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Abstract:

This paper analyzes the welfare costs of waitlists and oversubscription of courses at UC Berkeley. First,
using theory, it shows how understanding the probability of successful enrollment off a waitlist could
guide superior enrollment decisions. Second, using data, it analyzes predictors of enrollment differences
in similar courses and concludes that professor ratings and course times play a role in explaining why
waitlists accumulate in certain courses and not others.
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0: Introduction

We can think of the course enrollment process at UC Berkeley as a market, where the demand for a
course is the number of students who wish to enroll, and the supply is the number of seats in the course
available.

Undergraduate students use the Web Page Tele-Bears to sign up for the courses they wish to
take, but there are often not enough seats to accommodate everyone in a given semester. When
demand exceeds supply, a student may join the waitlist to enroll, with no guarantee she will get to enroll.
In the College of Letters and Sciences, 373 courses of 2,879 in Spring 2015, and 403 of 2,864 courses in
Spring 2014, were impacted, meaning they turned away students, sometimes in the dozens.

Satisfaction with the course enrollment process is low. In April 2010, the university hired Bain &
Company to identify inefficiencies and mismanagement in university administration. In their report, the
consultancy highlighted a survey response that “the TeleBEARS system should be made less confusing. It
doesn’t help students design schedules easily. Currently it is a nightmare to use.”

The Bain & Company report prompted a university-wide initiative, called “Operational Excellence,”
meant to improve university administrative processes and save money. This initiative will tackle the
course enrollment process at some stage. An analysis of the welfare effects of the course enrollment
process could be useful to those seeking to improve enrollment outcomes for students.

Waitlists reflect two visible kinds of inefficiency in the course market. First, students who waitlist courses
and are turned away experience a welfare cost as they forgo course opportunities to join a waitlist, only to
fail to enroll.

Second, the very mechanism of a waitlist depends on students dropping a course. I argue that most
students change their course schedule based on information not initially available. Lack of good
information imposes a welfare cost on students, either because they join the courses in which they wish to
enroll late, or, courses that, with better information, they could have chosen initially are no longer
available. We shall analyze both of these inefficiencies in turn.

1: Welfare Cost of Waitlist Uncertainty

In this section we will develop a model to illustrate the welfare cost of waitlist uncertainty on students.
Second, we develop a procedure for estimating the probability of getting off the waitlist for a given
course.
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A: The Expected Utility of Course Schedules

Let C be the collection of all courses offered in a given semester. A subset 4 C C is feasible if no two
courses in A take place at the same time, and it is possible to either enroll or join the waitlist of each
course in 4. Define C, C 2%to be the collection of all feasible subsets of courses.

We shall call elements of C, bundles. A schedule B is a pair of bundles (£,) where EN1 ¥ =2 and
EFUW € Cf. The first bundle E is the courses in which the student enrolls; the last bundle W is the
courses whose waitlists the student joins. Note W € C, implies W\w &€ C, foranyw € W, as a

collection of courses with no time conflicts will stay conflict-free if a course is dropped from the
collection. We can think of a schedule {E, &} as the bundle £.

A student’s utility function U: C; — R maps each bundle of courses to a utility level. The utility function

represents the student’s preference for a collection of courses.

For a given course w, let P : N— [0,1] be a function taking a student’s waitlist position and mapping it to
the student’s subjective probability that she will eventually be allowed to enroll in w. This function is
monotonic non-increasing in waitlist size, with P(0) = 1. We will call P the waitlist probability of w.

For this model we will assume the following:

e A student with bundle £ can instead choose E | e for any e € E.
Meaning: A student can drop any course in which she ends up enrolled.
Implication: For arbitrary bundles A and B, if 4UB € C;, then U(4UB) = U(4).
e Waitlist probabilities P, P, are independent for any courses x, w € C,.
This assumption is made to simplify the analysis and presentation. Since, for example, a student

may certainly drop the waitlist for one course when she gets off the waitlist for another, there is
likely an interaction between probabilities.

In this model each student seeks to maximize the expected utility EU of the schedule she chooses. We say
a schedule is ideal if it is the unique pair (£, /¥) that maximizes expected utility.

We will seek an expression for expected utility for a given schedule. From a schedule (E,W), a student
will eventually end up enrolled in some bundle £U V', where V' & W. To find the expected utility of a
schedule, we must sum the utility of each possible schedule outcome weighted by the student’s subjective
probability of that outcome occurring.

