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Abstract 
 
This paper explores the optimal income tax treatment of couples. Each couple is modelled as 
a single agent supplying labor along two dimensions: primary-earner and secondary-earner 
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dimensional screening problem. We prove that, under regularity and separability assumptions 
for utility functions and for a wide class of social welfare functions, optimal tax schemes 
display negative jointness such that the tax rate on one person decreases in the earnings of the 
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to the multi-dimensional screening monopoly model, the optimal tax system is regular 
everywhere with no bunching for a wide set of parameters. 
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1 Introduction

The purpose of this paper is to explore the optimal income taxation of couples. Following

the seminal contribution of Mirrlees (1971), optimal income tax theory has focused almost

exclusively on redistribution across individuals. The small set of papers which do consider

couples usually assume separability in the couple tax function, and hence cannot fully address

the desirability of joint versus individual taxation, nor investigate the optimal form of jointness.1

In this paper, we impose no a priori restrictions on the income tax system allowing it to depend

on the earnings of each spouse in any nonlinear fashion. This is a multi-dimensional screening

problem where agents (couples) are characterized by a multi-dimensional parameter (ability and

taste-for-work parameters of each spouse) that are unobserved by the principal (the government

which maximizes social welfare).

Due to the technical difficulties involved, there are very few studies in the optimal tax

literature attempting to deal with multi-dimensional screening problems. Mirrlees (1976, 1986)

set out a general framework to study such problems and derived first-order conditions for an

incentive scheme to be optimal, but he did not attempt to characterize the shape of optimal

tax schedules and he did not consider specifically the important case of family taxation.2 The

nonlinear pricing literature in the field of Industrial Organization has investigated a number of

aspects of multi-dimensional screening problems. Wilson (1993), Armstrong and Rochet (1999),

Rochet and Stole (2003), Basov (2005) survey this literature. A central complication of multi-

dimensional screening problems is that, in contrast to one-dimensional problems, first-order

conditions are not always sufficient to characterize the optimal solution. The reason is that

solutions usually display ‘bunching’ at the bottom (Armstrong, 1996; Rochet and Choné, 1998),

whereby agents of different types are forced to make the same choices.

Our paper tackles these complexities in the following ways. First, we consider a framework

with a binary labor supply outcome (work or not work) for the secondary earner along with

1Rosen (1977) and Pechman (1987) provide informal arguments about the issue. Boskin and Sheshinski (1983)
considered a formal linear taxation problem of couples allowing for the possibility of selective marginal tax rates
on husband and wife. The linearity assumption effectively implies separable and hence individual-based (albeit
gender specific) tax treatment. Their problem is formally identical to a many-person Ramsey optimal tax problem.
More recently, Schroyen (2003) and Alesina and Ichino (2007) have extended the Boskin-Sheshinski framework to
the case of nonlinear taxation but keeping the assumption of separability in the tax treatment.

2More recently, Cremer, Pestieau and Rochet (2001) revisited the issue of commodity versus income taxation in
a multi-dimensional screening model assuming a discrete number of types. Brett (2006) and Cremer, Lozachmeur
and Pestieau (2006) consider the issue of couple taxation in discrete-type models. They show that, in general,
incentive compatibility constraints bind in complex ways making it difficult to obtain general properties. Cremer
et al. (2006) show that fully joint taxation is optimal only under very restrictive assumptions.
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continuous earnings for the primary earner, allowing us to obtain an intuitive understanding

of the shape of optimal schedules based on graphical exposition. Second, in a model featuring

continuous earnings for both spouses, we show analytically that there is no bunching when

redistributive tastes are moderate. Third, in both the continuous and the binary settings,

we are able to obtain qualitative properties of optimal schedules which are relevant to tax-

transfer policy and which, because of the bunching complications mentioned above, have not

been obtained in nonlinear pricing theory.

