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Abstract

Two decades ago 90% of the college draftees into the NBA each season had just fin-
ished their senior year of college. Today that number is only 30%. Collegiate basketball
players are making the jump to the NBA earlier on, after their freshman, sophomore, or
junior season. This paper studies a player’s decision of when to go pro through both an
empirical and theoretical framework. I estimate returns to schooling by comparing the
earnings of two groups of NBA players: those who went pro out of high school or after
freshman year of college from 1989 to 2005 versus those who went pro after freshman
year from 2006 to 2012. A new rule made 2005 the last year players could move directly
from high school to the NBA. The rule forced players to wait at least one year after
their high school graduation before going pro. Hence the latter group contains players
who were forced to take an additional year of school. I find no significant difference in
earnings between the two groups.

1 Introduction
In economics, returns to schooling is commonly thought of as the expected change in

earnings due to an additional year of school. So for example, an undergraduate considering
whether or not to pursue graduate study may like to know the expected salary difference
from getting those additional years of education.

This paper approaches returns to schooling from the perspective of a collegiate athlete.
In particular, I consider collegiate basketball players, but as a motivating example and
illustration of how this phenomenon is widespread, consider the football player Matt Barkley.
Barkley, class of 2013, was a quarterback at USC who had a phenomenal junior season.
Speculators thought he would forego his senior year at USC to go right into the NFL.
Instead, Barkley opted to stay at USC for his senior year, intending to go pro right after.
Unfortunately, his senior year performance wasn’t nearly as compelling and he was drafted
much lower and with a contract estimated to be worth millions of dollars less than if he had
went pro after junior year. In Barkley’s case, one would say that his returns to schooling for
that year were negative.1

Figure 1 shows the composition of the NBA draft from 1989 to 2012 and illustrates
how players have been going pro earlier. In each draft, the 30 teams select two players a
piece for a total of 60 players moving from college into the NBA. Throughout the early 1990s,
around 90% of those drafted were seniors. This percentage has fallen dramatically over the
last two decades. In 2012 only 35% of those drafted were seniors.

0University of California, Berkeley Class of 2014. Triple major: Economics, Mathematics, and Statistics.
a.dombrowski@berkeley.edu Written Fall 2013. Advised by Professor David Card.
I sincerely thank Professor Card for his time and support. As always, thanks Mom and Dad.

1There are of course other benefits to finishing senior year (e.g. earning the degree) but here I focus solely
on maximizing the player’s earnings as a professional athlete.
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Figure 1: Of the players drafted into the NBA each year, the percentage that are seniors has been declining.
Underclassmen and international players are making up a larger share of the draft class.

So why strategize about when to leave college and go pro? If a collegiate basketball

player enters the NBA draft, he foregoes his remaining college eligibility regardless of whether

or not he is drafted.2 For example, if a freshman enters the draft then he can no longer play
collegiate basketball even if he doesn’t get drafted.

The paper is laid out as follows: Section 2 gives a brief literature review. Section 3 is
an overview of the NBA. Section 4 is a study testing the effect of playing an additional year
of collegiate basketball on earnings. Sections 5, 6, and 7 contain the theoretical framework.
Section 8 concludes.3

2 Literature Review
There are a few notable papers which discuss contracts and early entry. Li and Rosen

(1998) analyze when and why contracts are made early. Winfree and Molitor (2007) analyze
returns to schooling for baseball players. In particular, they focus on a recent high school
graduate’s decision of whether to go to college or go directly into the Major League. Arel
and Tomas (2012) view declaring for the NBA draft as exercising an American style put
option early.

2If the player did not sign with an agent, has never applied for a previous NBA draft, and withdraws his
name from the draft by the deadline, then he can retain his eligibility. However, the NCAA rules only allow
players to enter the draft once without losing eligibility.

3All figures throughout this paper are original.
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3 Overview of NBA
The NBA can be viewed as a labor market where each year the 30 teams (firms) hire 60

players (employees) from a pool of players nationwide. The NBA players have a labor union,
the National Basketball Players Association (NBPA) which negotiates rules with the League,
which is comprised of the commissioner and team owners. Every several years the League
and NBPA form a new Collective Bargaining Agreement (CBA) which lays the foundation
for how the NBA is governed. The CBA contains information about how the draft works,
how basketball revenue is allocated among the players and the League, and the minimum
and maximum amount a team can pay its players. For example, the 1995 CBA introduced
the rookie pay scale, which structured how incoming players would be payed. Players drafted
in the first round are guaranteed a two-year contract, followed by two one-year team options.
Players drafted in the second round are not guaranteed contracts. Also, being picked later
in the draft results in lower pay.

The NBA draft is held annually at the end of June. Starting in 1989, the draft instated
a two round system, in which each team selects one player in each round. This new drafting
system is the main reason I focus on draft data beginning in 1989. I constructed a data set of
1382 players who were drafted from 1989 to 2012.4 Data was collected from www.basketball-
reference.com and verified using basketball.realgm.com. During the 24 draft years 1989-2012,
53.11% of the total 1382 players drafted were seniors, 14.40% were juniors, 14.26% were
international, 9.62% were sophomores, 5.79% were freshmen, and 2.82% were high school
seniors.

4 Returns to Schooling: An Additional Year
The 2005 NBA Collective Bargaining Agreement made 2005 the last season a high school

player could go directly into the NBA. Beginning in 2006, a player had to be one year removed
from high school before going into the NBA.5 Figure 2 shows how the number of high school
seniors and college freshmen has evolved in drafts dating back to 1989. The blue line falls to
zero in 2006 as a result of the new CBA. In 2007, the red line spikes from 2 to 8. This spike
represents the 2006 high school class that was forced to play a year in college, along with a
couple of 2006 high school graduates who would’ve chosen to play their freshman year even
without the new rule. Hence the red line post 2005 can be thought of as a merging of the
pre 2006 blue line and the pre 2006 red line. In this study, I explore differences in earnings
between the following two groups of players: Freshmen and High School Seniors drafted
1989-2005 versus Freshmen drafted 2006-2012. The first group, which I call the “Pre-law”
group, has 67 players. The second group, the “Post-law” group, has 52 players. Of these
119 players, 3 never played a game in the NBA and were removed from the data.6 Table 1
provides a detailed comparison of these two groups.

4Although in 2012 there were 30 total teams, at the beginning of this time period there were only 27.
Consequently, earlier drafts saw less than 60 players drafted.

5The player doesn’t have to attend college for that year, however, attending college for that year is
standard.

6Ousmane Cisse (2001 draft), Ricky Sanchez (2005 draft), and Keith “Tiny” Gallon (2010 draft) never
played in the NBA.
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Figure 2: The two groups merge in 2006.

Table 1: Comparison of Pre-law and Post-law group performance.