Let’s start simply by assuming a student’s chosen schedule is (£, {w}), where {w} is a singleton

waitlisted course bundle. Then if the student joins the waitlist at position », the expected utility of the
student’s schedule is
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EU[E, {wp)] = Pw(n) UBU {w}) + (1-P,(m)U(B) [1].

So the expected utility of the schedule is the sum of the utility of the bundle with w and the utility of the
bundle without w, weighted by the probability of the student ending up enrolled in either.

Now let’s expand to two waitlisted courses w, and w, with length m and n. Since waitlist probabilities for
different courses are independent, the expected utility is as follows:

EU[E, {w,,w,})] = +P,,(n) (1 = P,,(m)) UBU {w,})
+P(m) (1= P, (m) UBU {w,})
+ (1=P,,(m)1 =P ,(m)) UB) [2].

There are four possible outcomes in this scenario: the student enrolls in w, and w,, she enrolls in w,, she
enrolls in w,, or she enrolls in neither. The utilities of each of these outcomes is weighted by their
probabilities.

We could expand this formula to three waitlisted courses, but it turns out the general form for an arbitrary
number waitlists is pretty and more informative. For schedule (£, W), the expected utility formula is

EU[E,W)]= > PEUV)PEUYV) [3],
ye2

where V' becomes every possible subset of /7. In other words, the sum covers every possible way
waitlisting the courses in ¥ could turn out for the student.

To end up with E U V, the student has to successfully enroll in each course in J and fail to enroll in each
course in '\ V. So the probability of attaining £ U V'is equal to the probability of successfully enrolling
in each course in V, times the probability of failing to enroll in each course in W\ V. Since we assumed
waitlist probabilities are independent, we can decompose each outcome’s probability into a product of
waitlist probabilities. Using individual enrollment probabilities in the expected utility expression yields
the following formula:

2 I1 Py(np) I1 [1=Pcno)] UEUY) | [4]-

e be{i:w, eV} cE{j:ijW\V}

Note there are 2" summands in this formula. Next, there are |V] probability terms in the left product, and

|W\ V] terms in the right product. In total, there are 217 (V] + |W \ V)]), or |[W] (2™), probability terms

used to determine expected utility when waitlisted in [¥] courses.
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Recall, though, that the probability terms here driving the student’s actions are the student’s subjective
probability of enrollment. It could be the student’s estimates are inaccurate. In short, the accuracy of the
probability value itself matters quite a bit when evaluating the schedule’s expected utility:

# Probability Terms in Expected Utility of (£, W)

Waitlisted Courses [W] 1 2 3 4 5
[5].
# Probability Terms P, 2 8 24 64 160

To explore this idea, let’s denote accurate probabilities with an asterisk, and suppose P_* = 0 for a
waitlisted course w € W and P* = P for all other courses. If the student selects schedule (£, W)
considering his subjective probabilities but an alternative schedule (¥,X) maximizes expected utility using

accurate probabilities, then the expected welfare cost for the student selecting schedule (E, W) is
EU[(F,X)] - EU[(E, W \w)] > 0.

Is this welfare cost strictly positive? One reason to think so is that the the schedule (£,.X) can include any
course whose time overlaps with w’s time, while (E, W\w ) cannot since (E, W) had to be feasible. Find
one course ¢ with open seats that the student would wish to take had she not taken w. We can construct
(F,.X)=(E Ua, W\ w) and in this case we conclude EU[(F,X)]- EU[(E,W | w)] > 0.

A more specific example follows. Consider a course, like first semester calculus (Math 1A), that has two
lecture sections, one with a waitlist and one with open seats. Suppose a student wants Math 1A in her
schedule and prefers the waitlisted section. If she overestimates her chances of enrollment, joins the
waitlisted section, and subsequently is required to drop the course, there is clear welfare cost. A
near-perfect substitute schedule existed that the student certainly would have preferred if she knew her
true chances of enrollment.

The model also highlights a complementary, but invisible, welfare cost of waitlist uncertainty. Suppose a
student wishes to enroll in w, and his ideal schedule is (£, {w}). If P, =0, but P_* = 1, the student will not
enroll in w even though using accurate probabilities he has a 100% chance of obtaining his ideal schedule.
Since he enrolls in (#,X) where w € F, his welfare cost is EU[(E,{w})] - EU[(F,X)] > 0.

Why is this cost invisible? Suppose students s, and s, choose schedule (F, @). On the first day, they meet

and notice they have the exact same schedule. Student s, says, “The only reason I’m taking f'is because w
had a long waitlist, and I didn’t think I would get in.” Student s, says, “Really? You wanted to take w
instead of f? I couldn’t be more excited for /. My schedule is ideal.”