As in the nonlinear pricing literature, we make a number of simplifying assumptions to be

able to make progress in our understanding of optimal schedules. In particular, our framework

is based on the unitary approach whereby each couple is modelled as a single agent supplying

labor along two dimensions: the labor supply of a primary earner and the labor supply of a

secondary earner.3 We consider only couples and do not model the marriage decision.4 We

assume no income effects on labor supply and separability in the disutility of working for the

two members of the household, implying that there is no jointness in the family utility function

as such. Instead, jointness effects in our model arise because the social welfare function depends

on family utilities rather than individual utilities, and because of a potential correlation in spouse

abilities (assortative mating). As we shall see, our assumptions allow us to zoom in on the role

of equity concerns for the jointness of the tax system. We obtain the following two main results.

First, assuming uncorrelated abilities across spouses, we show that optimal incentive schemes

feature negative jointness defined as a situation where the tax rate on one person depends nega-

tively on the earnings of the spouse. In the binary model, this implies that the participation tax

rate on the secondary earner is decreasing in primary earnings. The intuition can be understood

as follows. At a given level of primary earnings, the government values redistribution from two-

earner couples to one-earner couples, because two-earner couples have a higher total income and

tend to be better off. This requires a positive participation tax on the secondary earner. How-

ever, because the second-earner contribution to couple utility is declining in importance as the

primary earner ability becomes larger, the redistributive virtue of taxing secondary earnings is

also declining. As a result, the optimal second-earner tax is declining in primary earnings. This

negative jointness result carries over to the continuous model, where we present a proof that, in

any no-bunching solution, the couple tax liability as a function of spousal earnings displays a

3We adopt the unitary approach because it is the simplest tool of analysis, acknowledging that this model
conflicts with empirical evidence (e.g. Lundberg et al., 1997). In Section 4, we discuss the implications of
adopting a more realistic model of family labor supply.

4We discuss the implications of endogenous marriage briefly in Section 4.
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negative cross-derivative everywhere. We are able to demonstrate that bunching does not occur

as long as redistributive tastes are moderate.

Second, we analyze the asymptotics of optimal tax schemes as primary earnings become

large, and show that, for a wide class of social welfare objectives, the tax distortion on the

secondary earner tends to zero in the limit. In other words, the earnings of wives married to the

highest-income husbands should be exempted from taxation. Although this statement may seem

reminiscent of the classic result that optimal tax schemes display no distortion at the top, our

result rests on a different logic and may be seen as an extension of the negative jointness result.

A positive tax on secondary earners amounts to redistributing from two-earner couples to one-

earner couples. But for couples with very large primary earnings, second-earner participation has

a negligible effect on family utility, implying that redistribution from two-earner to one-earner

couples has no value to the government in the limit.

The desirability of negative jointness may seem surprising at first glance. Indeed, a progres-

sive family based income tax system, as used in for example the United States, is associated

with positive jointness and progressive individually based income tax system is associated with

zero jointness. However, it is important to note that most OECD countries, including those

which have moved to individual income tax filing, also operate family-based means-tested wel-

fare programs with transfers being phased out with joint family income. The combination of

an individual income tax and a joint welfare system creates negative jointness. To see this,

consider a secondary earner, say the wife, deciding about labor market entry. If she is married

to a low-income husband, the family is in the phase-out range of transfer programs, and she will

face a high effective tax rate. On the other hand, if she is married to a high-income husband,

the family is beyond the phase-out range of transfer programs, and she will face a low effective

tax rate because the income tax is individual. Hence, the wife’s tax is declining in the husband’s

earnings.

