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Abstract

I examine the relationship between parent mortality and child fertility decision

through the causal channel of provision of grandparent support in childcare. Using

data from the Survey of Income and Program Participation (SIPP), I find no evidence

that grandparent death is negatively associated with total fertility. In order to ad-

dress omitted variables, I develop an instrumental variable estimation strategy using

influenza mortality risk as an exogenous source of grandparent death. I find evidence

against a large negative causal effect of grandparent mortality on fertility.



1 Introduction

The study of fertility and its determinants is a long-standing topic of interest in the social

sciences. Phenomena such as the demographic transition posit a close relationship between

fertility and economic development. Furthermore, the analysis of fertility is important for

shaping policy, both for population projection and to guide the policy of countries looking

to raise chronically low fertility. The analysis of fertility in economics dates back to Becker

(1960). The Becker model attempts to explain parental choices of fertility using a model of

quantity-quality trade-off. Parents choose how many children to have according to a utility

function for the number of children and the quality of each child, which they maximize

according to the unit and fixed costs of having children as well as their income. The cost of

child-rearing for a parent should matter a great deal in fertility.

One potential source of variation in childbearing cost is the presence of grandparents who

can provision labor for childcare. It is reasonable to think that grandparents can reduce the

minimum cost of having a child through babysitting and similar activities, but cannot easily

improve the quality of a child. Thus grandparent childcare should make it relatively cheaper

to have more children and so should increase fertility according to the Becker model.

This paper will attempt to empirically test the above hypothesis. We examine the coeffi-

cient of grandparent death on fertility in a OLS regression with fixed effects. In our preferred

regression model, we find no evidence of a causal effect of grandparent death on fertility. We

attempt to address potential omitted variables bias by developing an instrument, influenza

mortality, that is an exogenous source of grandparent death. In the instrumental variables

model, we find no significant evidence that grandparent death affects fertility, and we can

rule out very large negative coefficients on grandparent death.

This paper is organized as follows. Section 2 describes the previous literature on income

effects and women’s fertility, and specifically the role of grandparent child care. Section 3

describes the dataset that contains my main variables of interest. Section 4 contains the

results of my initial OLS estimation and discusses the implications of these results. Section
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5 describes a secondary dataset as well as how it will be used in an instrumental variable

methodology. Section 6 contains and discusses the results of this instrumental variable

regression. Section 7 concludes.

2 Literature Review

Black et al. (2013) estimates a postive income effect on fertility and finds that household

fertility increases with the father’s income. Meanwhile, Angrist and Evans (1998) finds that

women’s labor supply, but not men’s, is decreasing in the number of children, which is

taken to mean that the women’s time is substituted away from working towards child care.

Taken together, these two facts can mean that the provision of free childcare (possibly by a

grandparent) can increase the mother’s labor force participation, increasing the household

income and thereby increasing fertility.

A number of existing articles have examined similar or related topics. Del Boca (2002)

is a similar paper that studies the effect of parent death on womens fertility decision and

labor force participation. This study uses Bank of Italys Survey of Households Income and

Wealth (19911995), which is a 3-year panel data set which includes data on employment,

fertility and whether the respondents parents are alive. This data set only includes data on

Italy, and indeed much of the authors discussion focuses around specific institutional factors

in Italy that cause parental support to be especially relevant in the employment and fertility

decisions. The Del Boca paper runs both a cross-sectional logit regression and a panel fixed

effect logit model to recover estimates of the effects of parent being alive on having a child in

the time period. This measure of fertility, however, is unable to discern between differences

in the timing of fertility and total fertility as the panel fixed-effects analysis can only consider

effects on births within at most 3 years of parent death.

A few recent treatments of the specific topic of the effect of grandparents are Aassve

et al. (2012) and Posadas and Vidal-Fernandez (2013). Aassve et al. (2012) is a paper that
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studies the effect grandparental care has on fertility. They use data gathered in the Survey of

Health, Aging and Retirement in Europe (SHARE) to run a regression of grandparental care

on fertility. Posadas and Vidal-Fernandez (2013) uses the National Longitudinal Survey of

Youth 1979 to examine the impact of grandparent childcare availability on the labor supply

decision, and finds a positive effect. These papers examine the child care provision as an

independent variable, but the grandparents endogenously choose to help care for a child and

so this methodology is unable to falsify the reverse causality case in which parents who plan

for more future children enlist the aid of their parents in child care.