Consider s,’s situation in this story. He believes P_(n) = 0. Suppose the accurate probability P* (n) is

equal to 1. Then s, has suffered a positive welfare cost EU[(F' | £ {w})] - EU[(F, ©@)]. Meanwhile, the

welfare loss of student s, is 0, because he achieved his ideal schedule.
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On paper s, and s, are indistinguishable, but their welfare loss because of waitlist uncertainty is not the
same. Because s,’s action’s did not indicate any interest in taking w, we can’t find out he was interested
with enrollment statistics alone.

Both welfare effects, from inappropriate acceptance of a waitlist and inappropriate avoidance of a waitlist,
could be mitigated with better information about the probability of getting off the waitlist for a given
course.

B: Empirical Probabilities and the 10% Rule of Thumb

The “10%” Rule of Thumb is a guideline students often use to assess their chances of enrollment. This
rule of thumb says if the waitlist size is less than 10% of the course enrollment, then one’s chances of
getting off the waitlist are good. It’s a guideline used as advice by the university’s Golden Bear Blog and
one | have heard repeated on campus. Since it is widespread, this rule could be the subjective probability
function used by many students.

A natural next step, then, would be to estimate if this rule of thumb is accurate using past data. If we can
confirm or disconfirm the rule of thumb, this new information could provide guidance to students seeking
to improve the welfare properties of their course enrollment strategy.

First, we need to develop a procedure for constructing empirical probability functions, using past
semesters’ data.

Let C be the previous semester’s courses. Conduct the following procedure for each course ¢ € C. For

each waitlist position k, count the the number of students up to and including the first student to join the
kth position on the waitlist who:

e successfully enrolled in the course (1),
e fails to leave the waitlist and is turned away (2), or
e voluntarily drops the waitlist for any reason (3).

If the counts sum (1) + (2) = 0, then set P.(k) = 1. Otherwise, set

P.(K) = 1 [6].

This empirical probability function P, is the historic proportion of students who successfully enrolled
from the initial waitlist, among those who wished to enroll, with an adjustment for lack of data. The
procedure described above is the ideal way to calculate accurate an empirical probability estimate for the
student’s use. To create richer results, the procedure could be tweaked to count the sum enrollment
outcomes from a collection of courses deemed similar, for instance, all 9am lectures of Econonomics 1
from past semesters’ data.
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The construction gives us monotonicity for free. If the first student who joined the waitlist at position 6
fails to enroll, then the first position-holder at position 7 and later will fail to enroll as well, pushing the
probability down.

We count the outcome of initial waitlist position-holders only because it prevents late joiners from
skewing the probability of a low waitlist position. Implicitly, their waitlist position is the number of all
people on the waitlist before him who left the waitlist. (To accommodate late joiners, we could construct a
function like P.(%,?) that takes time period ¢ into account, but that won’t be our focus.)

It’s worth emphasizing that P, is not a probability distribution; it is an empirically constructed probability
function mapping waitlist positions to probabilities of enrollment. Waitlist position is given, and not the
n

outcome, so there’s no requirement that ) P.(k)= 1.
k=0

The 10% Rule of Thumb can be stated as follows: If you join the waitlist of course ¢ at position k where
k is less than 10% of the max enrollment of ¢, you re more likely than not to get off the waitlist and enroll
in the course.

Let C,,, be the set of courses whose waitlists exceed 10% of maximum enrollment. To test the rule of
thumb, take as the sample the collection of all {P.(k)} from every ¢ € C,,,,. The null hypothesis H,, is
P.(k) < 0.5, while the alternative hypothesis H, is P.(k) > 0.5, the rule of thumb. The one-sided t-test is
appropriate here. Over {P.(k)} calculate a mean, a standard error, and a t-value, finally calculating the
p-value. If p < 0.05 then reject the null hypothesis in favor of the rule of thumb #,.

The sample is size |C,,, . In theory this could be too small to achieve statistical significance. C,,,, could
even be empty. That would make the 10% Rule of Thumb vacuous, kind of like a rule of thumb for thesis

length at Hogwarts. In practice, this is not a concern, as |C,,, | >> 0.

Unfortunately, a more fundamental barrier exists. This statistical test, and any probability estimate, won’t
be possible unless the university begins tracking data on the reasons students drop courses, particularly
waitlists. The data the university collects, and even better data collected by outside sources, does not
indicate why the waitlist went down, only when and by how much. The lack of data on reasons people
leave waitlists poses a barrier to estimating the probability function of each waitlist. Without the data, this
paper cannot make any estimates to test the 10% Rule of Thumb or any other hypothesis.