The rest of the paper is organized as follows. Section 2 analyzes the binary model where

secondary earners respond only along the extensive margin, while Section 3 extends our results

to the continuous model where both spouses are modelled symmetrically and respond along the

intensive margin. Section 4 discusses model extensions and Section 5 concludes.
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2 A Binary Labor Supply Choice for the Secondary Earner

2.1 Labor Supply Model

We start by setting out a simplified labor supply model for couples allowing us to derive explicit

optimal tax formulas which can be compared directly to Mirrlees (1971). In each couple, there

is a primary earner who always participates in the labor market and makes a choice about the

size of labor earnings z. As in the Mirrlees (1971) model, the primary earner is characterized by

a scalar ability parameter n which is heterogeneous in the population and cannot be observed by

the government. The cost of earning z for a primary earner with ability n is given by n ·h(z/n),
where h(.) is an increasing and convex function of class C2 and normalized so that h(0) = 0 and

h0(1) = 1. Secondary earners choose whether or not to participate in the labor market, l = 0, 1,

but hours worked conditional on working are fixed. Their labor income is given by w · l, and
they face a fixed cost of work q if l = 1. In this simplified model, we assume that secondary

earners are identical with respect to the wage rate w, but allow for heterogeneity with respect

to the fixed cost q which is unobserved by the government. Our model implies that primary

earners respond to taxes only along the intensive margin, whereas secondary earners respond

only along the extensive margin. The main reason for introducing this asymmetric model is

for simplicity of exposition and to allow us to understand the intuition behind our key negative

jointness result.5

We assume that couple characteristics (n, q) are distributed according to a continuous den-

sity distribution defined over [n, n̄] × [0,∞). We denote by P (q|n) the cumulative distribution
function of q conditional on n, p(q|n) the density function of q conditional on n, and f(n) the

unconditional density of n. We normalize the size of the total population to one.

Because the government cannot observe n and q, it has to base redistribution solely on ob-

served earnings using a non-linear tax system T (z, wl). Because l is binary and w is uniform,

this tax system simplifies to a pair of schedules, T0(z) and T1(z), depending on whether the

spouse works or not. The tax system is separable if and only if T 00 = T 01 everywhere or, equiva-

lently, if T0 and T1 differ by a constant. Net-of-tax income for a couple with earnings (z, w · l) is
given by c = z+w · l−Tl(z). The utility function for a couple whose primary earner has ability

5We show in Section 3 that our results extend to a symmetric model where both spouses respond along the
extensive margin. It should be noted, however, that because of fixed costs of work (due to child care for example),
secondary earners’ labor supply responds primarily along the extensive margin (see Blundell and MaCurdy, 1999
for a recent survey).
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n and whose secondary earner has a fixed cost of work q takes the quasi-linear form

u(c, z, l) = c− n · h
³ z
n

´
− q · l. (1)

The couple chooses (z, l) so as to maximize utility (1) subject to its budget constraint c =

z + w · l − Tl(z).

A number of important assumptions are embodied in this specification of the couple’s prob-

lem. First, the quasi-linear utility specification implies no income effects on the labor supply

of either spouse. As is well known from the nonlinear multi-product pricing literature (e.g.,

Wilson, 1993), and shown more recently by Diamond (1998) in the context of optimal nonlinear

income taxation, ruling out income effects simplifies greatly the theoretical analysis.6 Second,

we assume that the disutility of work is separable for the two spouses. This assumption would

be violated if spouses like to spend leisure time together, and it may be violated if the husband’s

and wife’s time are combined in household production processes to generate commodities within

the home.7 ,8 Third, our model is equivalent to a single decision maker optimizing along two

dimensions, z and l, implying that there is no conflict in the family regarding consumption or

labor supply choices.9 Fourth, since we consider a model with only couples, we do not account

for the potential effect of taxes on marriage decisions.10 To be sure, this is a set of very strong

assumptions. However, the simplicity of our model allows us to zoom in on reasons for jointness

driven by social preferences for equity. In Section 4, we discuss in some detail how relaxing a

number of these assumptions would affect our results.

The first-order condition for primary earnings z (conditional on l = 0, 1) is given by

h0
³ z
n

´
= 1− T 0l (z). (2)

In the case of no tax distortion, T 0l (z) = 0, our normalization assumption h0(1) = 1 implies

6The empirical labor market literature tends to find small income effects (e.g., Blundell and MaCurdy, 1999),
but the empirical identification of income effects is not as compelling as the identification of substitution effects.
In particular, it is perceivable that primary earnings have important income effects on secondary earners’ work
decisions.