None of these papers are able to satisfactorily identify a causal effect of parent death

which is free from endogeneity concerns and potential omitted variable bias. Compared to

study designs that treat the presence of grandparent childcare as an independent variable,

this paper adds a double instrument. I analyze first the effect of grandparent death, which

is a source of child care variation that is not an endogenous decision of the grandparent,

but which is subject to other forms of omitted variable bias. I then address this problem

by using the seasonal, age-specific and geography-specific variation in influenza mortality

risk as source of exogenous variation in grandparent death. To the extent of my knowledge,

this instrument is novel to the literature and has not been used to examine this question or

similar questions about the effect of mortality.

3 Data: SIPP

I use the Survey of Income and Program Participation as my data set. The SIPP is a US

census survey on the income and program participation of US households. I am specifically

interested in the 2014 Panel Wave 1, which for the first time includes information about

parental mortality on the respondents, along with data on number of children as well as

childcare expenditure. While this survey consists of many panel waves, each with data

for each month, I will be using only the cross-section of one month (January) of the 2014

3



count mean sd min max
white 46504 .7395493 .4388853 0 1
black 46504 .1490194 .3561115 0 1
asian 46504 .0089455 .0941575 0 1
hispanic 46504 .0776062 .2675538 0 1
ebmom 46504 .4017074 .4902486 0 1
tceb 46504 1.66347 1.556299 0 7
tbmomdob y 46504 1939.935 19.0415 1895 1984
tdob byear 46504 1965.089 18.61959 1927 1998
tftotinc 46504 5891.346 7204.658 -30585 219566
hschool 46504 .8832359 .3211425 0 1
ecert 46504 .1441166 .3512117 0 1

Figure 1: Summary statistics for variables of interest from the SIPP dataset.

panel wave. Because the data only spans a few years, the panel structure does not contain

many deaths in the time frame, and I instead rely entirely on cross-sectional variables in my

analysis. This data set includes information on each individual in the sampled household.

However, as I am interested in fertility, I restrict the data to only those individuals who

are 15 years or older. I also exclude observations without data on the respondents mother

(this excludes only 1 row). After this cleaning I am left with 46504 observations. The

SIPP contains a massive number of variables for each respondent, but for my analysis I am

interested in variables related to fertility, parent birth and death, and various demographic

covariates for which I must control. My dependent variable is total number of children ever

born/fathered, while my independent variables are indicators for the mortality status of the

mother and father of the respondent. My control variables include race, age, income, age of

parents, income and education attainment.
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4 Methodology: OLS

My initial methodology is to run the OLS regression of mother and father mortality on

fertility. I run the following regression:

TCEBi = αi + βiEBDADi + γiEBMOMi + δiXi + εi (1)

where TCEBi is total fertility and EBDADi and EBMOMi are parental mortality status. Xi

is a list of covariates.

Table 1 reports the results from building the OLS regressions with varying covariates. It

depicts the results of regression specifications that do not include fixed effects for age and

mother age. We can see that in specifications with linear controls for age and mother age,

the estimated coefficient on mother death is significantly negative. The point estimates and

errors of these estimates show grandmother death is associated with a average decrease of

0.1 number of children, which implies that grandmother death is a major factor affecting

fertility. Adding demographic, educational and geographic controls do not seem to change

the point estimate or the standard error by much. We also want to control for household

income, however, it is unclear which measure of income is appropriate in this context. Total

income reflects the sum of earnings of all members of the household, and so may capture

the presence of children who earn money or the effect of being in a two-parent household on

fertility. Income-to-poverty line ratio adjusts household earnings to number of people in the

household, but in doing so captures the number of children in its denominator. Specifications

9-11 include household income-to-poverty as a control, while specifications 6-8 uses total

household income. None of these controls change the coefficients on parent mortality in a

significant way. For ease of interpretability, subsequent regressions will use total household

income exclusively.

