The arbirration dummies, the average of the final offers, \log population, and the length of the contract. See text for details. The
samples in models (1)-(4) consist of the 12 months before to the 12 months after arbitration, for jurisdictions that underwent samples in models (1)-(4) consist of the 12 months before to the 12 months after arbitration, for junsdictions that underwent
arbitration, as well as all jurisdictions that never underwent arbitration for all months between 1976 and 1996 . The sample in model (5) consists of cities where the union lost in arbitration and the comparison group of non-arbitrating cities. The sample in model (6) consisists of cities where the union won in arbitration and the comparison group of non-arbitrating cities. All models
moder include month \times year effects (252), arbitration window effects (383), and city effects (452). Author's calculation based on NJ PERC arbirtation cases matched to monthly municipal clearance rates at the jurisdiction level from FBI Uniform Crime Reports.

- Column (3): Effect of a gain relative to $\left(r_{e}+r_{u}\right) / 2$ is not significant; effect of a loss is
- Columns (5) and (6): Predict expected award \hat{r}_{a} using covariates, then compute $\bar{r}_{a}-\hat{r}_{a}$
$-\bar{r}_{a}-\hat{r}_{a}$ does not matter if union wins
$-\bar{r}_{a}-\hat{r}_{a}$ matters a lot if union loses
- Assume policeman maximizes

$$
\max _{e}[\bar{U}+U(w)] e-\theta \frac{e^{2}}{2}
$$

where

$$
U(w)=\left\{\begin{array}{clc}
w-\hat{w} & \text { if } \quad w \geq \hat{w} \\
\lambda(w-\hat{w}) & \text { if } \quad w<\hat{w}
\end{array}\right.
$$

- F.o.c.:

$$
\bar{U}+U(w)-\theta e=0
$$

Then

$$
e^{*}(w)=\frac{\bar{U}}{\theta}+\frac{1}{\theta} U(w)
$$

- It implies that we would estimate

$$
\text { Clearances }=\alpha+\beta\left(\bar{r}_{a}-\hat{r}_{a}\right)+\gamma\left(\bar{r}_{a}-\hat{r}_{a}\right) 1\left(\bar{r}_{a}-\hat{r}_{a}<0\right)+\varepsilon
$$

$$
\text { with } \beta>0 \text { (also in standard model) and } \gamma>0 \text { (not in standard model) }
$$

- Compare to observed pattern

- Close to predictions of model

6 Reference Dependence: Insurance

- Much of the laboratory evidence on prospect theory is on risk taking
- Field evidence considered so far (mostly) does not involve risk:
- Trading behavior - Endowment Effect
- House Sale
- Merger Offer
- Field evidence on risk taking?
- Sydnor (2010) on deductible choice in the life insurance industry
- Uses Menu Choice as identification strategy as in DellaVigna and Malmendier (2006)
- Slides courtesy of Justin Sydnor

Dataset

- 50,000 Homeowners-Insurance Policies
- 12\% were new customers
- Single western state
- One recent year (post 2000)
- Observe
- Policy characteristics including deductible
- 1000, 500, 250, 100
- Full available deductible-premium menu
- Claims filed and payouts by company

Features of Contracts

- Standard homeowners-insurance policies (no renters, condominiums)
- Contracts differ only by deductible
- Deductible is per claim
- No experience rating
- Though underwriting practices not clear
- Sold through agents
- Paid commission
- No "default" deductible
- Regulated state

Summary Statistics

Chosen Deductible

Variable	Full		500	250	100
	Sample	1000			
Insured home value	206,917	266,461	205,026	180,895	164,485
	$(91,178)$	$(127,773)$	$(81,834)$	$(65,089)$	$(53,808)$
Number of years insured by the company	8.4	5.1	5.8	13.5	12.8
	(7.1)	(5.6)	(5.2)	(7.0)	(6.7)
Average age of H.H. members	53.7	50.1	50.5	59.8	66.6
	(15.8)	(14.5)	(14.9)	(15.9)	(15.5)
Number of paid claims in	0.042	0.025	0.043	0.049	0.047
sample year (claim rate)	(0.22)	(0.17)	(0.22)	(0.23)	(0.21)
Yearly premium paid	719.80	798.60	715.60	687.19	709.78
	(312.76)	(405.78)	(300.39)	(267.82)	(269.34)
N	49,992	8,525	23,782	17,536	149
Percent of sample	100\%	17.05\%	47.57\%	35.08\%	0.30\%

* Means with standard errors in parentheses.

