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Abstract

Many of the currently used monetary policy rules are of the form of proportional con-

trollers. We extend existing models to consider a different type of control–steady state

feedback. We propose a general form for the state feedback controllers with param-

eters which can be adjusted to reflect the macroeconomy in question. Our controller

offers an improvement over existing strategies in time to reach equilibrium and smooth-

ness. However, it is limited by the need apply high interest rates and access accurate

information about high-order derivatives of inflation.

1 Introduction

Control theoretic approaches to macroeconomic policy have been examined since the 1950’s

[1, 2] with the use of feedback as a stabilization mechanism introduced in 1954 [3]. The

1970’s saw criticism of the use of control theory in macroeconomic policy design [4]. Kyland

and Prescott concluded that “there is no way control theory can be made applicable to
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economic planning when expectations are rational” [5]. They argued that economic models

did not exhibit time-invariant behavior, and were therefore poor candidates for optimal

control. Those criticisms were later revised [6, 7], with rational expectations becoming a

consideration rather than an insurmountable obstacle [8–17].

In their 2014 paper, Hawkins et al. noted the similarity between PID controllers and

the macroeconomic regulation policies in use by central banks [18]. This paper builds on

their work by considering a different type of control: full state feedback. Full state feedback

offers a few key advantages over other control strategies because it allows the user to direct

the behavior of derivative parameters and provides the ability to directly set various system

characteristics, such as pole location [19]. However, state feedback control is greatly limited

by the need for accurate information about parameters which may be difficult to estimate

with high precision.

The remainder of this paper is organized as follows. In Section 2, we present the current

approach to macroeconomic policy: a convex optimization problem which minimizes the

central banks loss function subject to the Phillips curve. The solution to this formulation

is the Monetary Policy Rule. We then estimate the Monetary Rule’s performance in simu-

lation. In Section 3, we proceed to an alternative approach for optimizing macroeconomic

performance. We formulate the macroeconomy as a continuous-time system and derive a full

state feedback controller which minimizes a cost function. We will then compare the perfor-

mance of this controller with that of the traditional approach and evaluate its advantages

and limitations. Section 4 concludes and offers some directions for future work. Derivations
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can be found in Section 5, the Appendix.

2 The Canonical Approach

2.1 The Three Equation Model

New Keynesian macroeconomic dynamics is based on three key relationships: the Phillips

Curve (PC), which captures the relationship between inflation and output, the Investment-

Savings (IS) curve, which relates output and interest rate, and the interest-based monetary

policy rule. The Monetary Rule is derived from a convex optimization problem based on the

minimizing a central bank loss function subject to the Phillip’s Curve:

π1 = π0 + α(y1 − ye) (1)

where the present time inflation rate, π0 is related to the following period inflation rate π1 by

the difference between next period output y1 and the target output ye and α, which captures

the responsiveness of inflation to changes in output. The IS curve is

y1 = A0 + ar0 (2)

where A0 is autonomous expenditure at current time, r0 is the current interest rate, and a

captures the sensitivity of investment to the real interest rate. The loss function

L = (y1 − ye)2 + β(π1 − πT )2 (3)

illustrates the loss experienced by the central bank due to deviations from equilibrium output

ye and target inflation πT at the next period.
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2.2 Gapped Notation

Different economies have different targets for inflation. This makes the model presented

above cumbersome when considering different nations or even particular points in time.

Instead, we will use a model with equivalent dynamics but which considers the evolution

of the gaps between inflation, rate, and output and their targets rather than the three

parameters themselves.

Subtracting the desired value of inflation, πT , from both sides of equation (1), we have

π1 − πT = π0 − πT + α(y1 − ye) (4)

The terms π1−πT and π0−πT capture the deviation of inflation from its target in the current

and following period, respectively, so we will replace these with the terms πg[n], πg[n−1], the

gaps between inflation and target inflation at time n and time n− 1. Similarly, y1 − ye, the

deviation from output at time 1 will be replaced with yg[n]. Performing similar substitutions

on the IS curve and loss function gives us the following set of equations1:

πg[n] = πg[n− 1] + αyg[n] (5)

yg[n] = −arg[n] (6)

L[n] = yg[n]2 + βπg[n]2 (7)

1Henceforth, we will follow the convention of using square brackets and the variable n to denote discrete

time and parenthesis and the variable t for continuous time.
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2.3 Ratio-Based Weighting

In addition to different targets, different economies are guided by different emphasis on

output and inflation. To account for economies with different types of emphasis, we will

further modify the model presented in section 2.1 to consider emphasis on one variable or

another. We will then provide a derivation of the monetary policy rule with this model.

