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Abstract 
The purpose of this paper is to outline the development and 

eventual solution to a new type of search model, called 
Pandora’s Matrix. The model allows the agent to search through 
boxes containing unknown prizes, with a T number of periods 

to claim these prizes. After the T periods expire, the agent 
receives the total sum of all of his or her collected prizes. The 
rest of the paper focuses on developing an optimal stop and 
search rule, for the risk-averse agent, and highlights points of 

further work and experimentation. 
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I. Introduction 
 Search theory has been a highly consequential and significant field of economics that 

grants economists insight as to how consumers and sellers interact during trades, and the 

various alternatives they seek in order to optimize their economic benefits. A most 

prominent example is the analysis of the job search of workers during times of 

unemployment. For the workers, they desire job opportunities that offer fair wages, external 

benefits, and safety in the work place. How these workers go about making these decisions 

and what they ultimately choose is the main motivation of the research in this field. One 

paper in particular, “Optimal Search for the Best Alternative” by Martin Weitzman 

introduces a general, yet powerful game called “Pandora’s Problem.” The main objective of 

the model is to create an optimal search and stop rule such that the agent can choose a box 

amongst a selection of boxes, each of which contains an unknown prize. The main intrigue 

of this model is for how long should their search continue, and when is the ideal time to 

stop search? Weitzman offers his solution, and its implications are quite large. Based on this 

idea, I developed my own search game based on a matrix setup where the player can sample 

different boxes, but is restricted to search only an arbitrary number of boxes out of the total 

offered, and his prize is the aggregate sum of all the prizes in the searched boxes. This model 

allows me to solve for a closed-form solution that conveys what the optimal value is for 

every possible search restriction. This value is what I deem a threshold value and is the 

optimal number that the agent must search for in order to then terminate search and take 

that prize.  

 As such, the following sections of this paper will be as follows: relevant literature 

outlining the basics of search theory, a detailed summary of two papers that were 

instrumental in the creation and solution of the model I developed, a proof for the closed-

form solution to my new search theory problem, and finally, concluding remarks and ideas 

for further research and implementation. 

  
II. Literature Review 
 Economists (especially microeconomists) have been fascinated with the idea of 

search behavior, as it grants insight into the decision-making processes of consumers, 



laborers, businesses, and more. Stigler (1961) was the first to publish on the idea of search 

theory, and proposed studying individuals’ search for bargains/wages as an economic 

problem. Subsequent to Stigler’s seminal work, John McCall analyzed, through the process 

of optimal stopping, which job offer an unemployed worker should take, and defined his 

optimal stopping rule based on the idea of a reservation wage. The reservation wage is 

defined as the lowest wage that the agent would be willing to work at, and McCall proposes 

that the worker should only accept a job offer if the wage is higher than his reservation wage. 

There are further nuances that other economists explored once the restrictions of McCall’s 

model were relaxed, as we notice that reservation wage can fluctuate (for example, if the 

worker has remained unemployed for a long duration, their reservation wage might become 

lower due to desperation or stigma from outsiders).  

 Martin Weitzman (1979), in his highly influential paper, “Optimal Search for the Best 

Alternative” derives an optimal search and optimal stopping rule for a broad collection of 

search problems, that he deems “Pandora’s Problem.” The model and resulting rules that 

Weitzman presents are a large influence in the search problem that this paper develops and 

focuses on. Weitzman begins his paper by outlining an example of a research team trying to 

optimize production of their current technology, through either an alpha or an omega 

process. The alpha process has the higher expected value for company savings, but, 

somewhat counterintuitively, Weitzman proves that developing the omega process is the 

optimal policy. He claims “there is a crucial difference between the value of a project and the 

order in which it should be researched.” After solving this example, “Pandora’s Problem” is 

detailed for the reader. There will be n closed boxes, and the specific box, i, will have reward 

xi given by probability function Fi(xi). Each box has a cost, ci that is affiliated with opening it 

and the prize of the box is given with a time lag, ti. The main purpose of the setup is that 

Pandora has to decide at each stage whether or not to open a new box, or collect one of the 

prizes that she has already attained. Pandora’s main objective is to maximize her expected 

present discount value (in simpler terms, this is the highest reward value, xi, factoring in the 

difference in value between present and future).  