1989-2005 2006-2012
Career Statistics Mean Median SD Mean Median SD
Games Played 548.9 560.0 323.9 193.4 170.5 129.9
Minutes Played 15740 14250 11557.1 4883 3568 4176.8
Points 7556 5709 6750.9 2201.0 1400.0 2281.2
Total Rebounds 3129.0 2516.0 2785.2 884.0 601.0 846.6
Total Assists 1302.0 840.0 1464.4 425.9 156.0 549.6
FG Shooting 0.4439 0.4540 0.092 0.4454 0.4455 0.0883
3 PT Shooting 0.2626 0.3130 0.1541 0.2471 0.2985 0.1458
FT Shooting 0.7007 0.7410 0.15571 0.6858 0.7330 0.1506
Minutes Per Game 23.80 24.90 9.9822 21.95 21.45 9.3834
PPG 10.91 9.90 6.4508 9.425 8.250 5.7259
Rebound PG 4.679 4.200 2.73399 4.015 3.650 2.5015
Assists PG 1.858 1.500 1.5396 1.862 1.200 1.8257
Career Length (years) 9.269 9.000 4.269 3.481 3.000 1.862
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From Table 1, we can informally compare the statistics of the two groups. Since the
Pre-law group has players with longer careers than those in the Post-law group, it may be
more difficult to compare across statistics like points and total rebounds. To compare across
these, note that the last row shows that the median career length of the Pre-law group is
three times that of the Post-law group. Hence multiplying the Post-law group’s total points
by three may give a reasonable number to compare to the Pre-law group’s total points. For a
finer comparison use minutes played instead of career length. The median minutes played of
the Pre-law group is four times that of the Post-law group. Hence numbers could be scaled
appropriately by three to four to make more accurate comparisons.

4.1 Analysis of Earnings

Salary data was collected from www.basketball-reference.com and checked against
http://www.eskimo.com/⇠pbender/.7 Salary was put into real 2013 dollars using CPI num-
bers from FRED. Figure 3 shows how earnings have evolved throughout this time period. All
116 players are plotted, with each player represented by a line. The red lines are the Pre-law
players and the blue lines are the Post-law players. The figure is meant to give a general
sense of how earnings progress as the players gain more years of experience. Notable players
Kevin Garnett (1995 draft), Kobe Bryant (1996 draft), and Kevin Durant (2007 draft) are
highlighted.

Figure 3: Career earnings in real 2013 dollars.

7For the NBA lockouts in 1998 and 2011, I used the full years’ earnings, not the prorated salary.
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Figure 4: The Post-law group earned more in each of the first 3 years, then was worse off.

Figure 4 is a condensed version of Figure 3. Figure 4 illustrates the difference in earnings
between the Pre-law and Post-law groups. Average earnings in real 2013 dollars are plotted
against career year. So for example, the Post-law group (blue line) for career year one
corresponds to the average earnings of players in that group during their rookie year.

In career year one, the Post-law group earned on average $580,000 more than the Pre-law
group. In career year two, the Post-law group earned on average $480,000 more than the
Pre-law group. In career year three, the Post-law group earned on average $270,000 more
than the Pre-law group. In career years 4 and 5, the Pre-law group out-earned the Post-law
group by $270,000 and $1,250,000 respectively.8

Draftees often hire agents to negotiate their rookie contract. The rookie pay scale is not
completely rigid: The team can pay between 80% and 120% of the salary specified by the
rookie pay scale. However, nearly all contracts end up at 120%. Arel and Tomas (2012)
find that of the players drafted in the first round between 2006 and 2012, 98% had contracts
for 120% of the amount specified by the rookie pay scale. Therefore I didn’t control for the
quality of the agent in the analysis.

The following two subsections use a Two Sample Z Test and Mann-Whitney Test to
determine if the difference in earnings between the two groups is significant.

8I don’t analyze career years 6 and 7 in detail because there are less than ten players from the Post-law
group who played six or more years, and only two who played all seven.
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4.1.1 Parametric: Two Sample Z Test

The test assumes X1, . . . , Xn
iid⇠ N(µX , �

2) and Y1, . . . , Ym
iid⇠ N(µY , �

2) where �2 is
estimated by a pooled variance

s2p =
(n� 1)s2X + (m� 1)s2Y

m+ n� 2
where s2X =

1

n� 1

nX

i=1

(Xi �X)2 (1)

In this case, the observations Xi, Yi are the annual earnings of each player for some
specified year. The observations are reasonably independent and identical. The histograms
in Figure 5 show the distribution of earnings for each group in the first two years. Though
the data are not convincingly normal, the next section’s analysis uses the nonparametric
Mann-Whitney test and gives very similar results to this two sample z test.

Figure 5: Earnings in years 1 and 2 for the Pre-law group and Post-law group.

Table 2 gives the results from this two sample z test (two sided) for career years one
through five. In each test, the null hypothesis is

H0 : µXj = µY j j = 1, 2, 3, 4, 5 (2)

where for example µXj is the mean of the distribution of earnings in career year j for the
Pre-law group.

The difference in earnings between the two groups during career year one is significant
at the 5% level. The difference in earnings between the two groups during career year two is
just shy of being significant at the 10% level. The other tests do not yield significant results.
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Table 2: Results of Two Sample Z Test.

Career year t-statistic p-value
1 2.12749991 0.03337857
2 1.6017363 0.1092139
3 0.8169752 0.4139426
4 -0.3234246 0.7463737
5 -0.9189319 0.3581312

Table 3: Results of Mann-Whitney Test.

Career year t-statistic p-value
1 -2.06083935 0.03931837
2 -1.6164613 0.1059946
3 -0.7660718 0.4436336
4 -0.7233642 0.4694561
5 -0.7660718 0.4436336

4.1.2 Nonparametric: Mann-Whitney Test

The Mann-Whitney test is nonparametric, which means it makes no assumptions about
the underlying distribution of the observations. The test instead ranks the observations from
smallest to largest and compares the sum of ranks. The null hypothesis is that the treatment
has no effect, where in this case the treatment is the additional year of school the Post-law
group experienced. Table 3 has the results, which are similar to those in Table 2. Again,
the Post-law group’s average earnings in career year one are significantly higher than the
Pre-law group’s average earnings in career year one.

4.2 Linear Regression Model

The following model is the form for the regressions:

lnEarningsi = �0 + �1Si + �2Abilityi + �3Draft Picki + �4Experiencei + ✏i (3)

The dependent variable Earnings varies from regression to regression. S is an indicator
variable taking on zero for the Pre-law group and one for the Post-law group. Ability is
measured by rookie year statistics: minutes played, points, assists, and rebounds. Experience

is measured by a player’s total career points. Experience can be thought of as long term
ability, controlling for whatever the ability regressor doesn’t. Table 4 gives the results.