Finally, we perform simulations with various weights on the two parameters to gain some

intuition into the impact of emphasizing one consideration or another and form a basis of

comparison with our controller.

We start by rewriting the central bank loss function with new weights, β1 and 1 − β1,

where β1 varies from 0 to 1 and expresses the proportion of emphasis on meeting inflation

targets as opposed to output targets. For example, a β1 value of 1 would indicate a central

bank which was solely concerned with achieving target inflation and ignores deviation from

output in their evaluation of the quality of economic performance.

L[n] = (1− β1)yg[n]2 + β1πg[n]2 (8)

We minimize the loss function subject to the Phillip’s Curve

πg[n] = πg[n− 1] + αyg[n] (9)

We form the Lagrangian for the problem as

L = L[n]− λ [−πg [n] + αyg [n] + πg [n− 1]] (10)
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Differentiating with respect to yg[n] and πg[n] we have

∂L
∂yg

= 2(1− β)yg[n]− αλ = 0 (11)

or

2(1− β)yg[n] = αλ (12)

and

∂L
∂πg

= 2βπg[n] + λ = 0 (13)

or

2βπg[n] = −λ (14)

Clearing λ we have

(1− β)yg[n]

α
= −βπg[n] (15)

or

yg[n] =
−βαπg[n]

(1− β)
(16)

We use this relationship to rewrite the Phillip’s Curve so that:

πg[n+ 1] = πg[n] + αyg[n+ 1]

becomes

πg[n+ 1] = πg[n] + α
−βαπg[n+ 1]

1− β

so

πg[n+ 1]
(

1 +
α2β

1− β

)
= πg[n]
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or

πg[n+ 1] =
πg[n](1− β)

1− β + α2β

We now want to rewrite the rate gap

rg[n] =
1

a

αβπg[n+ 1]

1− β

in terms of the current inflation gap. Using the relationship we found above, this is

rg[n] =
αβπg[n]

a(1− β + α2β)

With these new weights, we can explore the effects of targeting inflation and output

equally or differently. Setting β = .75, for example, represents inflation targeting whereas

β = .25 represents output targeting. The response of the inflation rate, interest rate, and

output deviation in percent to an inflation shock given varying targeting goals is shown in

Figure 1.

Comparing the lowest curves in the two bottom panels of Figure 1 we see how an inflation

targeting bank will implement rate policy which causes a quicker convergence but results in

greater undershoot in output. Conversely, an output targeting bank will experience slower

convergence, but much less deviation in output. The Federal Reserve—the central bank of

the US—obeys a “dual mandate”, that is, in contrast to single-mandate inflation targeting

banks, the central bank must target inflation and output equally [20].

In equal targeting, as shown by the top panel of Figure 1, convergence takes approxi-

mately two years and the interest rate is at most about 0.5 above target (for the U.S., this

represents an interest rate of 2.5%, as the target rate is 2% [20]). These values will be used

as a basis of comparison for the controller derived in the following section.

7



Figure 1: Responses to inflation given equal, output, and inflation targeting
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3 State Feedback Control

3.1 Transfer Function Derivation

In order to design our controller, we will consider our system as represented in the time

domain by the IS and Phillips Curves. From this we will derive the frequency domain

transfer function, and then move back to the time domain by considering the system’s state

space representation.

Although it would be possible to bypass the frequency domain and move directly from the

time domain equations governing the system to its state space representation, we consider

the transfer function a useful formulation for several reasons. A transfer function is a ratio

of a system’s output to its input as polynomials in frequency. Whereas in the time domain,

the system is represented by a differential equation, the transfer function represents it as an

algebraic equation [19]. This is particularly helpful when considering multiple systems in

combination. In the time domain, the cascade of multiple systems requires convolution, but

in frequency the resultant system is found through multiplication of the algebraic transfer

functions [21]. This makes analysis significantly easier and more intuitive, and can provide

insight into the behavior of the system which, while equivalently presented in the time

domain, is less apparent.