Table 2 reports the results of regression specifications that include fixed effects for age

and mother age. These include the fully specified regression model with maximal fixed effects
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Table 1: Regression Specifications No Fixed Effects

Specification Covariates Fixed Effects
Coefficient
(Standard Error)

1 None None
0.870***
(0.0145)

2 Age None
-0.139***
(0.0186)

3 MotherAge None
0.0621***
(0.0188)

4 Age, MotherAge None
-0.0827***
(0.0188)

5 Age, MotherAge, Race None
-0.103***
(0.0187)

6
Age, MotherAge,
Race, Income

None
-0.0964***
(0.0188)

7
Age, MotherAge, Race,
Income, HighSchool

None
-0.118***
(0.0188)

8

Age, MotherAge,
Race, Income,
HighSchool,
Postsecondary

None
-0.117***
(0.0188)

9
Age, MotherAge,
Race, PovertyRatio

None
-0.118***
(0.0188)

10
Age, MotherAge,
Race, PovertyRatio,
HighSchool

None
-0.137***

(0.0188)

11
Age, MotherAge,
Race, PovertyRatio,
HighSchool, Postsecondary

None
-0.136***

(0.0188)
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Table 2: Regression Specifications Fixed Effects

Specification Covariates Fixed Effects
Coefficient
(Standard Error)

12 Age, MomAge State
-0.0873***
(0.0182)

13
Age, MomAge,
Race

State
-0.105***
(0.0181)

14
Age, MomAge,
Race, Income

State
-0.0969***
(0.0182)

15

Age, MomAge,
Race, Income,

Education

State
-0.116***
(0.0182)

16
MomAge,
Race, Income,
Education

State, Age
-0.00571
(0.0185)

17
Age, Race, Income,
Education

State, MomAge
0.0264
(0.0182)

18
Race, Income,
Education

State, Age, MomAge
0.0245
(0.0183)
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and covariates at specification 18. These regressions result in coefficients of small magnitude

around zero, and are generally consistent with each other but not with estimates returned

by the preceding regressions. This is not necessarily unexpected, as the data we use is of a

cross-section of ages in one year, and so we might expect the relationship between fertility

and age to be very nonlinear.

Thus the OLS analysis returns a null result, one that rejects very large negative effects and

cannot reject estimates of zero of the effect of mother death on fertility. This could be due to

the presence of grandmothers not having much effect on the cost of having a child. However,

in the same specification we estimate an extremely small coefficient on household income,

which raises the prospect that fertility is simply not elastic (at least at the individual level)

to income, a finding in opposition to the established literature. Of course, the covariates in

the specification are not comprehensive, and there is the possibility of omitted variable bias

in our OLS estimates. Therefore, we attempt to construct an instrumental variable to help

control for omitted variables and validate our null result.

5 Data: CDC

The simple ordinary least squares regression may suffer from omitted variables problems.

Latent variables that are not within the data set, for example religious beliefs shared among

family members, may be associated with lower mortality and higher fertility. I solve this

problem by using an instrumental variable to estimate the true coefficients on father and

mother mortality. Influenza is a seasonal disease that infects people in the US mostly in

the fall and winter. The severity of the seasonal influenza outbreak also varies year-by-year

as well as state-by-state. Figure 2 depicts the severity of influenza by state during the first

week of the last four years. We can see that the severity of influenza reported by the Centers

for Disease Control (CDC) varies significantly from year-to-year. Furthermore, even though

it is a comparatively milder year overall, Colorado experiences a more severe epidemic in
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2019 versus in 2018. Thus there is some variation within states that is independent of the

variation by year. Influenza deaths also vary by age, with older adults being more affected by

the disease. Thus, people of different ages in different places should have different likelihoods

of dying due to influenza.

As the differences in flu severity is seasonal and thus likely to be exogenous, the deaths

caused by it is an exogenous source of parental mortality. Nguyen and Noymer (2013) is

a paper which estimates the excess mortality caused by the 2009 influenza epidemic. As

part of this study, they calculate the age-specific death rate of influenza, and I emulate

their method to generate my instrument. The CDC National Center for Health Statistics

publishes death records by state and for each year going back to 1968. Each record contains

a cause-of-death, and so for each year, I count the total number of deaths that result from

influenza and pneumonia in each state and for each age. I then divide this count by the

total population of each age in each state as taken from the Survey of Epidemiology and

End Results, which is a survey conducted by the National Cancer Institute, and which goes

back to 1969. This is the age specific mortality rate of influenza for each state for every year

after 1969. For each respondent in the SIPP sample, there is data for which state they were

born in, in which year, and when their parents were born.