Table 4 has four regressions. The choice of regressions is unconventional in the sense that
all regressions use the same set of regressors, but have different dependent variables. Instead
of settling on one measure for earnings, it seemed more appropriate to give several measures.
The dependent variables in regressions (1) and (2) are Career Average Yearly Earnings and
Year 1 Earnings. The dependent variables in regressions (3) and (4) are Earnings in first 2 years

and Earnings in first 3 years.
For all regressions, the coefficient of Year of School Dummy is not significant. Hence in

these tests, there is no evidence that supports that one group had significantly different
earnings than the other group.

The results of regressions (2), (3), and (4) are very similar, mostly because the of the
rookie pay scale, which was introduced in 1995.9 Under the new contract system, earnings
in years one and two are highly correlated.10

9Although this data set of 116 players encompasses the time period 1989-2012, only 3 players were drafted
before 1995: Shawn Kemp 1989, Shawn Bradley 1993, and Dontonio Wingfield 1994.

10Of the 116 players, 104 played at least 2 years. The correlation between these players’ earnings in years
one and two of their career is 0.996
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Table 4: The effect of an additional year of school on earnings.

Dependent variable:

(1) (2) (3) (4)

Year of School Dummy �0.111 0.091 0.088 0.027
(0.104) (0.284) (0.319) (0.360)

Minutes Played (Rookie) �0.00002 �0.001⇤ �0.001⇤ �0.001
(0.0002) (0.001) (0.001) (0.001)

Rebounds (Rookie) 0.001⇤ 0.001 0.002 0.002
(0.0005) (0.001) (0.002) (0.002)

Assists (Rookie) 0.0002 0.001 0.001 0.001
(0.001) (0.002) (0.002) (0.002)

Points (Rookie) �0.0001 0.001 0.001 0.001
(0.0004) (0.001) (0.001) (0.001)

Draft Pick �0.024⇤⇤⇤ �0.074⇤⇤⇤ �0.073⇤⇤⇤ �0.068⇤⇤⇤
(0.004) (0.011) (0.012) (0.013)

Total Career Points 0.0001⇤⇤⇤ �0.00004 �0.00004 �0.00004
(0.00001) (0.00003) (0.00003) (0.00003)

Constant 14.895⇤⇤⇤ 15.919⇤⇤⇤ 16.650⇤⇤⇤ 17.055⇤⇤⇤
(0.140) (0.383) (0.414) (0.460)

Observations 116 116 104 96
R2 0.770 0.411 0.372 0.298
Adjusted R2 0.755 0.372 0.326 0.243
Residual Std. Error (df=108) 0.445 1.217 1.297 (df=96) 1.400 (df=88)
F Statistic (df=7; 108) 51.585⇤⇤⇤ 10.747⇤⇤⇤ 8.116⇤⇤⇤ (df=7; 96) 5.348⇤⇤⇤ (df=7; 88)

⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

(1) Career Average Yearly Earnings (log)
(2) Year 1 Earnings (log)
(3) Earnings in first 2 years (log)
(4) Earnings in first 3 years (log)
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In each regression, Draft Pick is significant at 1%. This is not surprising for regres-
sions (2) and (3) since as a player is drafted lower his pay will decline according to the
rookie pay scale. It’s not as obvious that Draft Pick is significant in regression (1) where
Career Average Yearly Earnings is the dependent variable. The coefficient of Draft Pick in
regression (1) is �0.024, which is smaller in absolute value than the corresponding coeffi-
cient in the other three regressions. This is consistent with the rookie pay scale’s influence
on average career yearly earnings becoming diluted because of the expiration of the contract
and room for more variability in earnings in later years.

The regressions highlight the importance of draft pick on average yearly earnings through-
out a player’s career. Regression (1) estimates that being drafted one position later leads
to a 2.4% decrease in average career earnings, on average. Table 5 summarizes how each
group was drafted. A Mann-Whitney test on the draft number for the Pre-law and Post-law
groups yielded a p-value of 0.16. Hence there is no evidence that suggests draft positions are
significantly different between the two groups.

Table 5: Summary of Draft Pick Number

Group Min 1st Qu. Median Mean 3rd Qu. Max
Pre-law 1.00 6.00 13.00 17.98 26.00 56.00
Post-law 1.00 4.00 11.00 14.75 22.00 49.00
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5 Optimal Entry
A major concern for collegiate players is when to go pro. Players may play all four years of college

ball, or may opt to enter the draft early. In the NBA, once a player declares for the draft, he can never
play college basketball again regardless of whether he’s drafted to an NBA team or not.11 A very talented
underclassman may want to enter the draft early for many reasons. He may have had an outstanding season
or his team may have won the national championship. He could’ve received a prestigious award like MVP or
may be concerned his performance will be worse during his later years of college. He also could get injured
in a later season. There are many cases where collegiate athletes went pro at the “wrong time”. Hence we
would like to analyze optimal entry.

Consider a collegiate player wanting to go pro. He wants to be drafted high, not low (i.e. in the first
round rather than the second or third round).
Let

PH := probability of being drafted high

PL := probability of being drafted low

EH := high career earnings (when drafted high)

EL := low career earnings (when drafted low)

where EH > EL > 0.
Consider a player seeking to go pro and assume this player won’t go undrafted.12 That is,

PH + PL = 1 (4)

Suppose that PH and PL depend only on that player’s skill level, S. Hence

PH = PH(S) and PL = PL(S) (5)

where these two functions have the property

dPH

dS

> 0 and
dPL

dS

< 0 (6)

since a player’s chance of being drafted high should be monotonically increasing in his skill level. Likewise,
a player’s chance of being drafted low should decline as the player’s skill increases. A player’s skill level will
vary over time as he progresses through college. So letting y denote years of college experience we have

S = S(y) y 2 [0, 4] (7)

where y = 2 for example corresponds to 2 years of experience. Let the player have a utility function, u(e),
where e is career earnings as a professional with u

0
(e) > 0 and u

00
(e) < 0. In other words, the player’s

utility is increasing and concave in his career earnings. Hence to maximize utility, it’s sufficient to maximize
expected career earnings, E(e). Thus we have the optimization problem,

max

y
E(e) = max

y

h
PH(S) · EH + PL(S) · EL

i
(8)

From (4) and (5), (8) becomes

max

y


PH

�
S(y)

�
EH +

⇣
1� PH

�
S(y)

�⌘
EL

�
(9)

11In the NBA, if the player did not sign with an agent, has never applied for a previous NBA draft, and withdraws his name
from the draft by the deadline, then he can retain his eligibility. However, the NCAA rules only allow players to enter the draft
once without losing eligibility

12Relaxing this assumption leads to the same conclusion. See Appendix for proof.
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The solution to (9) involves making PH

�
S(y)

�
as large as possible, which occurs when S(y) is as large as

possible. Let’s verify that this is indeed the case. The first order condition says,

d

dy


PH

�
S(y)

�
EH +

⇣
1� PH

�
S(y)

�⌘
EL

�
= EHP

0
H

�
S(y)

�
S

0
(y)� ELP

0
H

�
S(y)

�
S

0
(y)

= (EH � EL)P
0
H

�
S(y)

�
S

0
(y) = 0 (10)

By assumption, EH > EL and so EH 6= EL. Also by assumption, PH(S) is monotonically increasing, and
hence P

0
H(S) 6= 0 for all S.

Therefore,
(EH � EL)P

0
H

�
S(y)

�
S

0
(y) = 0 () S

0
(y) = 0 (11)

Let y

⇤ be such that
S

0
(y

⇤
) = 0 and S

00
(y

⇤
) < 0 (12)

Then y

⇤ denotes the number of years of college experience that maximizes skill level.

