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Abstract

The tech industry is known for its high salaries. As the number of new tech companies
increase and existing tech companies grow, it’s increasingly important to know if the benefits of
these high salaries are reaching everyone in the local economy. In this study, I examine how the
growth of tech employees impacts the wages of the non-tech residents. I utilize the number of
tech employees to reflect the growth of tech companies. I analyze data from 2005 to 2020 and I
perform multiple regression models on the number of tech employees vs the wage of non-tech
residents. My regressions show that the number of tech employees has a statistically significant
positive correlation with local wages.
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1. INTRODUCTION

The tech industry stands out amongst other industries as a career option due to its high levels of

compensation. In 2020, the average US annual salary was $53,383 while the average US tech

worker’s salary was $146,000. Since tech companies provide their employees with higher

salaries, it is assumed that they play a larger role than other companies in shaping the economy

of the cities they occupy due to the multiplier effect. The multiplier effect refers to the concept

that the direct employment of people, in the tech industry in this case, creates additional jobs and

employment. This occurs because the people that were directly hired will spend their money in

their local economy and generate demand for additional services which results in the creation of

additional jobs and employment. The multiplier effect and the large impact of tech companies on

their local economy is evidenced by the economic booms created in tech-dense areas such as the

Silicon Valley, the Seattle area, and recently the Austin area. Therefore, cities provide incentives

such as tax breaks for tech companies to choose their city in order to help their economy grow.

Tech companies stand out as investments for cities since cities hope that the multiplier effect will

apply and everyone in the city will benefit from the direct employees hired by the tech

companies.

However, tech hubs such as Silicon Valley have an increased cost of living, increased poverty,

and a larger wealth gap. From 2010 to 2020, San Francisco’s real housing prices have increased

by 23.25%, poverty has increased by 15.58%, and the top quintile’s income grew 10.11% more

than the bottom quintile’s income growth (US Census Bureau). Since there has also been a

growth in negative factors in tech hubs, it’s important to analyze the benefits of tech companies

and whether those benefits apply to everyone who resides in the local economy. For this paper,

the benefit for those in the non-tech industry is represented as an increase in their wage. This

paper uses an increase in the wages of non-tech employees as a reflection of the benefit they

receive because an increase in wage increases the standard of living. In addition, an increase in

wage helps offset the negative factors that tech hubs experience. For example, if the growth in

non-tech real wages is equal to or greater than the growth in real housing prices, then it doesn’t

change the ability for people in the non-tech sector to buy houses. An increase in wages also

decreases poverty and decreases the income gap.
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The number of tech companies has been increasing across the US with 13,400 tech startups

launched in 2019 alone. Therefore, it’s becoming increasingly important to determine whether

the benefits of tech companies go beyond the employees who receive salaries directly from the

tech companies and to the other residents in the area. In addition, since COVID started, there has

been an increase in the adoption of remote work in the tech industry, causing tech employees to

move and live outside of the tech hubs (Castrillon). Therefore, tech wages are dispersed in more

local economies. Therefore, it’s important to determine the impact of the tech wages on the local

economies. In this paper, I examine the impact of tech companies on the local economy during

the 15-year period from 2005 through 2020 across 290 metropolitan areas and determine if there

is a strong correlation between the number of tech companies and the wages of non-tech

employees in the metropolitan area they reside.

2. LITERATURE REVIEW

2.1 Relationship Between Tech Companies and Local Multipliers

In Moretti’s research paper, “Local Multipliers”, he discusses how every new job generated in a

local economy has the possibility to create additional jobs. However, the creation of jobs in

different sectors generates different amounts of additional jobs. In his paper, he defines a local

multiplier which represents how many new jobs will be created in the local economy for every

new job generated (Moretti). Therefore, a larger local multiplier means that there will be more

additional jobs created for every new job. In the paper, Moretti found that skilled jobs have a

higher local multiplier than unskilled jobs and specifically high tech industries have a large

multiplier. This is explained by the high wages of tech industry employees. Tech employees have

higher wages so they generate more demand for local goods and services compared to unskilled

employees who receive lower wages.