I filter out respondents who were born out of the country. Thus I know that the respon-

dent’s mother was alive in the year they were born and lived in the state in which they were

born. I assume that she does not move states. Thus I sum the age specific influenza mortality

rate for the mother’s age in that state for every year until 2004, which is the last year I have

state-level influenza data. This is the cumulative risk of death caused by influenza for the

specific respondent’s mother, and doing this for all respondents in the SIPP sample forms

the fluriskmom column. The results of this filtering and calculation can be seen in Figure

3. This sample excludes foreign-born respondents and assumes all mothers never move from

the state in which they gave birth. While an unrealistic assumption, this should only bias

my estimate of flu mortality if those who moved did so systematically to places where flu
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mortality is higher or lower. This does not seem plausible, and I thus assume the error to

the risk index caused by movers is random noise.

6 Methodology: Instrumental Variables

I run the following two stage instrumental variables regression:

TCEBi = αi + βiFLURISKMOMi + δiXi + γiSTATESi + εi (2)

EBMOMi = ai + biFLURISKMOMi + diXi + giSTATESi + εi (3)

where Xi is the previous list of covariates and STATESi are controls for state and age fixed

effects. Thus the true coefficient on EBMOM is estimated by βi/bi. I cannot estimate the

same regression specification as in the maximally controlled OLS, as my flu risk index is

calculated using mother age and state. However, as shown in the Appendix Table 7, using

nonlinear terms for mother age instead of mother age fixed effects result in essentially the

same OLS estimates as in our preferred specification. Thus we bring these specifications

down into my instrumental variables estimation.

The validity of this estimation methodology depends on two conditions. The first is

relevance, or that mother’s risk of flu mortality is sufficiently correlated with actual mother

mortality. This is shown in column 1 of Table 3, where the coefficient on fluriskmom on

ebmom is shown to be high and extremely significant. In fact, the coefficient generally is

too large in our regression estimates, and if we take it literally it means that a 1 percent

increase in influenza mortality risk is associated with greater than 1 percent increase in

odds of dying. One possible explanation for this large coefficient is that year-state influenza

mortality is positively associated with other causes of death; perhaps people who are sick

from other diseases are more likely to die from the flu, then in years where more people are
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Table 3: IV Specification Polynomial MomAge

Specification Polynomial
Relevance
(Standard Error)

Coefficient
(Standard Error)

19 Linear
7.775***
(0.463)

0.291
(0.235)

20 Quadratic
6.830***
(0.498)

-0.0594
(0.287)

21 Cubic
4.145***
(0.558)

0.889
(0.543)

22 Quartic
1.248
(0.733)

-2.305
(2.689)

sick there are more influenza deaths but also more deaths from other diseases.

The second condition is the exclusion restriction. This means that influenza mortality

risk cannot be related to fertility except through its effect on parent mortality (given the

other covariates in the regressions). This is a reasonable assumption because the unique

determinants of influenza severity in any particular year (not caused by geography) are

unlikely to persist and affect the fertility decision of those in the future, except through

its permanent effect of those it kills. One potential violation of the exclusion restriction

is if there are cohort-specific traits that both increase influenza death rate and affect the

fertility of their children. For example, if a specific cohort happened to smoke more than

others close to them in age, and smoking increased chances of influenza mortality as well

as affected through secondhand smoke their children, then this would be a non-mortality

channel through which fluriskmom is related to total fertility. However it is difficult to

imagine that any one cohort should be vastly different from others as most general social

trends happen gradually across longer time periods.

Table 3 reports the results of IV estimation with increasingly many polynomial controls.

While the standard errors do not fulfill the relevance condition in Table 11, the relevance

condition is met in Tables 8-10. These regressions estimate either extremely small negative

coefficients or relatively large (but not significantly far from zero) positive coefficients. Thus

these estimates allow us to very large negative coefficients on mother mortality against
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fertility, which is consistent with the (insignificant) positive coefficient estimated by the

OLS. Taken with our OLS results, these coefficients rule out a very large decrease in fertility

caused by grandparent death and in fact suggest the effect is close to null. This may be

because grandparent child care does not do much to decrease the cost of having a child,

or that grandparent death increases fertility through a different channel, but the extremely

small estimated coefficient brings up the possibility that children are simply not elastic to

income, and are neither normal nor inferior goods.