Claim:
max

y
L

yy
R

E(e) = E(e)
��
y=y⇤

provided that y

⇤ is the absolute maximum of S(y).

Proof : We already know S

0
(y

⇤
) = 0 which makes y

⇤ a critical point of E(e). So we must check

d

2
y

dy

2

⇥
E(e)|y=y⇤

⇤
< 0

From (10),

d

dy


(EH � EL)P

0
H

�
S(y)

�
S

0
(y)

�
= (EH � EL)


P

0
H

�
S(y)

�
S

00
(y) + S

0
(y)P

00
H

�
S(y)

�
S

0
(y)

�

Letting y = y

⇤,

= (EH � EL)


P

0
H

�
S(y

⇤
)

�
S

00
(y

⇤
) +

�
S

0
(y

⇤
)

�2
P

00
H

�
S(y

⇤
)

��

Since by assumption S

0
(y

⇤
) = 0 this becomes

= (EH � EL)P
0
H

�
S(y

⇤
)

�
S

00
(y

⇤
)

By assumption, EH > EL and S

00
(y

⇤
) < 0. Also, P 0

H(S) > 0 for all S. So in particular, P 0
H

�
S(y

⇤
)

�
> 0.

Therefore,
(EH � EL)P

0
H

�
S(y

⇤
)

�
S

00
(y

⇤
) < 0 (13)

From (13) we conclude
max

y
E(e) = E(e)

��
y=y⇤ for yL < y < yR

where yL and yR and the leftmost and rightmost y values of the interval.13 Now evaluate expected earnings
at the boundary and compare to E(e)

��
y=y⇤ :

Let yB generically denote either yL or yR. Then

E(e)
��
y=y⇤ > E(e)

��
y=y

B

() PH

�
S(y

⇤
)

�
EH +

h
1� PH

�
S(y

⇤
)

�i
EL > PH

�
S(yB)

�
EH +

h
1� PH

�
S(yB)

�i
EL

() PH

�
S(y

⇤
)

�
EH � PH

�
S(y

⇤
)

�
EL > PH

�
S(yB)

�
EH � PH

�
S(yB)

�
EL

() EL


PH

�
S(yB)

�
� PH

�
S(y

⇤
)

��
> EH


PH

�
S(yB)

�
� PH

�
S(y

⇤
)

��

13For this model, take yL = 0 and yR = 4.
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Since EL < EH ,

() PH

�
S(yB)

�
� PH

�
S(y

⇤
)

�
< 0

Since P

0
H(S) > 0,

() S(y

⇤
) > S(yB)

⌅
Therefore to maximize expected career earnings, and hence utility, a player should go pro when his col-

lege skills are best. This conclusion is simple. The complication is that a player doesn’t know when his skills
will be best. He may have a great freshman year and expect to get better, but actually have worse years
later in college. Players don’t know when S(y) is at its maximum, just like stock market agents don’t know
when the price of a stock is at its maximum. This naturally leads to random walks and optimal stopping
rules, which are considered next.

6 Stochastic Model
In the previous section, we concluded that a player can optimize expected career earnings by strategically

entering the draft when his skill level is highest. Thus we should analyze how skill level moves from year to
year and find when it’s likely to be highest.

Let Sn be skill level after n years of experience and let {Sn, n = 1, 2, 3, 4} be a random walk defined by

Sn+1 = Sn + µ+ ✏ (14)

where ✏ ⇠ N(0,�

2
) and the jumps from year to year are independent. Epsilon allows for variation in the

amount of skill gained. Mu represents a drift and is thought of as the baseline amount of skill gained from
year to year. It’s more often than not that µ > 0 and so we make this assumption in the algebraic solution,
though the simulations in section 6.2.3 allow for µ  0. Note that S(y) is more naturally thought of as
being continuous since a player’s skill evolves perhaps continuously throughout his career. However, we can
consider our discrete time analysis as using only the values S(1), S(2), S(3), and S(4) of the continuous time
S(y). The probability skill increases over a year is given by

P (Sn+1 > Sn) = P (Sn + µ+ ✏ > Sn)

= P (✏ > �µ)

= 1� �(�µ)

= �(µ)

where
�(µ) =

Z µ

�1

1

�

p
2⇡

e

� 1
2 (

x

�

)

2

dx (15)

The conditional expectation and variance are

E(Sn+1|Sn) = E(Sn + µ+ ✏ | Sn) = Sn + µ (16)

V ar(Sn+1|Sn) = V ar(Sn + µ+ ✏ | Sn) = �

2 (17)
Next, consider the maximum value of the random walk. Define “probability functions” Pi to be

Pi := P

⇣
max{S1, S2, S3, S4} = Si

⌘
i = 1, 2, 3, 4

We would like to find expressions for Pi. For µ = 0, the expressions are simple. However, for µ > 0, the
expressions are messier. The following solves for Pi when µ = 0, gives an outline of the solution for Pi when
µ > 0, and provides a simulation which illustrates the estimated solution for Pi for all µ.
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6.1 No drift (µ = 0)
Let’s find expressions for Pi, i = 1, 2, 3, 4 when µ = 0. To simplify notation, let p := �(µ), the probability

the random walk goes up. Since µ = 0, we could use p = �(µ) = �(0) = 1/2, however, the next subsection
generalizes these expressions, so we don’t explicitly use 1/2 here. The following lemma illustrates the logic
used in this section.

Lemma 9.1) For the walk Sn+1 = Sn + ✏, P(max{S0, S1, S2} = S1) = p(1-p).