We begin with the continuous time representation of the PC and IS [22] [23]:

πg(t) =

∫ t

−∞
χy(t− τ)yg(τ)dτ (17)

yg(t) =

∫ t

−∞
χr(t− τ)rg(τ)dτ (18)
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where πg(t), yg(t) and rg(t) are the continuous time gaps between the actual and target values

for inflation, output, and interest rate, respectively. Since these functions are zero valued

before time 0 they are equivalent to convolution. The central bank’s loss function can be

written

L(t) = β

∫ t

0

πg(τ)2dτ +

∫ t

0

yg(τ)2dτ (19)

While we will not make use of equation 19 in this paper, we provide this formulation of the

loss function because it may be interesting to consider the problem as a convex optimization

analogous to the discrete time optimization in Section 2.

We now consider these relationships in the frequency domain. Since equations (17) and

(18) depict a time-domain convolution, we have a frequency domain multiplication of these

quantities [21]. In the frequency domain, the PC and IS are:

Gπ(s) = χy(s)Gy(s) (20)

Gy(s) = χr(s)Gr(s) (21)

Combining equations (20) and (21) we have a relationship between the interest rate, our

input, and inflation, our output 2.

Gπ(s) = χy(s)χr(s)Gr(s) (22)

2In this paper, we use the word output in two distinct ways. In Section 2, output is used to mean economic

output, usually measured in GDP. In Section 3, the word “output” refers to the variable returned by the

system, which in our case is inflation
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So the system transfer function is

T (s) = χy(s)χr(s) (23)

where the system is shown below.

T (s)
r(t) π(t)

Let us now write T (s) as a ratio of two polynomials in s. The output response function

χy(t) is [22]:

χy(t) =
1

ω1m
e−γt/2 sinh(ω1t) (24)

which, in the frequency domain, is [21]:

χy(s) =
1((

s+ γ
2

)2 − ω2
1

)
m

(25)

The rate response function χr(s) is the solution to the differential equation [23] :

τr
dy(t)

dt
+ y(t) = τrJu

dr(t)

dt
+ Jrr(t) (26)

Performing a Laplace transform on equation (26), we obtain

τrsY (s) + Y (s) = τrJusR(s) + JrR(s) (27)

which gives us

χr(s) =
τrJus+ Jr
sτr + 1

(28)
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So our transfer function is

T (s) =
τrJus+ Jr

(sτr + 1)
((
s+ γ

2

)2 − ω2
1

)
m

(29)

However, because the instantaneous part of rate response is not usually observable [23],

Ju = 0. This gives us

T (s) =
Jr

(sτr + 1)
((
s+ γ

2

)2 − ω2
1

)
m

(30)

Or, in standard form

T (s) =
Jr

m
(
τrs3 + (τrγ + 1) s2 +

(
γ2τr
4
− ω2

1τr + γ
)
s+ γ2

4
− ω2

1

) (31)

3.2 State Space Representation

In a dynamical system, the states, collected in the state space vector x, are a set of variables

that characterize the evolution of the system. In our system, for example, the states x1, x2,

and x3 are inflation and its first and second derivative, because the behavior of the system

and its development over time can be completely predicted from information about the

inflation rates and its derivatives [24].

For linear and time invariant systems, behavior can be characterized in state space using

the dynamics matrix A, the control matrix B, the sensor matrix C, and the direct term D,

where the total system has the form ẋ = Ax + Bu, y = Cx + Du. In our case, the control

signal u is the interest rate set by a nation’s central bank, and the output of the system y
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is inflation 3. Since the output is identical to the first entry of the state vector, the matrix

D will be 0 in our case. The other matrices are presented below. Their derivation from the

transfer function can be found in the Section 5.1.

A =


0 1 0

0 0 1

− τrγ+1
τr

−
γ2τr

4
−ω2

1τr+γ

τr
−

γ2

4
−ω2

1

τr

 and B =


0

0

Jr
τrm

 (32)

and

C = [1 0 0] (33)

3.3 Controllability

Controllability is a system property wherein externally applied input (in our case, the control

signal u) is able to alter the initial state of the system in finite time [19]. State feedback can

only be applied to systems which are controllable. This section demonstrates the controlla-

bility of the system under consideration, thus showing that state feedback is in fact a valid

approach to achieve desired behavior.