C: Discussion and Recommendation

In this section we developed an argument that good estimates of the probability of getting off waitlists can
assist students who wish to improve their course enrollment outcomes and mitigate the welfare costs of
oversubscription of courses. A procedure was developed for estimating these probabilities given data on
student enrollment outcomes after joining a given waitlist.

My recommendation is that the University begin collecting this data.
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Currently there are plans to update the course enrollment process. The University is currently undergoing
an update of shared technology services as part of a wider initiative to improve the efficiency and quality
of campus administration and services. Dubbed “Operational Excellence,” this initiative has already
replaced the course portal Web Page bSpace with bCourses, and improvments to Tele-Bears, including
improved data collection, are underway. This data should include for each course individual level data on
the following:

1) What were the positions of students on the waitlist who enrolled?
2) What were the positions of students on the waitlist who voluntarily dropped?

3) What were the positions of students on the waitlist who were turned away?

With this data, the university will be empowered to deliver good information to students on enrollment
outcomes, helping students make good decisions about which courses to waitlist.

2: Predicting Excess Demand for Courses

So far we have identified two costs to waitlists:

1) The cost of waitlists on those who join them and are turned away, and
2) The cost of waitlists on those who wish to enroll in a course but are discouraged from doing so,
even though they had a good shot of enrollment if they tried.

Recall 2) is invisible to the university unless they begin collecting survey data.
Waitlists are indicative of a third welfare cost that students experience, which we will explore. This cost,
summed with 1), suggests that the length of a waitlist, and the length of the duration of a waitlist, are a
floor for the number of students in the course who experience a welfare loss due to enrollment.

A: Aggregate Welfare Costs of Over-Enrollment
Suppose a student is at position £ on a waitlist. Suppose a students drop who are enrolled, b students drop

from the waitlist ahead of position k. In order for the student at position & to enroll, it must be the case that
a + b > k. If k is the last position of a student who enrolls in the course, and the waitlist is length #, then n

- k students were turned away from the waitlist. Thus the number of students who were turned away or
decided to drop a course is

n-k+@+b) >n[7].

The existence of a waitlist length 7 guarantees at least n students will not complete the course they
initially enrolled or waitlisted. Thus the length of a waitlist indicates how many students will be
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disappointed by their schedule selection at some point, and thus indicates the minimum number of
students in a course who have selected sub-optimal schedules.

Each of the n students experiences an opportunity cost to the time they invested in the course. During the
time they spent attending lectures, studying, and doing homework, they could have been studying for
other courses, or honing their backgammon skills. We can broadly think of opportunity cost of time
invested as proportional to the number of days the student was enrolled before leaving the course.

In other words, from a welfare perspective it is plainly better for a course to accumulate a waitlist of 100
students on day 5, and have all of them turned away or enrolled on day 10, than it is for the 100 person
waitlist to persist until day 55, after which the waitlist is flushed.

Some rejected students may find their partial experience in the course they waitlisted valuable. However,
the time a student invested in the course she waitlisted could have been used productively towards
attending another course and obtaining a grade, so it’s not plausible the student’s best welfare scenario is
being waitlisted and turned away. Here we make the reasonable assumption that students who enroll and
pay tuition seek certification for their education in addition to the education itself.

B. Predicting Excess Demand
Understanding that long waitlists, that endure for long periods of time, are bad for welfare, our next step

is to analyze the factors that drive waitlist length and duration. For each course, we could attempt to
predict the parameter

-1
D(c) =M "W, [8],
t
where D stands for Welfare Distress, c is a given course, M is the sum of course’s max enrollment and its

max waitlist size, while ,is the waitlist length on day .

Suppose ¢, and c, are close substitutes, e.g. they’re two sections of Economics 100A. Then it would be
particularly interesting to measure

D(c;) — D(cy) =M*(cl)tzwt(cl)—M*(cz)tth(c» 91,

since this discrepancy in distress between two similar courses could indicate a welfare improvement is
possible by making the course with higher oversubscription more similar to the course with lower
oversubscription.