Verification:

P (max{S0, S1, S2} = S1) = P (S1 > S0, S1 > S2)

= P (S1 > S2|S1 > S0)P (S1 > S0)

= P (S1 > S1 + µ+ ✏)�(µ)

= P (✏ < �µ)�(µ)

= (1� �(µ))�(µ)

= (1� p)p

⌅

Now let’s find P1, the probability that S1 is the maximum (i.e. the player’s skill is highest after freshman
year). S1 is the maximum in four cases: The walk goes

1. down down down

2. down down up, with the two down steps being larger than the up step

3. down up down, with the first down step being larger than the up step

4. down up up, with the down step being larger than the two up steps

Hence

P1 = (1� p)

3
+ p(1� p)

2 · P
⇣
N(0, 2�

2
) > N(0,�

2
)

⌘
+ p(1� p)

2 · P
⇣
N(0,�

2
) > N(0,�

2
)

⌘
(18)

+p

2
(1� p) · P

⇣
N(0,�

2
) > N(0, 2�

2
)

⌘

where we’ve used the fact that N(0,�

2
) +N(0,�

2
)

d
= N(0, 2�

2
). Also, by symmetry, if X ⇠ N(0,�

2
X) and

Y ⇠ N(0,�

2
Y ), then

P (X < Y ) = P (X > Y ) = 1/2 8 �X ,�Y (19)

From (18), using (19) and simplifying gives

P1 = (1� p)

3
+

p

2

(1� p)

2
+

p

2

(1� p)

2
+

p

2

2

(1� p)

! P1 = 1� 2p+

3

2

p

2 � 1

2

p

3 (20)

Continuing in this manner, let’s find P2,P3,P4. S2 is the maximum in two cases: The walk goes

1. up down up, with the down step begin larger than the last up step

2. up down down

Hence
P2 = p

2
(1� p) · P

⇣
N(0,�

2
) > N(0,�

2
)

⌘
+ p(1� p)

2

! P2 = p� 3

2

p

2
+

1

2

p

3 (21)

S3 is the maximum in two cases: The walk goes
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1. down up down, with the up step greater than the first down step

2. up up down

Hence
P3 = p(1� p)

2 · P
⇣
N(0,�

2
) > N(0,�

2
)

⌘
+ p

2
(1� p)

! P3 =

1

2

p� 1

2

p

3 (22)

S4 is the maximum in four cases: The walk goes

1. up up up

2. down down up, with the up step larger than the sum of the two down steps

3. down up up, with the sum of the two up steps larger than the down step

4. up down up, with the last up step larger than the down step

So
P4 = p

3
+ p(1� p)

2 · P
⇣
N(0,�

2
) > N(0, 2�

2
)

⌘
+ p

2
(1� p) · P

⇣
N(0, 2�

2
) > N(0,�

2
)

⌘

+p

2
(1� p) · P

⇣
N(0,�

2
) > N(0,�

2
)

⌘

! P4 =

1

2

p+

1

2

p

3 (23)

As a sanity check, let’s verify that
P1 + P2 + P3 + P4 = 1 (24)

Summing (20)-(23),

=

⇣
1� 2p+

3

2

p

2 � 1

2

p

3
⌘
+

⇣
p� 3

2

p

2
+

1

2

p

3
⌘
+

⇣
1

2

p� 1

2

p

3
⌘
+

⇣
1

2

p+

1

2

p

3
⌘

= 1 +

⇣
� 2 + 1 +

1

2

+

1

2

⌘
p+

⇣
3

2

� 3

2

⌘
p

2
+

⇣
� 1

2

+

1

2

+�1

2

+

1

2

⌘
p

3

= 1

Equations (20)-(23) are only valid for p = 1/2, as assumed in this section. Evaluating these four
expressions when p = 1/2 gives

P1 = 5/16 P2 = 3/16 P3 = 3/16 P4 = 5/16

Hence when a player has no drift in skill, the probability his skill will be highest after freshman year is 5/16,
after sophomore year is 3/16, after junior year is 3/16, and after senior year is 5/16. The assumption of no
drift may hold for some players, but it’s more revealing to incorporate drift and build the full model (14).

6.2 Probability functions with positive drift (µ > 0)
We want to find expressions similar to (20)-(23) which relax the assumption of zero drift. The process

for constructing the analogue to (18) is the same. That is, there are still the same four ways S1 could be the
maximum. However, the second, third, and fourth ways will have a different form.
Three problems need to be solved: cases 2, 3, and 4 from (18).

I) The probability the walk goes down down up, with the two down steps being larger than the up step.

II) The probability the walk goes down up down, with the first down step being larger than the up step.

III) The probability the walk goes down up up, with the down step being larger than the two up steps.

After finding I, II, and III, these values can be substituted in (18) to get the new P1. Similarly, substituting
these values (or their complements) into the old expressions for the other Pi will give the new probability
functions. We begin with case II.
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6.2.1 Case II

The task here is to find the probability of the walk going down, up, down, with the first down step being
larger than the up step. Keeping with notation, let the probability of an up jump be p := �(µ). Let A be
the event the walk goes down, then up, then down. Let B be the event that the down step is larger than
the up step. Then

P (AB) = P (A) · P (B|A) = p(1� p)

2
P (B|A) (25)

So we must solve P (B|A), the probability the down jump is larger then the up jump, given the walk went
down then up on those first two steps. Let

X := size of the up jump and Y := size of the down jump

Figure 6 shows how the sampling is done.

Figure 6: An up jump is drawn from the left side of µ. A down jump is drawn from the right side of µ.

First, make X and Y into densities by scaling the original N(0,�

2
) by the appropriate factor. The

density of X is given by
e
fX(x) =

1

�

p
2⇡

e

� 1
2�2 x2

1

�(µ)

� µ  x < 1 (26)

The density of Y is given by

e
fY (y) =

1

�

p
2⇡

e

� 1
2�2 y2

1

1� �(µ)

µ  y < 1 (27)

Since we’re concerned with |X � µ| and |Y � µ|, shift the densities so the support is [0,1). So the density
of X becomes

fX(x) =

1

�

p
2⇡

e

� 1
2 (

x�µ

�

)2 1

�(µ)

x � 0 (28)

The density of Y is now given by

fY (y) =
1

�

p
2⇡

e

� 1
2 (

y+µ

�

)2 1

1� �(µ)

y � 0 (29)
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Using (28) and (29), compute P (X < Y ):

P (X < Y ) =

ZZ

R

fX,Y (x, y) dA R = {(x, y) : x � 0, y > x}

=

ZZ

R

fX(x)fY (y) dA

=

Z x!1

x=0

Z y!1

y=x

1

�

p
2⇡

e

� 1
2 (

x�µ

�

)2 1

�(µ)

· 1

�

p
2⇡

e

� 1
2 (

y+µ

�

)2 1

1� �(µ)

dy dx

=

Z x!1

x=0

1

�

p
2⇡

e

� 1
2 (

x�µ

�

)2 1

�(µ)

Z y!1

y=x

1

�

p
2⇡

e

� 1
2 (

y+µ

�

)2 1

1� �(µ)

dy

�
dx

The inner integral involves a N(�µ,�

2
), which can be shifted and scaled to get a N(0, 1).