Deductible Pricing

- $X_{i}=$ matrix of policy characteristics
- $f\left(X_{i}\right)=$ "base premium"
- Approx. linear in home value
- Premium for deductible D
- $P_{i}^{D}=\delta_{D} f\left(X_{i}\right)$
- Premium differences
- $\Delta P_{i}=\Delta \delta f\left(X_{i}\right)$
- \Rightarrow Premium differences depend on base premiums (insured home value).

Premium-Deductible Menu

Available Deductible	Full Sample
1000	$\$ 615.82$ (292.59)

Risk Neutral Claim Rates?

500	+99.91	100/500 $=20 \%$
250	$\begin{gathered} +86.59 \\ (39.71) \end{gathered}$	87/250 = 35\%
100	$\begin{gathered} +133.22 \\ (61.09) \\ \hline \end{gathered}$	$133 / 150=89 \%$

* Means with standard deviations
in parentheses

Potential Savings with 1000 Ded

Claim rate?

Value of lower

 deductible? Additional premium?Potential savings?

Average forgone expected savings for all low-deductible customers: \$99.88

[^0]
Back of the Envelope

- BOE 1: Buy house at 30, retire at 65, 3% interest rate $\Rightarrow \$ 6,300$ expected
- With 5\% Poisson claim rate, only 0.06\% chance of losing money
- BOE 2: (Very partial equilibrium) 80\% of 60 million homeowners could expect to save $\$ 100$ a year with "high" deductibles $\Rightarrow \$ 4.8$ billion per year

Consumer Inertia?

Percent of Customers Holding each Deductible Level

Look Only at New Customers

		Increase in out-of- pocket payments per claim with a Number of claims per policy	Incent-of- pocket payments per policy with a \$1000 deductible	Reduction in yearly premium per policy with	Savings per policy with $\$ 1000$
Chosen Deductible	0.037	475.05	17.16	94.53	77.37
$\$ 500$	$(.0035)$	(7.96)	(1.66)	(0.55)	(1.74)
$\mathrm{N}=3,424(54.6 \%)$	0.057	641.20	35.68	154.90	119.21
$\$ 250$	$(.0127)$	(43.78)	(8.05)	(2.73)	(8.43)

Average forgone expected savings for all low-deductible customers: \$81.42

Risk Aversion?

- Simple Standard Model
- Expected utility of wealth maximization
- Free borrowing and savings
- Rational expectations
- Static, single-period insurance decision
- No other variation in lifetime wealth

What level of wealth?chetty (2005)

- Consumption maximization:

$$
\begin{aligned}
& \max _{c_{t}} U\left(c_{1}, c_{2}, \ldots, c_{T}\right), \\
& \text { s.t. } c_{1}+c_{2}+\ldots+c_{T}=y_{1}+y_{2}+\ldots y_{T} .
\end{aligned}
$$

- (I ndirect) utility of wealth maximization

$$
\begin{aligned}
& \max _{w} u(w), \\
& \text { where } u(w)=\max _{c_{t}} U\left(c_{1}, c_{2}, \ldots, c_{T}\right) \\
& \text { s.t. } c_{1}+c_{2}+\ldots+c_{T}=y_{1}+y_{2}+\ldots+y_{T}=w
\end{aligned}
$$

$\Rightarrow w$ is lifetime wealth

Model of Deductible Choice

- Choice between ($\mathrm{P}_{\mathrm{L}}, \mathrm{D}_{\mathrm{L}}$) and ($\mathrm{P}_{\mathrm{H}}, \mathrm{D}_{\mathrm{H}}$)
- $\pi=$ probability of loss
- Simple case: only one loss
- EU of contract:
- $\mathrm{U}(\mathrm{P}, \mathrm{D}, \pi)=\pi \mathrm{u}(\mathrm{w}-\mathrm{P}-\mathrm{D})+(1-\pi) \mathrm{u}(\mathrm{w}-\mathrm{P})$