7 Conclusion

In this paper, I empirically examine the relationship between grandparent death and fertility.

I find no evidence of a correlation between grandparent mortality and reduced fertility. In

order to address potential omitted variables and identify causation, I use historical exposure

to influenza risk as an instrumental variable for grandparent mortality. Using this method, I

reject very large negative effects of grandparent mortality on fertility. These results suggest

that parents do not at an individual level make decision about fertility based on cost of

child care, and possibly not on income at all. This study may be evidence against policies

that want to promote childbearing by provisioning public childcare. However, the unique

way in which deaths are identified in this paper may make interpreting external validity

complicated, and further studies of how different populations respond to grandparent death

may help clarify this. Moreover, the instrumental variable developed in this paper could

potentially be used to study other topics that involve an endogenously determined death

rate.
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8 Appendix: Full Regression Tables

Table 4: OLS Regressions

Total Fertility Total Fertility Total Fertility Total Fertility Total Fertility
ebmom 0.870∗∗∗ -0.139∗∗∗ 0.0621∗∗∗ -0.0827∗∗∗ -0.103∗∗∗

(0.0145) (0.0186) (0.0188) (0.0188) (0.0187)

age 0.0389∗∗∗ 0.0613∗∗∗ 0.0595∗∗∗

(0.000471) (0.00114) (0.00114)

momage 0.0305∗∗∗ -0.0240∗∗∗ -0.0207∗∗∗

(0.000475) (0.00114) (0.00114)

white -0.302∗∗∗

(0.0421)

black 0.0124
(0.0449)

asian -0.593∗∗∗

(0.0653)

hispanic -0.0188
(0.0460)

Constant 1.314∗∗∗ -0.186∗∗∗ -0.623∗∗∗ 0.475∗∗∗ 0.559∗∗∗

(0.00847) (0.0180) (0.0300) (0.0373) (0.0547)
Observations 46504 46504 46504 46504 46504

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 5: OLS Regressions

Total Fertility Total Fertility Total Fertility
ebmom -0.0964∗∗∗ -0.118∗∗∗ -0.117∗∗∗

(0.0188) (0.0188) (0.0188)

age 0.0597∗∗∗ 0.0588∗∗∗ 0.0586∗∗∗

(0.00114) (0.00113) (0.00113)

momage -0.0210∗∗∗ -0.0201∗∗∗ -0.0201∗∗∗

(0.00114) (0.00114) (0.00114)

white -0.309∗∗∗ -0.284∗∗∗ -0.278∗∗∗

(0.0422) (0.0423) (0.0423)

black 0.0140 0.0165 0.0196
(0.0449) (0.0451) (0.0450)

asian -0.607∗∗∗ -0.578∗∗∗ -0.570∗∗∗

(0.0652) (0.0650) (0.0649)

hispanic -0.0194 -0.0289 -0.0244
(0.0460) (0.0461) (0.0460)

tftotinc 0.00000404∗∗∗ 0.00000595∗∗∗ 0.00000602∗∗∗

(0.000000842) (0.000000848) (0.000000849)

hschool -0.362∗∗∗ -0.376∗∗∗

(0.0239) (0.0239)

ecert 0.110∗∗∗

(0.0183)

Constant 0.552∗∗∗ 0.827∗∗∗ 0.819∗∗∗

(0.0547) (0.0575) (0.0574)
Observations 46504 46504 46504

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 6: OLS Regressions

Total Fertility Total Fertility Total Fertility
ebmom -0.118∗∗∗ -0.137∗∗∗ -0.136∗∗∗