A student leaving a course they initially enrolled in may indicate an information problem, where the
student later obtains information that makes her change her mind about enrollment. Therefore when
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seeking factors that drive D, we should think about the information available to all students when making
the decision to enroll:

1. The course itself (e.g. “Introduction to Underwater Basket Weaving,” or “Aquaculture Studies 57)
and any associated information, in particular:
a. Whether the course fulfills any prerequisites, college requirements, or campus
requirements, and
b. the number of units the course is worth,
The time and days the course is offered (e.g. MWF 2pm-3pm),
The instructor teaching the course and their Rate My Professor rating (if any),
Location,
The section type (e.g. lecture, discussion. laboratory, recitation, self-paced)
Current enrollment and waitlist numbers, and

AR A o

Maximum enrollment and maximum waitlist sizes.

Two factors are of particular interest: the time the course is offered and the instructor teaching the course.
To students with whom I’ve spoken informally, these two factors weigh heavily in course selection - in
short, it seems to be the case students dislike courses with poor instruction and courses held at 8am.

They’re also particularly interesting because they’re factors that can be varied across the same course.
Therefore these two factors are the specifications in our regression:

D(c,)) = D(c;) =a +1(T(c)) — T(c))) + p(P(c)) = P(cy)) +B=1[8am] [10],

where alpha is the constant term, tau is the coefficient of the difference in start times, and ko is the
coefficient of the quality of the difference of the quality in instructors P.

Note the new term. I added an indicator 1[8am], which means one, or both, of the courses takes place at
8am. This was added for personal interest.

Finally, ¢, and c, are, like before, close substitutes whose distress difference we wish to predict.
C. Obtaining The Data

The first step was to collect enrollment numbers for as many courses as possible. Through their statistical
database Cal Answers, the university offers weekly enrollment numbers for courses offered. However, a
team of undergraduates, Yuxin Zhu (Computer Science 2015), Noah Gilmore (Electrical Engineering and
Computer Science 2015), and Ashwin Iyengar (Astrophysics and Computer Science 2016), were able to
create a better database. They set up a program to web-scrape UC Berkeley course schedule Website,
schedule.berkeley.edu, on a nightly basis, which yielded daily course enrollment data. The University was
publishing this data automatically but was not saving it. Graciously, I was able to obtain the
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undergraduate database for this analysis. The data is also visualized at the course enrollment section of

their Website, berkeleytime.com.

The next step was to determine a way to quantify instructor quality P(c). Since students cannot know an
instructor’s style of instruction until they enroll, it is more important to the analysis to obtain some
measure of perceived quality. Rate My Professors is a popular instructor rating Website, holding an Alexa
Website popularity ranking of 787 in the United States. The Berkeley page is popular as well, with over
3,000 professors rated. Students log in to rate their instructors on a scale from 1-to-5 on helpfulness,
clarity, and easiness, which are aggregated into an overall ranking between 1 and 5. (Instructors are also
rated “hot or not,” but for the purposes of this regression specification that that ranking was excluded.)

To obtain the Rate My Professor data, the alphabetical list of professors available at

http://www.ratemyprofessors.com/campusRatings.jsp?sid=1072 was manually scrolled all the way to the
bottom to include every professor’s name and their aggregate ranking. Then the Website was saved and

each professor’s name and rating was scraped into a table.

D. Regression
Out of 24,747 lectures, discussions, laboratories, recitation periods, and self-paced courses offered in
Spring 2013 through Spring 2015, 2,501 pairs of sections were selected that shared the same course (e.g.
Math 1A), the same kind of section (e.g. lecture), were offered on the same days in the same semester of

the same year, and for which enrollment data was available for both during the same period.

Time differences and Rate My Professor score differences were calculated. Then the sum of the waitlist
was divided by the sum of maximum enrollment and maximum waitlist size for each course.

The results of the regression are as follows:

Table [11]: Regression of Time Difference and RMP Score Difference on Distress
Difference in Pairs of Substitutable Courses (n = 2,501)

Variable D1-D2 SE p
Constant -0.02844 0.08972  0.7513
T(c,) - T(c,) 0.04271 0.02603  0.1009
P(c,) - P(c,) 1.01835 0.61099  0.0957
1(8am) 0.26166 0.23318  0.2619
R2 =0.002743 F=2.289 (p=0.07651)

*indicates p < 0.1

The most significant result in the regression is the professor’s score difference effect. At p = 9%, the
regression suggests that a one point difference in scores can lead to a one point difference in distress.
Examining the first row, the regression reveals is not a strong relationship between the time difference and
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the distress difference between two substitutable courses. This makes sense to some degree as a 10am
course may just as preferable as a 1pm course even though they are 4 hours apart. What this indicates is
time difference is not a good indicator of distress.