A system is considered controllable if its controllability matrix is full rank [25]. The

controllability matrix of our system is given by

Cm =
[
B AB A2B

]
(34)

3As explained in footnote (2), “output” here refers to the result of the system, not the economic quantity.
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Which is

Cm =


0 0 Jr

τrm

0 Jr
τrm

(ω2
1−

γ2

4
)Jr

τ2rm

Jr
τrm

(ω2
1−

γ2

4
)Jr

τ2rm

Jr(−4γ2τ2r+16ω2τr−16γτr+γ4−8γ2ω2
1+16ω4

1)

16τ3rm

 (35)

Since we have a square controllability matrix, we know that the matrix is full rank if the

determinant is non-zero [26]. The determinant of our matrix is

|Cm| = −
J3
r

τ 3rm
3

(36)

If this seems remarkable, note that interchanging the first and third rows of the controllability

matrix results in an upper triangular matrix, whose determinant is simply the diagonal

entries multiplied together [26]. Thus, the system is controllable for for any finite values of

τr and m and any non-zero value of Jr. The usual range of these parameters satisfies the

constraint [22,23], so macroeconomic systems are, in general, controllable.

3.4 State Feedback Control

Having established the controllability of our system, we will now introduce state feedback

control of the form u = r − [k1 k2 k3]x to attain desired dynamic behavior. There are

two main approaches to gain selection. The first option allows us to place the poles directly,

by selecting desired overshoot and settling time behavior and analytically choosing our poles

to meet this criteria [19]. An alternative is to use a Linear-Quadratic-Regulator (LQR). The

first use of Linear Quadratic techniques in a maroeconomic setting was presented by Pindyck

in 1972 [27]. In LQR control, gains are chosen to minimize a quadratic cost function. The
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costs are captured by two positive semi definite matrices Qx and Qu [24]. While there are

various forms for the matrices, we chose to use diagonal matrices whose entries therefore

capture how much each state and input contributes to the overall cost.

The simulations were performed in MATLAB using the state space model object (with the

command ss(A, B, C, D)) created from the matrices derived in section 3.3. The Q matrices

were varied by increasing each parameter by a factor of 10 while holding the others constant.

The optimal gains for each choice of Qu, Qr were calculated by minimizing the quadratic

cost function using the command lqr. Because our goal was to achieve zero deviation from

target rates of inflation, the reference input signal r(t) was zero. A 1% inflation shock was

represented by a vector of initial conditions [1 0 0], and simulated using the command

initial. This command returns vectors describing the evolution of output and the states

over time, giving us direct access to the inflation response. Conversely, interest rate is not

directly returned, but was reconstructed by multiplying the calculated optimal gain value ki

by the corresponding state variable xi and summing the results. The table below lists the

parameter values used for our simulation [22,23]:

Parameter Value

γ 4.37

ω1 .93× 10−2

τr 11.6279

m 640.36

Jr −1.9186

The images in the left column of Figure 2 illustrate the response of the system with
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varying cost matrices. We found that overall there is a trade-off between interest rate

and convergence speed. The result of emphasizing inflation cost is shown in the panel in

the second row. This entry has by far the highest peak interest rate: approximately 2.75

% as opposed to maxima of 0.65 % in equal emphasis weighting (top panel) and inflation

derivative weighting (third row panel) and 0.1 % in interest rate emphasis weighting (bottom

panel). While the panels on equal cost emphasis and change in inflation cost emphasis have

similar peak values of rate, their minimal rate values and their convergence speeds differ.

The interest rate in the top panel falls to slightly below 0 %, while the interest rate in the

third row panel reaches below −0.2 %. Because the controller in the third row attempts

to minimize the derivative of inflation, it is trying to achieve gradual change. Therefore,

it more aggressively reduces the interest rate after the initially high value in order to slow

the descent of inflation. As expected, the derivative-emphasizing controller takes longer

to converge: approximately 15 years to the equal weighting controller’s 8 years. Like the

derivative-emphasis controller, the rate emphasizing one takes approximately 15 years to

converge to target. However, it keeps the interest rate much lower, and lets it oscillate so

that inflation descends by passing through periods of fast and slow decrease. Although the

optimal choice of cost values is outside the scope of this paper, the panels in Figure 2 provide

some intuition into the consequences of different weight choices.
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Figure 2: Continuous- (left) and discrete- (right) time responses with varying cost matrices
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3.5 Discretization

In this section, we will consider the discretized version of our system in order to form a

better basis of comparison against the Monetary Rule considered in Section 2. Because the

federal reserve makes control decisions on a quarterly basis, we consider the economy as a

discretized version of the model presented in section 3.5 with a sampling time Ts = .25 years.