Bounding Risk Aversion

Assume CRRA form for u :

$$
u(x)=\frac{x^{(1-\rho)}}{(1-\rho)} \quad \text { for } \rho \neq 1, \quad \text { and } \quad u(x)=\ln (x) \text { for } \rho=1
$$

Indifferent between contracts iff:

$$
\pi \frac{\left(w-P_{L}-D_{L}\right)^{(1-\rho)}}{(1-\rho)}+(1-\pi) \frac{\left(w-P_{L}\right)^{(1-\rho)}}{(1-\rho)}=\pi \frac{\left(w-P_{H}-D_{H}\right)^{(1-\rho)}}{(1-\rho)}+(1-\pi) \frac{\left(w-P_{H}\right)^{(1-\rho)}}{(1-\rho)}
$$

Getting the bounds

- Search algorithm at individual level
- New customers
- Claim rates: Poisson regressions
- Cap at 5 possible claims for the year
- Lifetime wealth:
- Conservative: $\$ 1$ million (40 years at $\$ 25 \mathrm{k}$)
- More conservative: Insured Home Value

CRRA Bounds

Measure of Lifetime Wealth (W): (Insured Home Value)
Chosen Deductible
\$1,000
$\mathrm{N}=2,474$ (39.5\%)
\$500
$N=3,424$ (54.6\%)
\$250
166,007 780
2,467
$\mathrm{N}=367$ (5.9\%)
\{57,613\} (20.380)
(59.130)

Interpreting Magnitude

- 50-50 gamble:

Lose \$1,000/ Gain \$10 million

- 99.8\% of low-ded customers would reject
- Rabin (2000), Rabin \& Thaler (2001)
- Labor-supply calibrations, consumptionsavings behavior $\Rightarrow \rho<10$
. Gourinchas and Parker (2002) -- 0.5 to 1.4
- Chetty (2005) -- < 2

Wrong level of wealth?

- Lifetime wealth inappropriate if borrowing constraints.
- \$94 for \$500 insurance, 4% claim rate
- $\mathrm{W}=\$ 1$ million $\Rightarrow \rho=2,013$
- $\mathrm{W}=\$ 100 \mathrm{~K} \quad \Rightarrow \rho=199$
- $W=\$ 25 k \quad \Rightarrow \rho=48$

Model of Deductible Choice

- Choice between ($\mathrm{P}_{\mathrm{L}}, \mathrm{D}_{\mathrm{L}}$) and ($\mathrm{P}_{\mathrm{H}}, \mathrm{D}_{\mathrm{H}}$)
- $\pi=$ probability of loss
- EU of contract:
- $\mathrm{U}(\mathrm{P}, \mathrm{D}, \pi)=\pi \mathrm{u}(\mathrm{w}-\mathrm{P}-\mathrm{D})+(1-\pi) \mathrm{u}(\mathrm{w}-\mathrm{P})$
- PT value:
- $\mathrm{V}(\mathrm{P}, \mathrm{D}, \pi)=\mathrm{v}(-\mathrm{P})+\mathrm{w}(\pi) \mathrm{v}(-\mathrm{D})$
- Prefer ($\mathrm{P}_{\mathrm{L}}, \mathrm{D}_{\mathrm{L}}$) to ($\mathrm{P}_{\mathrm{H}}, \mathrm{D}_{\mathrm{H}}$)
- $v\left(-P_{L}\right)-v\left(-P_{H}\right)<w(\pi)\left[v\left(-D_{H}\right)-v\left(-D_{L}\right)\right]$

No loss aversion in buying

- Novemsky and Kahneman (2005)
(Also Kahneman, Knetsch \& Thaler (1991))
- Endowment effect experiments
- Coefficient of loss aversion = 1 for "transaction money"
- Köszegi and Rabin (forthcoming QJ E, 2005)
- Expected payments
- Marginal value of deductible payment > premium payment (2 times)