7Notice also that, since assumptions one and two together imply independence between spouses in the utility
function, we are stacking the cards in favor of separable taxation.

8Piggott and Whalley (1996) extended the Boskin-Sheshinski linear tax model to incorporate home production,
making the point that selective marginal tax rates on spouses leads to a distortion in the household production
input mix.

9This stands in contrast to the recent literature on collective labor supply decisions (following the seminal
contributions by Chiappori 1988, 1992) modelling couples as two individual utility maximizers interacting with
one another. The single decision maker hypothesis provides a useful and simpler benchmark for our analysis.
10However, the empirical magitude of such effects seems to be quite modest (Alm and Whittington, 1999; Eissa

and Hoynes, 2000).
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z = n. Hence, it is natural to interpret n as potential earnings.11 Positive marginal tax rates

depress actual earnings z below potential earnings n. If the tax system is non-separable such

that T 00 6= T 01, there will be an interdependence between the earnings choice z of the primary

earner and the labor force participation decision l of the spouse. We denote by zl the optimal

choice of z at a given l. If the tax system is separable, T 00 = T 01, we have z0 = z1.

We define the elasticity of primary earnings with respect to the net-of-tax rate 1− T 0l as

εl ≡
1− T 0l
zl

∂zl
∂(1− T 0l )

=
nh0(zl/n)

zlh00(zl/n)
. (3)

Because we have assumed away income effects, the compensated and uncompensated elasticities

of labor supply are of course identical. With separable taxation so that z0 = z1, we have ε0 = ε1.

For the secondary earner to enter the labor market and work, the utility from participation

must be greater than or equal to the utility from non-participation. Let us denote by

Vl(n) = zl − Tl(zl)− nh
³zl
n

´
+ w · l, (4)

the indirect utility of the couple (exclusive of the fixed work cost q) at a given l. Differentiating

with respect to n (which we denote by an upper dot from now on), and using the envelope

theorem, we obtain

V̇l(n) = −h
³zl
n

´
+

zl
n
· h0
³zl
n

´
. (5)

The participation constraint for secondary earners is given by

q ≤ V1(n)− V0(n) ≡ q̄, (6)

where q̄ is the net gain from working exclusive of the fixed work cost q. For families with a fixed

cost below (above) the threshold-value q̄, the secondary earner works (does not work).12 The

probability of labor force participation for the secondary earner at a given ability level n of the

primary earner is given by P (q̄|n). We define the participation elasticity with respect to the
net gain from working q̄ as

η ≡ q̄

P (q̄|n)
∂P (q̄|n)

∂q̄
. (7)

To complete the description of the household, we need to define a tax rate on second-earner

participation. Since w is the gross gain from working, and q̄ has been defined as the (money

11 In general, economists consider models where n is a wage rate and where u = c−h(z/n), which leads to a first
order condition 1−T 0(z) = n ·h0(z/n). Our results would carry over to this standard model but n could no longer
be interpreted as potential earnings and the interpretation of optimal tax formulas would be less transparent (see
Saez (2001)).
12 If the tax function is non-separable (so that z0 6= z1), the value of q̄ and hence the participation decision of

the secondary earner will depend on the earnings choice of the primary earner.
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metric) net utility gain from working, we can define this tax rate as τ = (w − q̄) /w. Notice

that, if taxation is separate so that T 00 = T 01 and z0 = z1, we have τ = (T1 − T0)/w. On the

other hand, if taxation is non-separate, then T1 − T0 reflects the total tax change for the family

when the secondary earner starts working and the primary earner does an associated earnings

adjustment, whereas the w − q̄ reflects the tax burden on second-earner participation as such.