=

Z x!1

x=0

1

�

p
2⇡

e

� 1
2 (

x�µ

�

)2 1

�(µ)

· 1

1� �(µ)


1� �

✓
x+ µ

�

◆�
dx

=

1

�(µ)(1� �(µ))

Z 1

0

1

�

p
2⇡

e

� 1
2 (

x�µ

�

)2 ·

1� �

✓
x+ µ

�

◆�
dx

=

1

�(µ)(1� �(µ))

Z 1

0

1

�

p
2⇡

e

� 1
2 (

x�µ

�

)2
dx�

Z 1

0

1

�

p
2⇡

e

� 1
2 (

x�µ

�

)2 · �
✓
x+ µ

�

◆�

The first integral can be shifted and scaled. The second we do not solve explicitly:

=

1

�(µ)(1� �(µ))


�(µ/�)�

Z 1

0

1

�

p
2⇡

e

� 1
2 (

x�µ

�

)2 · �
✓
x+ µ

�

◆�
(30)

The expression in (30) can be substituted into (25) for P (B|A).
As a sanity check on (30), plug in µ = 0 and � = 1. Then (30) reduces to

1

(1/2)(1� 1/2)


�(0)�

Z 1

0
�(x)�(x) dx

�
= 4(1/2� 3/8) = 1/2

This is exactly what is expected if µ = 0 since the up jump and down jump come from the same distribution.

6.2.2 Cases I and III

I outline the solution for cases I and III, but do not solve explicitly for them. This is because the next
section gives the full approximate probability functions through simulation, which are a lot more enlightening
than the algebraic derivations. For case I, we want to solve P (Y +Y > X). First, use convolution to find the
density of Y +Y , then set up an integral as in the previous case. For case III, we want to solve P (Y > X+X).
Again, use convolution to find the density of X +X, then set up an integral.

6.2.3 Simulated Probability Functions

Figure 7 plots the probability functions P1,P2,P3, and P4 for various levels of �. All plots have µ along
the x-axis.

Note that for each plot in Figure 7, when µ = 0, the probability functions coincide with the numbers
from section 6.1: P1 = 5/16 = P4 and P2 = 3/16 = P3. The plots include values of negative drift, just
to include players who may be best at the start of college, then steadily decline throughout their college
career. The top left plot is for a player with � = 0.5. This player has low variation above and beyond his
usual drift from season to season. The orange line in the top left plot shows that if this player has a µ > 1,
it’s very likely his skills will be highest after senior year. However, if the player’s drift is between 0 and
1/2, the orange line is much lower and so the probability his skill level is highest before senior year is more
substantial (sum of the heights of the blue, green, and red lines). The bottom right plot is for a player with
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Figure 7: Top left is � = 0.5. Top right is � = 1. Bottom left is � = 2. Bottom right is � = 3. R Code is
given in the appendix.

high volatility in his skills above and beyond the season to season drift (� = 3). The orange line is still
monotonic, yet increases much slower. The probability a high volatility player is best after senior year is less
than the probability a low volatility is best after senior year for all µ > 0.

6.3 The Stochastic model as a predictive model

From Figure 7, we could give an estimate as to when the player is most likely to have the highest skills,
based on his � and µ. To use Figure 7 as a predictor, we’d like to measure a player’s µ and �. I don’t pursue
this idea here, rather suggest it as potential future work.

One way is to look at the player’s high school statistics or the player’s game by game statistics in his
first year of college. For each year in high school say, use statistics like the player’s points, rebounds, etc
to construct a proxy for skill level that year. Then for each of the four years, we’d have a number which
corresponds to skill level. Plot these four skill levels versus years 1, 2, 3, and 4. The best fit line through
these points could give an estimate for µ and �: The slope of the best fit line would be µ̂ and the sum of
squared residuals would be �̂. For each player, we could construct a µ̂ and �̂ and compare across players.
So for example a �̂ in the first quartile of all players’ �̂’s would classify that player as a low volatility player,
whereas a �̂ in the fourth quartile of all players’ �̂’s would classify that player as a high volatility player.
The same could be done for the drift values. This would allow us to compare players and predict when a
player’s skill level would most likely be highest, relative to other players.
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6.4 Threshold Idea

Section 5 determined a player can maximize expected career earnings by entering the draft when his
skills are the best (i.e. by maximizing S(y)). Section 6 showed that if the player has a positive drift, then
he is most likely to be best after his senior year, regardless of the actual value of the drift and regardless of
the volatility in ✏. Hence if a player has positive drift, which I suspect almost all do, we should not expect
players to enter the draft before senior. So why is this occurring in practice?

To reconcile this, I suggest that players do indeed want to maximize their success by strategically entering
the draft when their skills are best, however, if a player is very talented he may already be good enough
to go pro. That is, perhaps there is some “skill threshold” players want to reach before going pro. If they
attain this threshold before senior year, then they enter the draft before senior year. For example, after a
player’s team wins the national championship or after the player receives a prestigious award or after the
player averages more than a certain number of points in a season. A player coming off a big year receives
widespread attention which puts him in the spotlight and may make him more likely to go pro. The player
may feel like his chances of being drafted are especially good, despite the fact that his skills may indeed
improve if he stays in college for an additional year.

7 The Optimal Stopping Problem
The decision to stop playing college ball and go pro is a stopping problem. Since a player wants to

optimize earnings with this decision, it is an optimal stopping problem. Figure 8 shows how after completing
each year in college a player must choose whether to stop (S) and try to go pro or continue (C) playing in
college. Stopping after year i leads to career earnings of ei.

Figure 8: At each node a player must choose whether to continue playing college ball or stop and go pro.

Figure 8 captures the player’s dilemma, but it simplifies the problem because it doesn’t consider the
probability a player is drafted to the NBA. Not all early entrants are drafted14 and so this approach should
incorporate the chance of being drafted.

Consider the finite state markov chain in Figure 9 with state space

S = {0, 1, 2, 3, 4, d1, d2, d3, d4, NBA,ND}

14Using my data set of 856 players from 1989 to 2012 who remained early entry, 35.5% went undrafted. Arel and Tomas
(2012) find that from 2006 to 2010, 38% went undrafted.

19



where

(i) State 0 means the player has 0 years of college experience, 1 means the player has 1 year of college
experience, etc.

(ii) dj := declare for draft with j years of experience, j = 1, 2, 3, 4

(iii) NBA := player was drafted to the NBA. ND := player was not drafted to the NBA (both absorbing)

Figure 9: A player may or may not be drafted.