In reference to previous work, Weitzman addresses that when all boxes were 

identical, the optimal policy for searching and stopping was easy: search until you have 

found a prize higher than your reservation value. The search and stop rule with alternate 

search capabilities is analogous to that rule. Assume that there are only two boxes, a closed 

box, i, and the reward of the initial box, zi. Either Pandora can collect zi or, a net benefit of: 

 
 
 

In the special case of indifference, where the closed and open box prizes are the same 

value, we set zi equal to the preceding equation and attain: 

   
 
 

 
The beauty of this equation, as Weitzman argues, is that, if we let zi represent the 

expected present discount value of following an optimal search rule, then zi will be the 

reservation prize of box i and “all relevant information about box i is summarized by zi”. 

Thus, Weitzman presents his selection and stopping rule: 

 
 “SELECTON RULE: If a box is to opened, it should be that closed box with the 

highest reservation prize.  

 STOPPING RULE: Terminate search whenever the maximum sampled reward 

exceeds the reservation prize of every closed box.” 

 
While seemingly simple, the prior statements are extraordinarily powerful, as 

everything about Pandora’s Problem can be solved using the value of reservation prizes 

(which are calculated from the second equation). Another important conclusion from this is, 

when sampling, it is optimal to first sample from boxes with high variance (riskier) to strike 

rich quickly and terminate search early, and then move on to low-risk, high reward 

distributions. Obviously, and as Weitzman points out himself, there are certain limitations, 

given the stringency of his assumptions, and much room for further work. Yet, the results 

that he arrived at proved invaluable for the field, and spurred on further research. 



Laura Doval’s doctoral thesis offers great insight into the ramifications of Weitzman’s 

model once we relax certain assumptions. The focus of her paper is predicated on the idea 

that Weitzman’s assumption of only being able to select a box after searching its contents is 

unnatural. Instead, Doval proposes that the elementary Search and Stopping Rules are too 

simple, but can become more powerful if the prior assumption is relaxed. Doval gives an 

accurate example of a recently-admitted student who is choosing among three colleges to 

attend (or not to attend a college), and treats each college as a separate box. Obviously, the 

student is able to attend a college even if he has not visited (or opened the box). Doval, thus, 

tackles this problem through the same general setup as Weitzman, and adds a utility function 

u(z) = z, where z is the highest coordinate in the vector, z, of realized prizes.  

Then, the author delineates the function that determines whether or not the agent 

continues to search or stop, by φ(U, z) ∈ [0,1], where if the function is 0, search is 

terminated, and if 1, search continues, and U is the set of uninspected boxes. Then, we 

define σ(U,z) to be the box that is inspected next. Thus, upon inspection, the agent is at 

decision node:  

(U \{σ}, z ○ xσ), and then would select: φ(U \{σ}, z ○ xσ) and σ(U \{σ}, z ○ xσ). So, the 

optimal strategy, according to Doval, solves the following problem: 

 
 
 
where V is the payoff using the optimal strategy. After this introduction, Doval goes on to 

analyze the solution for the case of a single box. 

 In this instance, she considers two alternatives, when z ≥ µi and when z ≤ µi. For the 

first relation, either the agent terminates search (and takes z), or they decide to open the box 

i if: 

 
 
 
 

To further elucidate this, Doval defines the reservation value of the box to be, xiR 

such that: 



 
 

When the value of ki is substituted into the prior equation, we get: 

 
 

This shows that “reservation value represents the highest prize that the agent expects 

to obtain from inspecting…agent’s payoff from inspecting box i is bounded above.” Now, 

in the case of z ≤ µi , the agent, if he or she chooses to stop, will take box i without 

inspection. In contrast to the Weitzman paper, a new term, deemed the “backup value” is 

defined as follow: 

        
The importance of the backup value is that it represents the value of an outside 

option such that the agent is indifferent between inspecting the new box, i, and taking the 

box without inspection. Conceptually, this value is similar to the reservation value, and 

proves to be invaluable when answering the caveat added to Doval’s model. In summary,  

 
  

(*) 

 

 

Before presenting her final optimal search and stop rule, Doval gives three 

propositions that are used in the proofs of her optimal rules. Firstly, Proposition 1 states that 

if the backup value at decision node (U, z) is less than z, then, we follow the course of 

Weitzman’s optimal search and stop rules (however, this condition is not necessary for 

Weitzman’s stopping rule to be correct). Then, Proposition 2 dictates that assuming z < xiB 

for some unopened box, i, then for if it is optimal to terminate search and take some other 

box m that remains unopened, box m has the highest mean, reservation, and backup value 



amongst the set of all unopened boxes. Lastly, Proposition 3 details that at decision node (U, 

z), if l is an element of U with highest reservation value, then there exists an element j in U 

such that xjR < xlR. If the max{xj,	z} ≤ xlR then, it is optimal to inspect box l at decision node 

(U\{j}, z ○ xj), then it is not optimal to inspect box j. Intuitively, this displays an instance 

where the agent does not want to open the box with the highest reservation value (for 

example, as a means of a backup prize). If this is not the case, and the agent does indeed 

want to open one more box, it should be the box with highest reservation value.  