In the New Geography of Jobs, Moretti exemplifies tech’s high local multiplier through an

example of Apple hiring 12,000 workers. By hiring the 12,000 workers, the multiplier effect took

place and 60,000 more jobs were created in the metro area (Moretti). Of those 60,000 new jobs,

24,000 jobs created are skilled jobs and 36,000 jobs created are unskilled jobs. Therefore, Apple

has a larger impact on the employment of non-tech jobs than on the employment of tech jobs in
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its metropolitan area. Therefore, the local multiplier that Apple has is 60,000:12,000 which

simplifies to 5:1. This means that for every new employee Apple hires, there will be 5 new jobs

created in Apple’s metropolitan area. As part of FAANG, an acronym for the 5 most popular and

best performing American tech companies, and the first company to reach a $3 trillion market

value, Apple is the model tech company and continues to innovate by securing the best talent

through high salaries. Therefore, Apple’s large local multiplier is explained by the high salaries

that the company provides .

2.2 Contribution

My paper will expand on research done on the impact of tech companies on their local economy

by determining how the tech industry impacts the wages of people who do not work in tech.

While we understand that tech companies produce more jobs in the local economy, it’s also

important to look at the impact that tech companies have on wages in the local economy. My

paper varies from other research since it is based on how I define the data points as part of the

tech or non-tech industry. Therefore, since I defined which data should be categorized as tech

conservatively, my values might not fully encompass the impact that tech companies have since

some data points might be miscategorized. However, since I’m performing the regressions on a

large dataset of over 12 million rows after data cleaning, the small number of possibly

miscategroized rows should not have a large impact on the results.

3. DATA

3.1 Representing the Number of Tech Companies

To reflect the growth of tech companies in each city, I utilized the growth in the number of

people who are employed in the tech industry in each city. I believe this accurately reflects the

growth of tech companies because if the number of tech companies increases or existing tech

companies grow, they hire more employees. In addition, it’s important to utilize the number of

people who work in tech as a variable since the number of tech employees is proportional to the

amount of money spent by tech workers in the economy which is what stimulates the local

economy and impacts the wages of everyone else in the local economy.
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3.2 Dataset

For my analysis, I utilized the IPUMS (Integrated Public Use Microdata Series) USA dataset

which is composed of over 60 integrated samples of the American population from the federal

census, American Community Surveys, and Puerto Rican Community Surveys. From the IPUMS

dataset, I created my own custom dataset by selecting the variables I need for my analysis. The

variables I selected make up the columns of my dataset. The variables I selected were used for

analysis either as data frequency weights, control variables, independent variable calculations,

dependent variables, or categorization variables. I utilized data from 2005 to 2020 since my

analysis requires me to categorize by metropolitan area using the MET13 location variable which

is only available from 2005 to 2020.

Table 1: Variables from IPUMS used in Custom Dataset

Variable Name Category Description

AGE Control Variable Respondent’s age in years

MET13 Categorization Variable Metro areas of residence as defined by

the 2013 definitions for metropolitan

statistical areas (MSAs)

CPI99 Data Frequency Weights Provides multiplier to convert dollar

figures into 1999 inflation-adjusted

dollars

EDUC Control Variable Respondents' highest level of education

completed

INCWAGE Dependent Variable Respondents' pre-tax wage and salary

income for the previous year.

IND Independent Variable

Calculations & Control Variable

Type of industry where the respondent

performs their occupation
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OCC Independent Variable

Calculations

Respondent’s primary occupation

PERWT Data Frequency Weights Indicates how many persons are

represented by a given sample

RACE Control Variable Respondent's race

SEX Control Variable Respondent's sex

YEAR Categorization Variable Year when the sample was taken

3.3 Dataset Preprocessing

To make the dataset ready for analysis, I preprocessed the dataset. The first step was to remove

all rows that had a null or empty value. Some variables had numerical values that stood for a null

or empty value. For example, for the variable INCWAGE,  9999999 stood for N/A. Therefore, I

checked the documentation of each variable and removed rows according to each variable’s

specific codes. This step reduced the number of rows from 54,042,724 rows to 12,414,658 rows.