The stochastic matrix is

P =

2

66666666666666664

0 1 0 0 0 0 0 0 0 0 0

0 0 p2 0 0 q2 0 0 0 0 0

0 0 0 p3 0 0 q3 0 0 0 0

0 0 0 0 p4 0 0 q4 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 p

0
1 q

0
1

0 0 0 0 0 0 0 0 0 p

0
2 q

0
2

0 0 0 0 0 0 0 0 0 p

0
3 q

0
3

0 0 0 0 0 0 0 0 0 p

0
4 q

0
4

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

3

77777777777777775

P has dimension 11 by 11, where the states run across the top and down the side in the order 0, 1, 2, 3, 4,
d1, d2, d3, d4, NBA, ND. So for example, the (1, 2) entry of P gives the probability of moving from state 0
to state 1, which is 1 in Figure 9 since a player must be at least a freshman to declare for the draft.
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The k

th step stochastic matrix (k � 6) is

P

k
=

2

66666666666666664

0 0 0 0 0 0 0 0 0 q2p
0
1 + p2q3p

0
2 + p2p3q4p

0
3 + p2p3p4p

0
4 q2q

0
1 + p2q3q

0
2 + p2p3q4q

0
3 + p2p3p4q

0
4

0 0 0 0 0 0 0 0 0 q2p
0
1 + p2q3p

0
2 + p2p3q4p

0
3 + p2p3p4p

0
4 q2q

0
1 + p2q3q

0
2 + p2p3q4q

0
3 + p2p3p4q

0
4

0 0 0 0 0 0 0 0 0 q3p
0
2 + p3q4p

0
3 + p3p4p

0
4 q3q

0
2 + p3q4q

0
3 + p3p4q

0
4

0 0 0 0 0 0 0 0 0 q4p
0
3 + p4p

0
4 q4q

0
3 + p4q

0
4

0 0 0 0 0 0 0 0 0 p

0
4 q

0
4

0 0 0 0 0 0 0 0 0 p

0
1 q

0
1

0 0 0 0 0 0 0 0 0 p

0
2 q

0
2

0 0 0 0 0 0 0 0 0 p

0
3 q

0
3

0 0 0 0 0 0 0 0 0 p

0
4 q

0
4

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

3

77777777777777775

The entry of concern in this matrix is the (1, 10) entry, which represents the probability of going from state
1 to state NBA:

P

k
(1, NBA) = q2p

0
1 + p2q3p

0
2 + p2p3q4p

0
3 + p2p3p4p

0
4 (k � 6) (31)

That is, (31) is the probability a player who just finished freshman year will be in the NBA by the time
he graduates. P

6
(1, NBA) is the probability he makes it to the NBA after freshman year (q2p01) plus the

probability he makes it to the NBA after sophomore year (p2q3p02) plus the probability he makes it after
junior year (p2p3q4p03) plus the probability he makes it after senior year (p2p3p4p04). Hence P

6
(1, NBA) is

the probability he eventually makes it to the NBA. Clearly, a player would like this probability to be as high
as possible. Since pi + qi = 1 for i = 2, 3, 4, substitute qi = 1� pi in (31) to get

P

6
(1, NBA) = (1� p2)p

0
1 + p2(1� p3)p

0
2 + p2p3(1� p4)p

0
3 + p2p3p4p

0
4 (32)

We can use data from the empirical section to estimate P

6
(1, NBA). To get estimates for p

0
i is simple:

Consider all players who applied to the NBA draft after i years of college and look at how may were drafted
into the NBA.15 This is a good first approximation for p0i. The pi are more difficult to estimate. This would
involve looking at all players who finished i years of college ball and seeing how many declared for the draft
versus how many stayed for another year. Trying to estimate all the college players who didn’t apply for the
draft is challenging since there are many colleges in the nation with many college players on each team.

To solve this issue, consider p2 as being a function of p01. That is, p2 = p2(p
0
1). Recall, p2 is the probability

a rising sophomore remains in college for a second year and p

0
1 is the probability a rising sophomore makes

it to the NBA after applying for the draft. It’s reasonable to assume

dp2

dp

0
1

< 0

That is, as the probability of being drafted increases, the player will be less and less likely to want to remain
in college for a second year. We can imagine that p2(0) ⇡ 1 since the player has no chance of being drafted
and so it’s likely he’ll remain in college. Also, p2(1) ⇡ 0 since the player will for sure be drafted and so he
forgoes his second year to apply for the draft. This reasoning makes the analysis of this optimal stopping
section more appropriate for an average collegiate player. A very talented player may still be reluctant to
try for the draft just because he thinks he’ll be drafted. The talented player would probably strive for a high
draft position, whereas the average player would be happy to be drafted at all.
The last thing to notice about p2(p

0
1) is it’s second derivative:

risk neutral ) d

2
p2

dp

02
1

= 0 risk averse ) d

2
p2

dp

02
1

< 0 risk loving ) d

2
p2

dp

02
1

> 0

These three properties are summarized by Figure 10.

15Using my data set of 856 domestic players from 1989-2012 who remained early entry, 78% of freshmen were drafted, 66%
of sophomores were drafted, and 54% of juniors were drafted. Also, 81% of high school seniors who applied were drafted. p04 is
difficult to estimate, but is likely to be well less than 50%.
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Figure 10: The shape of p2 = p2(p
0
1) will vary depending on the player’s risk preferences.

To work with explicit equations, I assume the following functional form of p2(p01) :

p2(p
0
1) = 1� (p

0
1)

k
k > 0

If the player is risk loving, k < 1. If the player is risk neutral, k = 1. If the player is risk averse, k > 1. The
argument above for reasoning that p2 is a function of p01 can be used to conclude that p3 is a function of p02
and p4 is a function of p03. These other two functions behave exactly the same.
Hence (32) becomes

f(k) =


1�

�
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p
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p
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4

which, after some algebra, simplifies to

f(k) = p

0
4 + (p

0
3 � p

0
4)p

0k
3 + (p

0
1 � p

0
4)p

0k
1 + (p

0
2 � p

0
4)p

0k
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f(k) in (33) can be thought of as the chance of making it to the NBA eventually, where k is a measure of
the player’s risk averseness. Regardless of the values of p01, p02, p03, and p

0
4, f(0) = p

0
1 and limk!1 f(k) = p

0
4.

Data from the previous page in footnote 15 showed p

0
1 ⇡ 0.78 > p

0
2 ⇡ 0.66 > p

0
3 ⇡ 0.54 > p

0
4. Using these

values in (33) and taking p

0
4 = 0.3 (without loss of generality), Figure 11 depicts f(k).