After establishing all of this, Doval proceeds to split up the search order and stopping 

rule into a further two cases: (1) when the optimal policy is the same as Weitzman’s for all 

but the last box, and (2) when the boxes have binary prizes and equal inspection costs. The 

second case is where the optimal policy has the most deviation from Weitzman’s.  

 For (1), for any boxes, i, j, such that xjR ≤ xiR, let ∏ij be the payoff for inspecting i and 

then applying (*) to j and ∏ji be the payoff for inspecting j and then applying (*) to i. Thus, 

Doval writes her search order rule to be “If a box is to be inspected next, it should be the 

box with the highest reservation value.” The rule, for this scenario, is “If there is more than 

one box remaining, stop only if the maximum sampled prize is higher than the highest 

reservation value amongst uninspected boxes, and take the maximum sampled prize,” 

followed by, “If only one box remains, stop if the maximum sampled prize is higher than xR 

or lower than xB. In the first case, take the maximum sampled prize; otherwise, take the 

remaining box without inspection.” 

 Binary prizes is the last problem that Doval explains, and states that for every box, Xi 

= {y, xi}, where y is strictly less than xi and pi = P(Xi = xi). For the analysis of binary prizes, 

the optimal policy cannot be solely calculated by juxtaposing the backup and reservation 

prizes as done in (1). The optimal policy is as follows: For n ≥  1, say boxes {1, ..., n -1} 

have been inspected, and let  z denote the maximum sampled prize. Then, the order in 

which the boxes are inspected is dictated by:  

 
 

Here, the agent inspects the box n if this conditions holds or otherwise inspects box 

n+1. vn is the payoff of the optimal policy at decision node ({n+1,…, N}). W({n,…,N}) is 



the payoff obtained by following Weitzman’s rule with an outside option of  µn. Stopping 

occurs when z ≥ xnR or, z < xnB = maxi ≥ n(xiB) and xnB = vn, (where the agent will take box n 

without inspection). In short, Doval has given solutions to a reworked model of Weitzman, 

and her solutions are very noteworthy for the field. 

Thus, I have summarized the origins of search theory as well as rigorously gone 

through two papers that served as a large influence to the problem I outline and solve in this 

paper. The next section will cover the details of the model I constructed and its implications. 

 

III. Methodology and Design 
 As I had outlined in the previous section, the famous “Pandora’s Problem” created 

by Martin Weitzman serves as a blueprint for much further research in search theory, and 

was the main muse for the creation of the problem in this paper. “Pandora’s Problem” deals 

with an unknown probability distribution with a random number of boxes, where she has 

the ability to search through as many boxes as she chooses, and can terminate search once 

she was found her optimal box. In conjunction with this idea, my version of the Pandora 

Problem, called Pandora’s Matrix, involves a matrix with m x n dimensions, where each 

element (xmn) in the matrix is a random number under a independently and identically 

distributed (IID) discrete uniform distribution from 1 to 100, represented by U(1,100). Each 

xmn is hidden, until the agent has “clicked” on that element (analogous to Pandora opening a 

box). Obviously, when the individual element is revealed, it will be some number between 1 

and 100, with each number having a #
#$$

 chance in appearing. Thus, the expected value of 

each xmn is then 50.5.   

I introduce the idea of a time restriction through the variable T, wherein the agent 

only has a T number of clicks to explore/unearth elements in the matrix. Additionally, one 

can always click on a previous value again, as many times as they would like, at any point 

along the T-n time periods. As a general rule, we assume that the product, m x n is always 

larger than the value of T, the reason being that we cannot permit the player to have opened 

every box and then make a decision. Once T has expired, the agent receives the total sum of 

all the values that he or she has clicked on or selected. The purpose of this game, is for the 



player to maximize their total payoff. In particular, given a certain T, there exists an optimal 

tx such that the agent will always choose to click on that value till termination of the game. In 

this particular model, we assume ki, the inspection cost, is 0, for the sake of simplicity.  