(0.0188) (0.0188) (0.0188)

age 0.0591∗∗∗ 0.0582∗∗∗ 0.0581∗∗∗

(0.00114) (0.00113) (0.00113)

momage -0.0197∗∗∗ -0.0189∗∗∗ -0.0189∗∗∗

(0.00114) (0.00114) (0.00114)

white -0.279∗∗∗ -0.258∗∗∗ -0.253∗∗∗

(0.0420) (0.0422) (0.0422)

black 0.0103 0.0122 0.0152
(0.0448) (0.0449) (0.0449)

asian -0.554∗∗∗ -0.528∗∗∗ -0.521∗∗∗

(0.0654) (0.0653) (0.0652)

hispanic -0.0170 -0.0254 -0.0211
(0.0459) (0.0459) (0.0459)

tfincpov -0.0159∗∗∗ -0.0131∗∗∗ -0.0130∗∗∗

(0.00132) (0.00129) (0.00129)

hschool -0.321∗∗∗ -0.334∗∗∗

(0.0238) (0.0239)

ecert 0.106∗∗∗

(0.0183)

Constant 0.559∗∗∗ 0.805∗∗∗ 0.797∗∗∗

(0.0545) (0.0574) (0.0573)
Observations 46502 46502 46502

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 7: OLS Regressions (Fixed State)

Total Fertility Total Fertility Total Fertility Total Fertility
ebmom -0.0873∗∗∗ -0.105∗∗∗ -0.0969∗∗∗ -0.116∗∗∗

(0.0182) (0.0181) (0.0182) (0.0182)

age 0.0605∗∗∗ 0.0590∗∗∗ 0.0593∗∗∗ 0.0583∗∗∗

(0.00115) (0.00115) (0.00115) (0.00114)

momage -0.0230∗∗∗ -0.0202∗∗∗ -0.0206∗∗∗ -0.0197∗∗∗

(0.00112) (0.00113) (0.00113) (0.00113)

white -0.293∗∗∗ -0.302∗∗∗ -0.272∗∗∗

(0.0381) (0.0381) (0.0380)

black 0.0333 0.0338 0.0437
(0.0407) (0.0407) (0.0405)

asian -0.540∗∗∗ -0.554∗∗∗ -0.522∗∗∗

(0.0780) (0.0781) (0.0778)

hispanic 0.0126 0.0143 0.00529
(0.0428) (0.0428) (0.0427)

tftotinc 0.00000497∗∗∗ 0.00000679∗∗∗

(0.000000908) (0.000000910)

hschool -0.371∗∗∗

(0.0205)

ecert 0.110∗∗∗

(0.0183)

Constant 0.443∗∗∗ 0.532∗∗∗ 0.522∗∗∗ 0.790∗∗∗

(0.0370) (0.0513) (0.0513) (0.0535)
Observations 46504 46504 46504 46504

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 8: OLS Regressions (Age Fixed Effects)

Total Fertility (Fixed State Fixed Age) Total Fertility (Fixed State Fixed MomAge)
ebmom -0.00571 0.0264

(0.0185) (0.0182)

age 0.0612∗∗∗

(0.00117)

white -0.269∗∗∗ -0.279∗∗∗

(0.0376) (0.0372)

black 0.0526 0.0228
(0.0401) (0.0397)

asian -0.519∗∗∗ -0.447∗∗∗

(0.0770) (0.0762)

hispanic 0.0598 0.0338
(0.0423) (0.0418)

tftotinc 0.00000561∗∗∗ 0.00000437∗∗∗

(0.000000909) (0.000000901)

hschool -0.418∗∗∗ -0.456∗∗∗

(0.0204) (0.0206)

ecert 0.0843∗∗∗ 0.0625∗∗∗

(0.0182) (0.0180)

momage -0.0158∗∗∗

(0.00111)

Constant -0.813∗∗∗ 3.392∗∗∗

(0.0710) (0.0889)
Observations 46503 46504

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 9: OLS Regressions (Age Fixed Effects)

Total Fertility (Fixed State Fixed MomAge Fixed Age)
ebmom 0.0245

(0.0183)

white -0.275∗∗∗

(0.0372)

black 0.0273
(0.0397)

asian -0.433∗∗∗

(0.0763)

hispanic 0.0404
(0.0419)

tftotinc 0.00000458∗∗∗

(0.000000902)

hschool -0.457∗∗∗

(0.0206)

ecert 0.0593∗∗∗

(0.0180)