Next, I multiplied INCWAGE which contains dollar values by the CPI index to make sure all

dollar amounts are represented in 1999 inflation amounts.

Since my analysis involves analyzing the impact of tech companies, I need to categorize each

row of the dataset as a person who works in tech or a person who works in non-tech. The

industry column and the occupation column were utilized to determine whether the row is a data

point for a person(s) who works at a tech company. Since the categorization of industries and the

categorization of occupations changed multiple times between 2005 and 2020, I had to

redetermine which industries and which occupations should categorize as “tech” each time the

categorization changed.

To categorize the occupations in the occupations column as either tech or non-tech, I asked

whether the occupation exists primarily inside a tech company. If the occupation satisfies the

question, then I categorized the occupation as tech. While there are various occupations that are
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in the tech industry that do not exist primarily inside a tech company such as marketing, I

formulated the question to be more constrained so that the data categorized as tech will have a

higher chance of being data from someone who works at a tech company. For example, while

marketing roles exist in a lot of tech companies, they do not primarily exist inside a tech

company so if I included marketing, I would have possibly added data to the tech set that

included people who do not work at a tech company.

Table 2: Names of all occupations (OCC) between 2005-and 2020 that was categorized as an

occupation of a person working at a tech company

OCC code(s) Occupation Name

0110 Computer and information system managers

10001, 1005 Computer and information research scientists

10001, 1006 Computer systems analysts

11102, 10007 Information security analysts

1010 Computer programmers

10201, 1021, 1020, Software Developers

1022 Software quality assurance analysts and testers

11102, 1031, 1030 Web developers

10001, 1107, 1108, Computer occupations, all other

10001, 1106 Computer network architects

1032 Web and digital interface designers

11102, 1050 Computer support specialists
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1065, 1060 Database administrators and architects

11103, 1105 Network and computer systems administrators

1400 Computer Hardware Engineers

1410 Electrical and electronics engineers

1551 Electrical and electronic engineering technologists and technicians

To categorize industries as either tech or non-tech, I asked whether the industry is made up of

primarily tech companies. If the industry satisfies the question, I categorized the industry as tech.

Similar to the categorization of occupations, I formulated the question to be more conservative

with which industries I categorized as aligned with tech.

Table 3: Names of all industries (IND)  between 2005-and 2020 that were categorized as an

occupation of a person working at a tech company

IND code(s) Industry Name

3360, 3365 Computer and peripheral equipment manufacturing

3370 Communications, and audio and video equipment manufacturing

3380 Navigational, measuring, electromedical, and control instruments

manufacturing

3390 Electronic component and product manufacturing, n.e.c.

5590 Electronic shopping

6490 Software publishers

6675, 6672 Internet publishing and broadcasting and web search portals

6680 Wired telecommunications carriers
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6690 Telecommunications, except wired telecommunications carriers

6692 Internet service providers

6695 Data processing, hosting, and related services

7290 Architectural, engineering, and related services

7380 Computer systems design and related services

7390 Management, scientific, and technical consulting services

After choosing which industries and which occupations were categorized as tech companies, I

filtered through the data and if both the occupation and the industry are categorized as tech, the

row would be categorized as a datapoint for a person(s) who works in tech.