 Figure 1 shows a rudimentary depiction of the beginning of the game, before the game 

has started. In this example, the agent has 7 clicks. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1: Beginning of game 
 

 Next, in Figure 2, the middle element, x22, has been selected and gives the player a 

payoff of 77, with six clicks left. As you can see, the total is now 77, and with subsequent 

clicks, it will sum up all the numbers chosen. 

 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: T-1 clicks left with initial payoff of 77 



 
At this decision node, represented as D(T-n, p), where p is the maximum of all values 

shown, the agent can either choose to click on 77 and receive a payoff of 154 at T-2 periods 

(in this case, 5), or click on an open element and gain 77 + xmn at T-2 periods. As such, the 

game proceeds till termination, and the player ends with their total summation. Once again, 

at every D(T-n, p), Pandora can either explore the matrix for a new value, or click on a 

previously shown value.  

 Figure 3 illustrates this, where at D(6, 77), the agent decided to search for another 

value, clicks on x13, and gets a value of 45. Unsatisfied with that, and with only 4 clicks 

remaining, 77 is taken till termination of the game, with a total payoff of 507. 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 3: Termination of game after exploring matrix 
 

 Now that I have explained the main framework of the game, it is important to detail 

the main research questions that it leads to. Most importantly, as with the work of Weitzman 

and Doval, we want to develop our own stop and search rule. In this case, because of the 

restriction of the number of periods we have, the stop rule is already semi-enforced on the 

player. The player has an upward restriction of T to maximize their payoff. This leads to a 

contrast with the original Pandora’s Problem, as is in this game, the agent must alter their 

search strategy contingent upon the number of clicks they have.  

 Thus, in light of the T click restriction, the idea of a threshold value is created. The 

threshold value is defined as the value such that once that value is attained (or a number 



above it), the player will stick with that value till termination of the game. Essentially, the 

threshold value serves as a minimum value that is inextricably tied with the number of clicks 

that are left. A precise mathematical definition of this will follow in the next section along 

with its connection with T and p.  

 
IV. Optimal Stopping Rule for Risk-Neutral Agent 

In this section I will delineate the subtleties of solving this new Pandora’s Matrix 

problem, as well as go through a simple example of what a threshold value is, an explanation 

and mathematical proof for finding the threshold value for an arbitrary T, and conclude with 

a graph to show its increasing, asymptotic nature. 

As stated previously, the objective of this game is to maximize the total payoffs at the 

end of the game. At every D(T-n, p) the player can either click on a previously uncovered 

value, or search the matrix for a new value, and each unclicked box has an E[X] of 50.5. 

Intuitively, this means that every node, if the previous max of all known values, p, is less than 

50 (since we are in the discrete case), then, it is optimal to continue search. Unfortunately, 

this fact also belies the true intricacy of solving for an optimal stop rule, as it would seem 

obvious that search should cease once our agent has clicked on a value > 50. While it seems 

logically sound, it raises the question, what if T = 5 or T = 10, or any other large number. It 

would seem remiss to not even attempt to search for a higher value than 50 if a player had 

more time still available. As such, we can extrapolate that the optimal value shall change 

according to the total number of clicks left. Here is where the importance of the threshold 

value is displayed. The threshold value (tx) tells the minimum optimal value needed, such 

that the agent remains with that value till termination. Obviously, having a value higher than 

our threshold value is better, and receiving a value that is lower than it, means it is optimal to 

continue search. We can define it such that, every decision node subsequent to finding the 

threshold will be D(T-n-k, p) = max(tx, p). Thus, the total payoff will be some previous sum, r 

+ max(tx, p) X x, if x is the number of clicks left.  

To elucidate this further, and the key idea behind the proof for the closed-form 

solution, let us consider the case where T=2 and T=3. We will attempt to solve these 

through backwards induction. In the case of T=2, the agent has two clicks. They can either 



click on a xmn that is greater than or equal to 50.5, in which case, the E[xmn > 50.5] = 75.25. 