Constant 2.222∗∗∗

(0.0410)
Observations 46503

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 10: OLS Regressions (Nonlinear Age)

Total Fertility (Fixed State) Total Fertility (Fixed State) Total Fertility (Fixed State) est4
ebmom 0.0264 0.0228 0.0279 0.0249

(0.0182) (0.0183) (0.0183) (0.0183)

momage -0.0158∗∗∗ -0.0329∗∗∗ 0.0340 0.296∗∗∗

(0.00111) (0.00461) (0.0181) (0.0732)

white -0.279∗∗∗ -0.278∗∗∗ -0.277∗∗∗ -0.276∗∗∗

(0.0372) (0.0372) (0.0372) (0.0372)

black 0.0228 0.0208 0.0235 0.0250
(0.0397) (0.0397) (0.0397) (0.0397)

asian -0.447∗∗∗ -0.436∗∗∗ -0.437∗∗∗ -0.435∗∗∗

(0.0762) (0.0763) (0.0763) (0.0763)

hispanic 0.0338 0.0298 0.0357 0.0385
(0.0418) (0.0418) (0.0418) (0.0418)

tftotinc 0.00000437∗∗∗ 0.00000444∗∗∗ 0.00000449∗∗∗ 0.00000450∗∗∗

(0.000000901) (0.000000901) (0.000000901) (0.000000901)

hschool -0.456∗∗∗ -0.456∗∗∗ -0.458∗∗∗ -0.459∗∗∗

(0.0206) (0.0206) (0.0206) (0.0206)

ecert 0.0625∗∗∗ 0.0616∗∗∗ 0.0616∗∗∗ 0.0613∗∗∗

(0.0180) (0.0180) (0.0180) (0.0180)

momagesq 0.000110∗∗∗ -0.000819∗∗∗ -0.00632∗∗∗

(0.0000288) (0.000244) (0.00151)

momageth 0.00000403∗∗∗ 0.0000530∗∗∗

(0.00000105) (0.0000133)

momagequar -0.000000157∗∗∗

(4.25e-08)

Constant 3.392∗∗∗ 4.018∗∗∗ 2.526∗∗∗ -1.888
(0.0889) (0.186) (0.431) (1.272)

Observations 46504 46504 46504 46504

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 11: IV Regressions (FE)

Relevance Total Fertility Total Fertility
fluriskmom 7.775∗∗∗ 2.263

(0.463) (1.823)

white -0.0277∗∗ -0.280∗∗∗ -0.271∗∗∗

(0.00945) (0.0372) (0.0379)

black 0.0161 0.0229 0.0183
(0.0101) (0.0397) (0.0400)

asian -0.0490∗ -0.446∗∗∗ -0.432∗∗∗

(0.0194) (0.0763) (0.0776)

hispanic -0.0325∗∗ 0.0325 0.0420
(0.0106) (0.0418) (0.0425)

tftotinc -0.00000275∗∗∗ 0.00000430∗∗∗ 0.00000511∗∗∗

(0.000000228) (0.000000900) (0.00000111)

hschool -0.0536∗∗∗ -0.457∗∗∗ -0.441∗∗∗

(0.00523) (0.0206) (0.0243)

ecert 0.00373 0.0624∗∗∗ 0.0613∗∗∗

(0.00457) (0.0180) (0.0181)

momage 0.00533∗∗∗ -0.0165∗∗∗ -0.0181∗∗∗

(0.000344) (0.00135) (0.00233)

ebmom 0.291
(0.235)

Constant 0.0367 3.445∗∗∗

(0.0254) (0.100)
Observations 46504 46504 46504

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 12: IV Regressions (FE)