The remaining rows that were not categorized as tech are all considered “non-tech” and I further

categorized the “non-tech” rows as either people who work in a nontradable industry or tradable

industry using the industry column. I categorized the non-tech rows as either non tradable or

tradeable because my analysis looks at the impact on the local economy and tradable sectors sell

their goods and services outside of the local economy. Therefore, the tradable sector is largely

unaffected by the potential increase in spending from tech employees so the wages of tech

employees do not get passed on to employees of the tradable sector. Since the categorization of

industries changed multiple times between 2005 and 2020, I had to also redetermine which

industries should be categorized as non-tradable and which industries should be categorized as

tradable each time the categorization changed.

Since the industries have industry categories which accurately represent the industries

categorized underneath it, I sorted the industries as non-tradable or tradable based on the industry

categories. I went through each industry category and determined if the industry category is

tradable or non tradable based on whether the majority of the industries in the category make

goods and services for the local economy. Therefore, all industries under the same industry

category were sorted the same. The industry categories that I categorized as nontradable are:
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Agriculture, Forestry, Fishing and Hunting, Mining, Manufacturing, Wholesale Trade, and

Armed Forces.

The last step of the dataset preprocessing was to create the independent variable for my

regressions. The independent variable in my regression is the number of tech employees in each

city in each year. To make the independent variable, I iterated through the rows categorized as

tech and for each city and each year, I summed the person weights.

4. MODEL

I built multiple regression models to evaluate the impact that tech company growth has on wages

in the local economy. In all of the models, both the regressors and the dependent variable are

log-transformed to impose linearity between the variables. All of the models also perform

weighted regressions to account for the different number of respondents that each row of data has

according to the variable PERWT (person weight).

4.1 Model 1

Model 1 is the most simplified model and performs paneled OLS regression. Model 1 can be

expressed as:

𝑤
𝑟𝑚𝑡

𝑙𝑜𝑔(𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

) =  β
0
 +  𝑤

𝑟𝑚𝑡
β

1
𝑙𝑜𝑔(𝑇

𝑚𝑡
𝑇 ) +  ε

𝑟𝑚𝑡
 

In the equation above, refers to the total number of people working at a tech company in𝑇
𝑚𝑡
𝑇

metropolitan area m at time t for each year between 2005 and 2020 (inclusive). 𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

represents the wages of respondent r who resides in metropolitan area m at time t and works in

the non-tech sector. I only look at the wages of people in the non-tech sector since I’m analyzing

the impact of tech companies on wages outside of the tech sector. refers to the weight of𝑤
𝑟𝑚𝑡

 

respondent r who resides in metropolitan area m at time t. The coefficient can be interpretedβ
1

as how much a percent change in changes the . Therefore a 1% change𝑙𝑜𝑔(𝑇
𝑚𝑡
𝑇 ) 𝑙𝑜𝑔(𝑤𝑎𝑔𝑒

𝑟𝑚𝑡
)

in will cause a % change in .𝑙𝑜𝑔(𝑇
𝑚𝑡
𝑇 ) β

1
𝑙𝑜𝑔(𝑤𝑎𝑔𝑒

𝑟𝑚𝑡
)
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Model 1 contains substantial omitted variable bias. Uniform changes in both year and

metropolitan area are not accounted for and there are other numerous variables that impact the

dependent variable that are not accounted for in the model. In addition, the different impact that

non-tradable and tradable industries have on the local economy is also not accounted for. If there

are omitted variables that are positively correlated with the number of tech companies and

wages, this might lead to an overestimation of .β
1

4.2 Model 2

In Model 2, I decrease the omitted variable bias by adding a dummy variable for nontradable

industries and an interaction variable between the number of tech companies and nontradable

industries. Model 2 is expressed as:

𝑤
𝑟𝑚𝑡

𝑙𝑜𝑔(𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

) =  β
0

+  𝑤
𝑟𝑚𝑡

(β
1
𝑙𝑜𝑔(𝑇

𝑚𝑡
𝑇 ) + β

2
𝑁𝑇

𝑟𝑚𝑡
+ β

3
𝑙𝑜𝑔(𝑇

𝑚𝑡
𝑇 )𝑁𝑇

𝑟𝑚𝑡
) + ε

𝑟𝑚𝑡
 

In this equation, represents is a dummy variable that represents whether respondent r who𝑁𝑇
𝑟𝑚𝑡

lives in metropolitan area m at time t works in a nontradable industry. Therefore, a positive β
2

would indicate that workers in the nontradable industry have higher wages than workers in the

tradable industry while a negative would indicate that workers in the nontradable industryβ
2

have lower wages than workers in the tradable industry. Since the number of tech workers at

metropolitan area m at time t influences whether a person works in a non-tradable sector, I added

the interaction term . can be interpreted as the increase in effectiveness of𝑙𝑜𝑔(𝑇
𝑚𝑡
𝑇 )𝑁𝑇

𝑟𝑚𝑡
β

3

for each unit increase in and vice versa. Therefore, if is positive, it would𝑙𝑜𝑔(𝑇
𝑚𝑡
𝑇 ) 𝑁𝑇

𝑟𝑚𝑡
β

3

imply that the higher the , the greater the effect that has on wages and vice𝑙𝑜𝑔(𝑇
𝑚𝑡
𝑇 ) 𝑁𝑇

𝑟𝑚𝑡

versa. If is negative, it would imply that the higher the , the less the effect thatβ
3

𝑙𝑜𝑔(𝑇
𝑚𝑡
𝑇 )

has on wages and vice versa.𝑁𝑇
𝑟𝑚𝑡

In Model 2, should be a more accurate estimation since the impact of nontradable industriesβ
1

are accounted for. Therefore, the standard error should decrease. However, Model 2 still does not
completely eliminate omitted variable bias since there are still other variables that are not
accounted for.
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4.3 Model 3

In Model 3, I decrease one source of omitted variable bias by adding year-fixed effects which

control for factors that change yearly that are common to all metro areas in a given year. Model 3

is expressed as:

𝑤
𝑟𝑚𝑡

𝑙𝑜𝑔(𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

) =  β
0

+  𝑤
𝑟𝑚𝑡

(β
1
𝑙𝑜𝑔(𝑇

𝑚𝑡
𝑇 ) + β

2
𝑁𝑇

𝑟𝑚𝑡
+ β

3
𝑙𝑜𝑔(𝑇

𝑚𝑡
𝑇 )𝑁𝑇

𝑟𝑚𝑡
+ 𝐹𝐸

𝑡
) + ε

𝑟𝑚𝑡

In this equation, represents a vector of year fixed effect dummy variables. Therefore, the𝐹𝐸
𝑡

dummy variable trap occurs. The dummy variable trap occurs since one dummy variable in 𝐹𝐸
𝑡

can be predicted using all other dummy variables which creates multicollinearity. Therefore,

when creating through the function pd.get_dummies(), I passed in the parameter𝐹𝐸
𝑡

drop_first=True into the function which removes the first dummy variable. Removing one of the

dummy variables removes the problem of multicollinearity.

In Model 3, is more accurate since year fixed effects are accounted for. This should cause theβ
1

standard error to decrease since the year fixed effects are accounting for some of the variance

that existed in the data. However, Model 3 still does not completely eliminate omitted variable

bias since there are other variables that are not accounted for such as metro area fixed effects.

4.4 Model 4

In Model 4, I decrease another source of omitted variable bias by adding metro area fixed effects

which controls for factors that change wage in metro areas over time. Model 4 is expressed as:

𝑤
𝑟𝑚𝑡

𝑙𝑜𝑔(𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

) =  β
0

+  𝑤
𝑟𝑚𝑡

(β
1
𝑙𝑜𝑔(𝑇

𝑚𝑡
𝑇 ) + β

2
𝑁𝑇

𝑟𝑚𝑡
+ β

3
𝑙𝑜𝑔(𝑇

𝑚𝑡
𝑇 )𝑁𝑇

𝑟𝑚𝑡
 

+ 𝐹𝐸
𝑡
 +  𝐹𝐸

𝑚
) + ε

𝑟𝑚𝑡

In this equation, represents a vector of metro area fixed effect dummy variables. Similarly𝐹𝐸
𝑚

to Model 3, the dummy variable trap occurs. Therefore, when I’m creating Through the𝐹𝐸
𝑚
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function pd.get_dummies(), I complete the same steps of passing in the parameter

drop_first=True into the function to remove the first dummy variable which removes the problem

of multicollinearity.