Obviously, with T=1, the agent will click on 75, again. In the opposite case, where xmn is less 

than 50.5, E[xmn < 50.5] = 25.25. With T=1, the agent will choose to search again, and click 

on a new element, with expectation of 50.5. In total, the agent has a 50% chance of having a 

total payoff of 75.75 or a 50% chance of having a total payoff of 150.5. Finding the average 

of that gives us 56.2525, which is %%&
'

. Thus, for T=2, tx = 56.25. Now, by using backwards 

induction, every game larger than T=2 will always end up in the same scenario. So, anytime a 

player arrives at the time period of T=2, they know that unless they have already attained 

value greater than 56.25, they must continue search. For the case of T=3, the player will go 

through a similar progression, except now, the initial value that they will try and click on will 

be either greater than or equal to, or less than  %%&
'

. This is because we know that this is the 

value that must be attained in order to maximize the total payoff. 

Given the examples above, I had to find a way to conflate the definition of what the 

threshold value was, along with the intuition of solving it as I would any sequential game. 

Ultimately, I realized that the way to find my closed-form threshold equation would be to 

analyze the game through the expected value with x turns left, in conjunction with whatever 

p is at that time. I denote this as Ex, p, which is the total expectation with x turns left. Ex, p is 

thus equal to max(tx, p) x x. Then, the proof is based on the following idea: if I click on a 

threshold value, there is an indifference case, where I can either click on the threshold value 

till termination, or find a new value (and then select the maximum between this new value, y, 

or the prior tx).  

        The proof is as follows: 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
 
  

 

 

 

 

 

 

 



The first line in the proof was set up based on the previous definition I had given. 

Then, I rewrote the sum of the expected value based on the probability of the new and old 

values, and altered the bounds on the summations to fit the new parameters. Through 

algebraic manipulation and Euler’s summation formula, I was able to simplify the 

summations into a quadratic equation, which I then solved using the quadratic formula. It is 

important to note that the closed-form solution is undefined for the case of x = 1, because 

the basis of the proof is the ability to click on a new value. That is easily remedied by the fact 

that I can define a piecewise function, such that for x = 1, tx = 50.5, which is obvious, as the 

result of the expected value of uniform distributions.  

 Figure 4 and 5 show graphs of this closed-form solution, and in particular, how there 

is an asymptote at the value of 100.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Graph of threshold values from 
T=2 to T=1000 

 

Figure 4: Graph of threshold 
values from T=2 to T=10 

 



V. Further Work and Concluding Remarks 
 The main purpose of this paper was to create and solve a unique variant of the age 

old problem developed by Martin Weitzman. I constructed a model with certain restrictions 

from the Pandora Problem, and added the concept of not only aggregating the payoffs, but 

also of limiting the total search time, with a period restriction of T. A uniform distribution of 

U(1,100) was used for the contents of each matrix element. This, in turn, introduced the idea 

of a threshold value which serves as the minimum value needed for optimal stopping and 

claiming. Through the definition of the threshold value, it was discovered that solving for 

the indifference case, wherein you can either continue searching or stay with the threshold 

value, gives a nice closed form solution. This closed form solution gives a full list of 

threshold values for any arbitrary number of clicks, and, as we can expect, it reaches an 

asymptote at 100, since intuitively, with a sufficiently sized matrix and a large number of 

clicks, an agent should search till they reach 100.  

 The model that I have constructed has many implications, and there is much further 

work to be done to use it to its fullest capacity. Namely, solving for the case of an agent that 

is risk-averse will add a new wrinkle into the problem, as now must consider concave utility 

functions, as opposed to the constant utility a risk-neutral agent feels. The power of 

Pandora’s Matrix Problem is also its capacity to be tested on a group of humans and see how 

rational they are in making these optimal stop and search choices. This can, in turn, give us 

insight into the decision making of various people, and offer an empirical foundation for this 

problem, as well. Furthermore, a real-world example of this problem could be if a company 

is searching for a group to outsource their labor or construction, and after searching through 

different groups, they decide upon one for every subsequent project. Another interesting 

idea would be a situation where the agent has the previous options that they selected for 

only a set amount of turns before they disappear. Meaning, if the agent is unhappy with 

everything they have clicked previously and continues searching, they lose the ability to go 

back and use what they have already seen before. This would force the players to be more 

decisive as well as change the idea of the threshold value, as the set number of clicks is then 

broken into smaller games. An immediate corollary to this would be setting a time lag of the 

matrix elements, such that the agent only discovers the values that they have attained a few 



turns after they have clicked on it. All of these different iterations of the game have great 

economic implications, which will only aid in the subsequent studies and insights given by 

search theory.  
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