Theory field exam

9 August 2019

There are two questions on two pages for this exam, Question A for Economics 207 and Question B for Economics 206. Answer all parts for both questions.

Question A (Economics 207)

1. Let S be a finite state space. Construct a set of priors $C \in \Delta S$ on a state space S such that preferences represented by the utility function $U:[0,1]^S \to \mathbb{R}$ defined by

$$U(f) = \min_{p \in C} \int_{S} f \, dp$$

do not satisfy comonotonic independence, as defined below. Sketch an argument for why that representation will fail comonotonic independence.

Definition 0.1. A binary relation \succeq on $[0,1]^S$ satisfies comonotonic independence if, for all $\alpha \in (0,1)$.

$$f \succsim g \iff \alpha f + (1 - \alpha)h \succsim \alpha f + (1 - \alpha)h$$

whenever f,g,h are pairwise comonotonic. Recall f and g are comotononic if $[f(s)-f(t)]\cdot[g(s)-g(t)]\geq 0$ for all s,t.

2. Maintain the notation from the part (1). Consider the following " α -maxmin" representation:

$$U(f) = \alpha \min_{p \in C} \int_{S} f \, dp + (1 - \alpha) \max \min_{p \in C} \int_{S} f \, dp$$

where $\alpha \in [0,1]$. Prove or provide counterexamples to the following **true or false** claims. Substantial credit will be given for the correct answer ("true" or "false") without a complete proof or counterexample.

(a) If \succeq has an α -maxmin representation, then \succeq satisfies C-independence, as defined below.

Definition 0.2. A binary relation \succeq on $[0,1]^S$ satisfies **C-independence** if, for all $\alpha \in (0,1)$,

$$f \succsim g \iff \alpha f + (1 - \alpha)x \succsim \alpha f + (1 - \alpha)x$$

whenever $f,g \in [0,1]^S$ and x is a constant act in [0,1].

(b) If \succeq has an α -maxmin representation, then \succeq satisfies uncertainty aversion, as defined below

Definition 0.3. A binary relation \succeq on $[0,1]^S$ satisfies uncertainty aversion if, for all $\alpha \in (0,1)$,

$$f \sim g \Longrightarrow \alpha f + (1 - \alpha)g \succsim f$$

whenever $f, g \in [0, 1]^S$.

3. Suppose \succeq admits a self-control representation in GP (2001). Prove or provide a counterexample to the following statement: \succeq satisfies Indifference to Randomization, that is, any closed set A is indifferent to its convex hull.

¹To ease exposition and avoid the step of converting to utility-vectors, we will implicitly assume the agent is risk-neutral over wealth on the unit interval [0,1]. Alternatively, we can imagine there are only two consequences and [0,1] parameterizes lotteries by the probability of the more desirable deterministic consequence.

Question B (Economics 206)

There are n agents indexed by $i \in \{1, ..., n\}$ and each agent has a type $\theta_i \in [0, 1]$ which is independently distributed according to the CDF $F : [0, 1] \to [0, 1]$ with strictly positive density f. Agents are privately informed about their type. There are also n objects with commonly known qualities $(q_1, ..., q_n) \in [0, 1]^n$. The designer can allocate at most one object to each agent. Agent i's value from getting allocated object k equals

$$\theta_i q_k$$
 .

We assume that agents have quasi-linear preferences and their utility when they pay t_i is given by

$$\begin{cases} \theta_i q_k - t_i & \text{if agent } i \text{ gets object } k \\ -t_i & \text{if agent } i \text{ does not receive an object} \end{cases}$$

Participation is voluntary such that no agent can get a utility less than 0.

- 1. Characterize the set of dominant strategy incentive compatible direct mechanisms.
- 2. Characterize the set of Bayes Nash incentive compatible direct mechanisms.
- 3. Characterize the set of Pareto efficient allocations of objects to agents without transfers.
- 4. Characterize the set of Pareto efficient allocations of objects to agents with transfers.
- 5. Derive the utilitarian efficient allocation of objects to agents (i.e. the allocation that maximizes the sum of the agents' physical utilities ignoring transfers).
- 6. Derive a dominant strategy incentive compatible mechanism that implements the utilitarian efficient allocation of objects to agents.
- 7. Characterize all such mechanisms.
- 8. Derive the sellers revenue in a given Bayes Nash incentive compatible mechanism.
- 9. Derive the revenue maximizing mechanism assuming that the designer assigns a value of zero to every object.