Unlike the first optimal entry model where we assumed the player was talented (i.e. would be drafted
if he were to apply to the draft), a not so talented player cannot be as picky about when he applies to the
draft. The average player may have only one shot throughout his college career to make a feasible attempt
to go pro. Therefore, if an average player wants to optimize his chances of making it to the NBA he should
be as risk loving as possible. If he thinks he has any shot of making it to the NBA after completing any year
of college, then he should drastically reduce the probability he stays in college for another year and strongly
consider applying for the NBA draft.
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Figure 11: An average player’s chances of making it to the NBA are highest when he’s risk loving, lower
when he’s risk neutral, and lowest when he’s risk averse.

7.1 Secretary Problem Approach

The classic Secretary Problem from optimal stopping theory can provide another template for when
a collegiate basketball player should go pro. The secretary problem is as follows: An employer is looking
to hire a single secretary from an applicant pool of n applicants. The applicants can be ranked from best
to worst (i.e. there is a best applicant, a second best, etc). The employer does not know the talent of
an applicant until that applicant is interviewed. The employer interviews applicants one by one hoping to
find the best applicant. After an interview, the employer can hire that applicant and never get to see the
remaining applicants, or reject that applicant forever.

The optimal solution involves automatically rejecting the first n/e applicants immediately after the
interview, then hiring the first applicant who is better than all of those interviewed so far. If no such applicant
exists, the employer hires the last applicant interviewed. This strategy can be shown to be successful in hiring
the best applicant in the pool with probability 1/e, as n ! 1.

This solution method can be applied to a collegiate basketball player’s decision about when to make
the jump to the NBA. A player can opt to go pro after any one of four years. But after electing to go pro,
he cannot try to go pro in later years because he has relinquished his college eligibility. At the end of each
year of college ball the player assesses his “offer”, which can be thought of as his chance of going pro, his
potential earnings, and projected overall initial success in the NBA. This is analogous to interviewing an
applicant. The player doesn’t necessarily know if his skill level will be higher or lower the following year,
or if his offer will be better or worse. The secretary problem solution implies the player should reject the
first n/e applicants automatically. In the case of the player, n/e = 4/e ⇡ 1.47 offers. Therefore, the player
should not go pro after freshman year. Instead, he should go pro in the subsequent year that gives him a
better offer than the offer he received his freshman year. In the case his offers after sophomore year and
junior year are worse than after freshman year, the player should go pro after senior year.
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Using this approach it can be shown that the player successfully accepts the best offer 46% of the time.
To see why, rank the four offers as 1, 2, 3, 4 where 1 corresponds to the best offer and 4 the worst. Since
there are twenty-four permutations, all equally likely, just directly count the number of cases for which this
secretary solution successfully has the player select 1. For example consider the order 2, 3, 1, 4. This means
the player will receive the best offer following his junior year, second best offer after freshman year, third
best offer after sophomore year, and worst offer after senior year. The solution says to reject the offer after
freshman year, then select the first offer that’s better than the offer freshman year. Since the offer after
sophomore year is worse, it is rejected. Since the offer after junior year is better than the offer after freshman
year, the player accepts this offer. He never plays a senior year of basketball and never sees what his offer
after senior year would’ve been. Therefore this method was successful in picking out the best offer. In the
twenty-four cases, the best offer is picked in 11 of them (⇡ 46%). In 7 cases the second best offer is picked,
in 4 cases the third best offer is picked, and in only 2 cases (1, 2, 3, 4 and 1, 3, 2, 4) the worst offer is picked.

The above example is encouraging since the player would have been rather unlucky if he remained for
his senior year. The player of course doesn’t know if his offer after senior year will be better than after his
junior year. Coming off a great junior year he may have been tempted to play senior year thinking that he
would get an even better offer after senior year. This method results in the player stopping at the optimal
time.

7.1.1 Nondeterministic Secretary Problem

A final thought introduces more randomness into the player’s decision about when to go pro. In the
previous section it was assumed that the number of applicants n was known. However, this does not have
to be the case. Letting N be a random variable denoting the number of applications received, the employer
would have to find a new optimal stopping rule to optimize the probability of selecting the best applicant
(see Presman and Sonin 1973). Likewise for the player, n = 4 is not always the case. The player for example
may suffer a long term injury junior year which ends his collegiate career. Hence N took on the value 2,
since he only saw two offers, both of which he rejected. Using N also makes sense in the following way:
Suppose in the previous section we defined offer as being the event where the probability of being drafted
once a player enters the draft is nonzero. Then the player may not have offers every year. That is, there
may be some years where he simply may not be talented enough, in which case if he applied to the draft he
would almost certainly not be drafted. Thus N would denote the number of years in which he has a nonzero
probability of being drafted.

8 Conclusion
This paper analyzes when a player should go pro through both an empirical and theoretical framework.

The empirical section estimates returns to schooling by comparing two groups of players: high school seniors
and freshmen drafted from 1989 to 2005 versus freshmen drafted from 2006 to 2012. A new law made 2005
the last year players could go directly into the NBA out of high school and so the latter group contains
individuals who were forced to take an additional year of school. Comparing the earnings of the two groups
shows that the “Post-law” group earned $580,000 more during their first year in the NBA. However, the
regressions, which controlled for ability, experience, and draft position, found no evidence to support a
significant difference in earnings.

The theoretical section showed players can optimize their career earnings by going pro when their skills
are highest. Players who are especially talented should go pro as soon as they attain some minimum skill
threshold, despite the possibility that their skills may be higher in later years. Players who are average
should go pro if they receive any positive signals that indicate they have a chance of being drafted. That is,
they should have risk loving preferences.

24



9 Appendix
Here I generalize section 5 to include the probability of the player going undrafted. This is mainly to

show the robustness of the analysis in sections 5-7 and also allow for “average players” to be defined more
broadly.

Let PH , PL be defined as before and let PU be the probability the player is undrafted. If the player is
undrafted, his earnings are zero: EH > EL > 0 = EU . Assume dPU/dS < 0 and that

PH + PL + PU = 1

The optimization problem is

max
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which holds when S

0
(y) = 0. To see why the term in the bracket cannot be zero, rearrange to get

EH

EL
=

P

0
H

�
S(y)

�
+ P

0
U

�
S(y)

�

P

0
H

�
S(y)

�
= 1 +

P

0
U

�
S(y)

�

P

0
H

�
S(y)

� (35)

Since EH > EL, EH/EL > 1. But the term on the right in (35) is less than one since P

0
U (S) < 0 and

P

0
H(S) > 0. Therefore, the maximum of S(y) is the only candidate to optimize earnings. Letting y
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) < 0 and the term in brackets is positive.
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For (36) to hold, each term in brackets must be negative.
To make the term in the right bracket negative, it’s necessary that S(y

⇤
) > S(yB).

The term in the left bracket of (36) is PH
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see how the first difference dominates, recall
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since we assumed the derivative of PL is nonzero. Therefore S(y

⇤
) optimizes expected earnings.

The player should go pro when his skills are highest.
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