This introduces discretization error [28]. The discrete-time response to an inflation shock

given various cost functions is shown in the right hand column of Figure 2.

The discrete time system performance is similar to the continuous time performance. The

primary differences are that discrete time rate tends to experience greater undershoot and

slightly faster convergence. The inflation cost emphasizing controller’s results most closely

resemble those of the Rule presented in Section 2. Our controller offers a decreased time

to convergence by several periods. It also provides a smoother transition to the equilibrium

rate. This is a reasonable improvement, considering that our controller takes into account

derivative parameters which are not considered by the Monetary Rule. As in continuous-

time, the major limitation of our controller’s performance is that it requires higher interest

rates to achieve targets.

4 Conclusion

This work considers a macroeconomic system as represented by the discrete and continuous

time Phillip’s Curve and Investment Savings Curve. A nation’s central bank choses an

interest rate to obtain optimal behavior. We consider the choice of interest rate from two
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different perspectives: as a convex optimization minimizing the Central Bank Loss function

or alternatively as an LQR controller choosing gain to minimize a cost function representing

deviation from target rate, inflation, and the first two derivatives of inflation.

Our LQR controller offers a few advantages over the Monetary Rule. It shows a faster

convergence to equilibrium, whose speed can be increased by increasing the weight on the

cost matrices presented in Section 3.5. The controller also provides a smoother convergence,

because its cost function considers the derivative of inflation, while the Monetary Rule does

not. Our controller also offers a novel way to achieve lowered inflation while keeping interest

rates very low: an oscillatory interest rate. Although this strategy also leads to oscillation

in the derivative of inflation, that is, the descent is “bumpy”, it converges to the target in

approximately the same amount of time as a strategy using much higher interest rates.

Our controller has several key limitations. In general, it requires higher interest rates

than does the Monetary Rule to achieve the same performance. In particular, convergence

below a certain threshold (approximately half a year) requires that interest rates oscillate

with high magnitude years after inflation has reached target. Another major limitation is

that it is impossible to directly access information about the derivatives of inflation. In

practice, a numerical approximation would be used to estimate derivatives, and it would

not have high accuracy. We do not have an estimation for the exact impact on controller

performance, however, the problem is likely to be severe, especially in the rate emphasizing

scheme where derivatives change non-monotonically. This problem can be addressed by

incorporating an observer into the system, which should greatly increase the accuracy of
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state variable estimates.
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5 Appendix

5.1 Transfer Function to State Space

In this section, we will demonstrate the conversion from transfer function representation to

state space representation. The transfer function

T (s) =
Jr

m
(
τrs3 + (τrγ + 1) s2 +

(
γ2τr
4
− ω2

1τr + γ
)
s+ γ2

4
− ω2

1

) (37)

corresponds to the time-domain differential equation

mτr
d3

dt2
π(t) + (mτrγ + 1)

d2

dt2
π(t) +m

(
γ2τr

4
− ω2

1τr + γ

)
d

dt
π(t) +

(
γ2

4
− ω2

1

)
π(t) = Jrr(t)

(38)
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Let us chose the state x1 to be the output, and the subsequent states to be derivatives of

each other. That is

x1 = π (39)

x2 =
dπ

dt
(40)

x3 =
d2π

dt2
(41)

where taking the derivative of the above yields

ẋ1 =
dπ

dt
(42)

ẋ2 =
d2π

dt2
(43)

ẋ3 =
d3π

dt3
(44)

From this, we can see that

ẋ3 = −τrγ + 1

τr
x3 −

γ2τr
4
− ω2

1τr + γ

τr
x2 −

γ2

4
− ω2

1

τr
x1 +

Jr
τrm

u (45)

from which we obtain the matrices

A =


0 1 0

0 0 1

− τrγ+1
τr

−
γ2τr

4
−ω2

1τr+γ

τr
−

γ2

4
−ω2

1

τr

 and B =


0

0

Jr
τrm

 (46)

and

C = [1 0 0] (47)

as desired.
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