Relevance Total Fertility Total Fertility
fluriskmom 6.830∗∗∗ -0.406

(0.498) (1.960)

white -0.0275∗∗ -0.279∗∗∗ -0.281∗∗∗

(0.00945) (0.0372) (0.0380)

black 0.0155 0.0212 0.0221
(0.0101) (0.0397) (0.0399)

asian -0.0460∗ -0.438∗∗∗ -0.440∗∗∗

(0.0194) (0.0763) (0.0776)

hispanic -0.0338∗∗ 0.0290 0.0270
(0.0106) (0.0418) (0.0429)

tftotinc -0.00000273∗∗∗ 0.00000438∗∗∗ 0.00000422∗∗∗

(0.000000228) (0.000000900) (0.00000119)

hschool -0.0539∗∗∗ -0.458∗∗∗ -0.461∗∗∗

(0.00523) (0.0206) (0.0259)

ecert 0.00347 0.0617∗∗∗ 0.0619∗∗∗

(0.00457) (0.0180) (0.0180)

momage -0.000565 -0.0332∗∗∗ -0.0332∗∗∗

(0.00119) (0.00470) (0.00473)

momagesq 0.0000406∗∗∗ 0.000115∗∗∗ 0.000117∗∗

(0.00000785) (0.0000309) (0.0000368)

ebmom -0.0594
(0.287)

Constant 0.243∗∗∗ 4.028∗∗∗

(0.0474) (0.187)
Observations 46504 46504 46504

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 13: IV Regressions (FE)

Relevance Total Fertility Total Fertility
fluriskmom 4.145∗∗∗ 3.684

(0.558) (2.201)

white -0.0286∗∗ -0.277∗∗∗ -0.252∗∗∗

(0.00944) (0.0372) (0.0412)

black 0.0134 0.0243 0.0124
(0.0101) (0.0397) (0.0412)

asian -0.0467∗ -0.437∗∗∗ -0.395∗∗∗

(0.0193) (0.0763) (0.0823)

hispanic -0.0383∗∗∗ 0.0360 0.0700
(0.0106) (0.0418) (0.0480)

tftotinc -0.00000275∗∗∗ 0.00000442∗∗∗ 0.00000686∗∗∗

(0.000000228) (0.000000900) (0.00000176)

hschool -0.0532∗∗∗ -0.459∗∗∗ -0.412∗∗∗

(0.00523) (0.0206) (0.0359)

ecert 0.00353 0.0616∗∗∗ 0.0584∗∗

(0.00457) (0.0180) (0.0185)

momage -0.0543∗∗∗ 0.0486∗ 0.0968∗

(0.00521) (0.0206) (0.0437)

momagesq 0.000784∗∗∗ -0.00102∗∗∗ -0.00172∗∗

(0.0000707) (0.000279) (0.000618)

momageth -0.00000316∗∗∗ 0.00000481∗∗∗ 0.00000762∗∗

(0.000000299) (0.00000118) (0.00000251)

ebmom 0.889
(0.543)

Constant 1.432∗∗∗ 2.217∗∗∗

(0.122) (0.481)
Observations 46504 46504 46504

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 14: IV Regressions (FE)

Relevance Total Fertility Total Fertility
fluriskmom 1.248 -2.877

(0.733) (2.891)

white -0.0283∗∗ -0.277∗∗∗ -0.342∗∗∗

(0.00943) (0.0372) (0.0875)

black 0.0138 0.0253 0.0572
(0.0101) (0.0397) (0.0592)

asian -0.0467∗ -0.437∗∗∗ -0.544∗∗∗

(0.0193) (0.0763) (0.154)

hispanic -0.0378∗∗∗ 0.0371 -0.0500
(0.0106) (0.0418) (0.113)

tftotinc -0.00000274∗∗∗ 0.00000443∗∗∗ -0.00000189
(0.000000228) (0.000000900) (0.00000745)

hschool -0.0539∗∗∗ -0.460∗∗∗ -0.585∗∗∗

(0.00522) (0.0206) (0.147)

ecert 0.00344 0.0614∗∗∗ 0.0693∗∗

(0.00457) (0.0180) (0.0229)

momage 0.0767∗∗∗ 0.345∗∗∗ 0.522
(0.0221) (0.0872) (0.275)

momagesq -0.00206∗∗∗ -0.00747∗∗∗ -0.0122
(0.000473) (0.00186) (0.00704)

momageth 0.0000231∗∗∗ 0.0000643∗∗∗ 0.000117
(0.00000432) (0.0000170) (0.0000760)

momagequar -8.63e-08∗∗∗ -0.000000195∗∗∗ -0.000000394
(1.42e-08) (5.58e-08) (0.000000278)

ebmom -2.305
(2.689)

Constant -0.716 -2.648
(0.373) (1.471)

Observations 46504 46504 46504

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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