So we have:

- Prefer ($\mathrm{P}_{\mathrm{L}}, \mathrm{D}_{\mathrm{L}}$) to ($\mathrm{P}_{\mathrm{H}}, \mathrm{D}_{\mathrm{H}}$):

$$
v\left(-P_{L}\right)-v\left(-P_{H}\right)<w(\pi)\left[v\left(-D_{H}\right)-v\left(-D_{L}\right)\right]
$$

- Which leads to:

$$
P_{L}^{\beta}-P_{H}^{\beta}<w(\pi) \lambda\left[D_{H}^{\beta}-D_{L}^{\beta}\right]
$$

- Linear value function:

$$
\begin{aligned}
W T P=\Delta P & =\underbrace{w(\pi) \lambda \Delta D} \\
& =4 \text { to } 6 \text { times } \mathrm{EV}
\end{aligned}
$$

Parameter values

- Kahneman and Tversky (1992)
- $\lambda=2.25$
- $\beta=0.88$
- Weighting function

$$
\begin{aligned}
& w(\pi)=\frac{\pi^{\gamma}}{\left(\pi^{\gamma}+(1-\pi)^{\gamma}\right)^{1 / /}} \\
& -\gamma=0.69
\end{aligned}
$$

WTP from Model

- Typical new customer with $\$ 500$ ded
- Premium with $\$ 1000$ ded $=\$ 572$
- Premium with $\$ 500$ ded $=+\$ 94.53$
- 4\% claim rate
- Model predicts WTP $=\$ 107$
- Would model predict \$250 instead?
- $\mathrm{WTP}=\$ 166$. Cost $=\$ 177$, so no.

Choices: Observed vs. Model

	Predicted Deductible Choice from Prospect Theory NLIB Specification:$\lambda=2.25, \gamma=0.69, \beta=0.88$				Predicted Deductible Choice from EU(W) CRRA Utility:$\rho=10, \mathrm{~W}=\text { Insured Home Value }$			
Chosen Deductible	1000	500	250	100	1000	500	250	100
$\begin{aligned} & \$ 1,000 \\ & \quad N=2,474(39.5 \%) \end{aligned}$	87.39\%	11.88\%	0.73\%	0.00\%	100.00\%	0.00\%	0.00\%	0.00\%
$\begin{aligned} & \$ 500 \\ & \quad N=3,424(54.6 \%) \end{aligned}$	18.78\%	59.43\%	21.79\%	0.00\%	100.00\%	0.00\%	0.00\%	0.00\%
$\begin{aligned} & \$ 250 \\ & \quad N=367(5.9 \%) \end{aligned}$	3.00\%	44.41\%	52.59\%	0.00\%	100.00\%	0.00\%	0.00\%	0.00\%
$\begin{aligned} & \$ 100 \\ & \quad N=3(0.1 \%) \\ & \hline \end{aligned}$	33.33\%	66.67\%	0.00\%	0.00\%	100.00\%	0.00\%	0.00\%	0.00\%

Conclusions

- (Extreme) aversion to moderate risks is an empirical reality in an important market
- Seemingly anomalous in Standard Model where risk aversion = DMU
- Fits with existing parameter estimates of leading psychology-based alternative model of decision making
- Mehra \& Prescott (1985), Benartzi \& Thaler (1995)

Alternative Explanations

- Misestimated probabilities
- $\approx 20 \%$ for single-digit CRRA
- Older (age) new customers just as likely
- Liquidity constraints
- Sales agent effects
- Hard sell?
- Not giving menu? (\$500?, data patterns)
- Misleading about claim rates?
- Menu effects
- More recent evidence: Barseghyan, Molinari, O'Donoghue, and Teitelbaum (2011)
- Micro data on car and home insurance for same person
- Estimate a model of reference-dependent preferences with KoszegiRabin reference points
- Strong evidence of probability weighting

7 Next Lecture

- Reference-Dependent Preferences
- Workplace
- Finance
- Labor Supply
- Problem Set due next week

[^0]: * Means with standard errors in parentheses