What’s interesting is the 8am term. Since we were not measuring absolute difference of values, it makes
sense that simply having an 8am course among course 1 and course 2 does not indicate which will be
more distressed. To resolve this, I conducted a regression on the absolute value of the distress difference
between the two courses. The result is as follows:

Table [12]: Regression of 8am Course Presence on Absolute Value of Distress
Difference in Pairs of Substitutable Courses (n = 2,501)

Variable D1-D2 SE P
Constant 1.72817 0.07988  <2e-16%**
1(8am) 0.91604 0.20741 1.05e-05%***
R?*=10.007745 F=19.51 (p = 1.045e-05%*%*)

*** indicates p < 0.001

Once this fix is in place, it becomes apparent what I have always believed: that 8am
courses are the source of a good deal of distress in the course enrollment system. One option for the
University to consider would be moving all courses an hour forward so no courses start at 8am.

3: Conclusion

This paper has analyzed the welfare impact of uncertainty in waitlist enrollment from a theoretical
perspective. The conclusion of that part of the investigation is that probabilities matter for finding good
schedules, and students could see welfare improvements if the University delivered information about
how likely it is getting off waitlists to students to help inform their decision-making.

The second part looked at the overall inefficiency represented by the existence of a waitlist in a course. It
concluded first that welfare costs are at least proportional to the size and duration of the waitlist. Then, it
used waitlist data to analyze predictors of preventable welfare loss. It found for courses that were close
substitutes, professor ratings were a predictor of over-subscription in one and under-subscription in the
other. The analysis also found that 8am courses are strong predictors of subscription imbalances between
otherwise similar courses.

Since distress increases the longer a waitlist is and the longer period a waitlist is open, it is fair to argue
that courses for which a longer period of enrollment data is available are unfairly identified as a source of
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welfare loss. My response is that the approach taken is fairest given the data available. To extrapolate
from a short period of enrollment data from a course would be inappropriate because it may have been the
case that enrollment closed. The only welfare loss for which there is evidence is the loss reflected in the
data.

Some may wonder whether certain departments have higher inefficiency to enrollment than others. This
would be an area of further analysis. Departments could certainly take a similar approach as that taken in
this paper to identify courses that are over-or-under-subscribed and factors that are driving that
discrepancy. In particular, the Physics department does not permit the existence of waitlists, and many
language departments resolve oversubscription by placing everyone into the waitlist initially, then
filtering students by prerequisite completion. Further investigation is needed to determine whether these
strategies help or hinder students.

Efforts to collect the data necessary to improve the course enrollment process would certainly be
consistent with the objectives outlined in the university’s Operational Excellence initiative. As is evident
from Berkeley’s course enrollment situation and the analysis developed in this paper, improving welfare
outcomes for students by improving course enrollment is a fruitful area of investigation.

13/14



4: References

Achieving Operational Excellence at University of California, Berkeley. Rep. San Francisco:
Bain, CA. Final Diagnostic Report. Web. 1 Apr. 2015.

http://oe.berkeley.edu/sites/default/files/diagnostic%20report%20bain%20uc%20berkel

ey.pdf.

Nevels, Lyle, Shel Waggener, and Paul Wright. Design Phase Business Case. Rep. Berkeley: UC
Berkeley, CA. OE Information Technology Design Initiative. Operational Excellence.
Web. 29 May 2015.

http://oe.berkeley.edu/sites/default/files/I BusCase 041211.pdf

Schiffer, Emma. "Navigating The Waitlist." Web log post. Golden Bear Blog. UC Berkeley, 14
July 2014. Web. 25 May 2015.

"Weekly Enrollment Management - Class Tracking." Cal Answers. UC Berkeley, 1 Apr. 2015.
Web. 1 Apr. 2015.
http://calanswers.berkeley.edu

Zhu, Yuxin, Noah Gilmore, and Ashwin Iyengar. "Course Discovery. Simplified." Berkeleytime.
N.p., 19 Mar. 2015. Web. 19 Mar. 2015.

http://www.berkeleytime.com. Authors provided the course database on the website

directly.

14/14


http://oe.berkeley.edu/sites/default/files/diagnostic%20report%20bain%20uc%20berkeley.pdf
http://oe.berkeley.edu/sites/default/files/diagnostic%20report%20bain%20uc%20berkeley.pdf
http://oe.berkeley.edu/sites/default/files/I_BusCase_041211.pdf
http://calanswers.berkeley.edu/
http://www.berkeleytime.com/