This model further eliminates omitted variable bias by incorporating metro area fixed effects.

Therefore, most likely, the standard error will most likely further decrease and the R-squared

value will most likely further increase since the metro area fixed effects account for more of the

variance and so the model is more accurately fitted to the data. However, bias still exists in the

model since there are many different additional variables that impact wage that is not in the

model.

4.5  Model 5

Model 5 introduces controlled variables to account for other factors that impact wages beyond

the number of people in tech. The control variables that I introduce are respondent-related

variables and they are age, education, sex, race, and industry. Model 5 is expressed as:

𝑤
𝑟𝑚𝑡

𝑙𝑜𝑔(𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

) =  β
0

+  𝑤
𝑟𝑚𝑡

(β
1
𝑙𝑜𝑔(𝑇

𝑚𝑡
𝑇 ) + β

2
𝑁𝑇

𝑟𝑚𝑡
+ β

3
𝑙𝑜𝑔(𝑇

𝑚𝑡
𝑇 )𝑁𝑇

𝑟𝑚𝑡

+ 𝐹𝐸
𝑡
 +  𝐹𝐸

𝑚
 + β

4
𝐶

𝑟𝑚𝑡
 ) + ε

𝑟𝑚𝑡

In this equation, is a combined variable that represents all of the control variables stated𝐶
𝑟𝑚𝑡

above. In this model, the control variables, sex, race, and industry, are dummy variables. β
4

represents the correlation between all of the control variables and . By𝑤
𝑟𝑚𝑡

𝑙𝑜𝑔(𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

)

introducing respondent-related variables, we are able to account for other variables involving the

respondent that impacts their wage outside of the number of people in the tech industry and the

number of people in the non-tech industry. Multiple hypotheses are introduced with the control

variables. For the age variable, the hypothesis is that people’s income generally grows with age.

For the education variable, the hypothesis is that people’s income is larger if they have a higher

level of educational attainment. For the sex variable, males are generally paid more than females.

For the race variable, minorities are generally paid less than other races. For the industry

variable, certain industries make more money than other industries. If the control variables are

statistically significant, then the standard error should decrease and the R-squared value should

increase since bias will be reduced by adding additional variables that account for the variance in
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the data. However, there will still be omitted variable bias since there are so many factors that

impact a person’s wage. Some of those factors are difficult to measure and there isn’t data on all

of the variables that impact a person’s wage. Examples include personal values on money, family

financial pressures, and size of personal network.

5. RESULTS

5.1 Regression Outputs

Table : Wage Regressed on Number of People in Tech

5.2 Wages and Tech

The regression above shows that there is a statistically significant positive relationship between

wage and the number of people that work in tech in all models. Model 1 shows that a 1% change

in leads to a 0.0533% change in . To find the how wages changes as𝑙𝑜𝑔(𝑇
𝑚𝑡

) 𝑙𝑜𝑔(𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

) 𝑇
𝑚𝑡

changes according to model 1:

𝑤
𝑟𝑚𝑡

𝑙𝑜𝑔(𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

) =  β
0
 +  𝑤

𝑟𝑚𝑡
. 0533 𝑙𝑜𝑔(𝑇

𝑚𝑡
) +  ε

𝑟𝑚𝑡
  

𝑙𝑜𝑔(𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

𝑤
𝑟𝑚𝑡) =  β

0
 + 𝑙𝑜𝑔(𝑇

𝑚𝑡
.0533*𝑤

𝑟𝑚𝑡) +  ε
𝑟𝑚𝑡
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𝑒
𝑙𝑜𝑔(𝑤𝑎𝑔𝑒

𝑟𝑚𝑡
𝑤

𝑟𝑚𝑡)
 =  𝑒

β
0
+𝑙𝑜𝑔(𝑇

𝑚𝑡
.0533*𝑤

𝑟𝑚𝑡)+ ε
𝑟𝑚𝑡 

𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

𝑤
𝑟𝑚𝑡 = 𝑇

𝑚𝑡
.0533*𝑤

𝑟𝑚𝑡 ( 𝑒
β

0
+ ε

𝑟𝑚𝑡) 

𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

 = 𝑇
𝑚𝑡

.0533 ( 𝑒
β

0
+ ε

𝑟𝑚𝑡)
1

𝑤
𝑟𝑚𝑡

𝑑𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

𝑑𝑇
𝑚𝑡

 =  . 0533 𝑇
𝑚𝑡

−0.9467 ( 𝑒
β

0
+ ε

𝑟𝑚𝑡)
1

𝑤
𝑟𝑚𝑡

Since the exponent of is negative in the derivative, has a decreasing impact on the𝑇
𝑚𝑡

𝑇
𝑚𝑡

change in wage. In addition, since both the dependent and independent variables are log

transformed, the proportional change in wage associated with a p percent increase in is equal𝑇
𝑚𝑡

to where a = ]/100) and from Model 1.𝑒𝑎β 𝑙𝑜𝑔([100 + 𝑝 β
1

=  . 0533

However, since Model 1 has a large amount of omitted variable bias, it is more valuable to

analyze the other models since they account for other variables that are omitted in Model 1.

Specifically, since Model 5 includes non-tradable sector information, fixed effects and controls,

it is the most useful to use Model 5. The decrease of omitted variable bias in Model 5 compared

to Model 1 is reflected in the slightly higher R-squared value of Model 5. In Model 5, the

coefficient for the number of tech companies has decreased compared to Model 1 since variables

that are positively correlated with both wages and the number of tech companies were omitted

which causes the coefficient in Model 1 to be an overestimate.

In Model 5, the coefficient for the number of tech companies remains statistically significant.

The coefficient is 0.0337 and has a p-value of 0.007 which shows that the coefficient has a strong

statistical significance. Since Model 5 has an interaction variable, the changes in 𝑙𝑜𝑔(𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

)

due to a change in varies based on the whether the respondent r at metropolitan area m𝑙𝑜𝑔(𝑇
𝑚𝑡

)

at time t works in a non-tradable or tradeable industry. If is 1, which means that the𝑁𝑇
𝑟𝑚𝑡

respondent works in the nontradable industry, the following equation simplification applies:

+ … ) +𝑤
𝑟𝑚𝑡

𝑙𝑜𝑔(𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

) =  β
0

+ 𝑤
𝑟𝑚𝑡

 (. 0337𝑙𝑜𝑔(𝑇
𝑚𝑡
𝑇 ) +. 0247𝑙𝑜𝑔(𝑇

𝑚𝑡
𝑇 )𝑁𝑇

𝑟𝑚𝑡
 ε

𝑟𝑚𝑡
 

+ … ) +𝑤
𝑟𝑚𝑡

𝑙𝑜𝑔(𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

) =  β
0

+ 𝑤
𝑟𝑚𝑡

 (. 0337𝑙𝑜𝑔(𝑇
𝑚𝑡
𝑇 ) +. 0247𝑙𝑜𝑔(𝑇

𝑚𝑡
𝑇 )(1)  ε

𝑟𝑚𝑡
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+ … ) +𝑤
𝑟𝑚𝑡

𝑙𝑜𝑔(𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

) =  β
0

+ 𝑤
𝑟𝑚𝑡

 (. 0584𝑙𝑜𝑔(𝑇
𝑚𝑡
𝑇 )  ε

𝑟𝑚𝑡
 

Therefore, a 1% change in leads to a 0.0584% change in for those who𝑙𝑜𝑔(𝑇
𝑚𝑡

) 𝑙𝑜𝑔(𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

)

work in the nontradable industry. If is 0, which means that the respondent works in the𝑁𝑇
𝑟𝑚𝑡

tradable industry, the following equation simplification applies:

+ … ) +𝑤
𝑟𝑚𝑡

𝑙𝑜𝑔(𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

) =  β
0

+ 𝑤
𝑟𝑚𝑡

 (. 0337𝑙𝑜𝑔(𝑇
𝑚𝑡
𝑇 ) +. 0247𝑙𝑜𝑔(𝑇

𝑚𝑡
𝑇 )𝑁𝑇

𝑟𝑚𝑡
 ε

𝑟𝑚𝑡
 

+ … ) +𝑤
𝑟𝑚𝑡

𝑙𝑜𝑔(𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

) =  β
0

+ 𝑤
𝑟𝑚𝑡

 (. 0337𝑙𝑜𝑔(𝑇
𝑚𝑡
𝑇 ) +. 0247𝑙𝑜𝑔(𝑇

𝑚𝑡
𝑇 )(0)  ε

𝑟𝑚𝑡
 

+ … ) +𝑤
𝑟𝑚𝑡

𝑙𝑜𝑔(𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

) =  β
0

+ 𝑤
𝑟𝑚𝑡

 (. 0337𝑙𝑜𝑔(𝑇
𝑚𝑡
𝑇 )  ε

𝑟𝑚𝑡
 

Therefore, a 1% change in leads to a 0.0337% change in for those who𝑙𝑜𝑔(𝑇
𝑚𝑡

) 𝑙𝑜𝑔(𝑤𝑎𝑔𝑒
𝑟𝑚𝑡

)

work in the tradable industry. This conclusion shows that wages are more elastic to the growth of

tech companies in the nontradable industry compared to the tradable industry. This shows that

the growth of tech companies impacts the wages of those in the nontradable industry more since

they are part of the local economy. Therefore, the increase in spending from tech employees is

transferred to the wages of those in the non-tech nontradable industry.

5.3 Wages and Non-tradable vs Tradable Industries

In Model 2, I added a dummy variable that represents whether the respondent works in a

nontradable industry and an interaction variable between the number of tech companies and the

dummy variable.

Since the interaction variable is positive, that means that the wages are elastic to

s by adding a dummy variable for nontradable industries and an interaction variable between the

number of tech companies and nontradable industries.

5.4 Control Variables

I only included age and education in my regression tables since all other control variables are

dummy variables. Age and education are both statistically significant which implies that age is

correlated to wage and education is correlated to wage. Education has a higher beta than the beta
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for age which means that increasing educational level has a larger impact on wage than

increasing age. Essentially, increasing educational attainment by 1% correlates to a .1637% in

wage. The beta value for age is .0159 which signifies that increasing age by 1% correlates to a

.0159% increase in wage.

7. CONCLUSION

In this paper, I explored the relationship between the growth of tech companies, represented by

the number of tech employees, and the local wages of non-tech residents. I found that there is a

statistically significant positive correlation between the number of tech employees and the local

wages of non-tech residents. This has significant policy implications since non-tech residents’

wages benefit from the growth of tech companies in a metropolitan area. However, there are

other factors that should be accounted for when making policy decisions on the topic of

increasing the growth of tech companies. For example, if increasing the number of tech

employees increases the cost of living in the local economy more than the increase in wages of

non-tech employees, the benefit of the wage increase will be offset. Therefore, potential

extensions of this research would be to look at factors that determine the cost of living such as

groceries and rent and see how those factors are impacted by the number of tech companies. This

research extension would give policymakers a better overview of how non-tech employees are

impacted by the growth of tech companies and determine the best investments for their local

economy.
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