It is easy to prove the following (using eqs 4-6):

Lemma 1 At any point n, we have:

• T 00 > T 01 ⇐⇒ z0 < z1 ⇐⇒ τ̇ < 0

• T 00 = T 01 ⇐⇒ z0 = z1 ⇐⇒ τ̇ = 0

• T 00 < T 01 ⇐⇒ z0 > z1 ⇐⇒ τ̇ > 0

This lemma is simply another way of stating the theorem of equality of cross-partial deriv-

atives. We naturally say that a tax system has positive jointness if τ is increasing in n and

negative jointness if τ is decreasing in n. If τ is constant, the tax system is separable. These

definitions can be either local (at a given n) or global (for every n).

It is important to note that double-deviation issues are taken care of in our model, because

we consider earnings at a given n and allow z to adapt optimally when l changes. That is, if

the secondary earners starts working, optimal primary earnings shift from z0(n) to z1(n) but

the key first-order condition (5) continues to apply. More precisely, it is easy to show, exactly

as in the Mirrlees (1971) model, that a given path for (z0(n), z1(n)) can be implemented via a

truthful mechanism or equivalently with a non-linear tax system if and only if z0(n) and z1(n)

are non-negative and non-decreasing in n (see Kleven et al., 2006, for details).

2.2 Government Objective

As usual in optimal income tax models, the government maximizes a social welfare function de-

fined as the sum of concave and increasing transformations Ψ(.) of the couples’ utilities subject to

a government budget constraint and the constraints imposed by household utility maximization.

Formally, the government maximizes

W =

Z n̄

n=n

Z ∞

q=0
Ψ(Vl(n)− q · l)p(q|n)f(n)dqdn, (8)

subject to the budget constraintZ n̄

n=n

Z ∞

q=0
Tl(zl)p(q|n)f(n)dqdn ≥ 0, (9)
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and subject to V̇0(n) and V̇1(n) in eq. (5). We denote by λ the multiplier of the budget

constraint (9). Nothing would change in the analysis if we assumed a positive exogenous revenue

requirement for the government.

We may capture the redistributive tastes of the government by social marginal welfare weights

across different couples. We denote by gl(n) the (average) social marginal welfare weight for

couples with primary-earner ability n and secondary-earner participation l. Formally, we have

g0(n) = Ψ
0(V0(n))/λ and g1(n) =

R q̄
0 Ψ

0(V1(n) − q)p(q|n)dq/(P (q̄|n) · λ). The profile for these
g-weights in the population is crucial for the properties of optimal tax schedules.

Figure 1 illustrates curves for g0 (n) and g1 (n) satisfying four ‘natural’ properties. First,

because of our assumption of no income effects, the average of g0 and g1 across the full population

is one.13 Second, the concavity of Ψ tend to make g0 and g1 decreasing in n.14 Third, we have

g0(n)−g1(n) > 0 because, at a given n, one-earner couples are worse off than two-earner couples
and Ψ is concave. To see why one-earner couples are worse off (at a given n), notice that the

reason for second-earner non-participation is a high work cost q. More precisely, the utility of

any one-earner couple is V0 (n), and this must be lower than the utility of a two-earner couple,

V1 (n) − q, given that this couple has decided to let the spouse work (from eq. 6).15 Fourth,

the difference in weights g0 − g1 is naturally decreasing in n as the contribution of secondary

earnings becomes relatively smaller as n becomes larger. As we shall see below, this property is

closely related to Ψ0 being convex. In the limit when n goes to infinity, we would expect g0− g1

to converge to zero.

2.3 The Optimal Income Tax Schedule and its Properties

2.3.1 Explicit Tax Formulas and their relation to Mirrlees (1971)

The simple model described above makes it possible to derive explicit optimal tax formulas as

in the individualistic Mirrlees (1971) framework. In appendix A.1, we show that the optimal

tax scheme satisfies the following.

13Because of no income effects, it costs exactly $1 to redistribute $1 uniformly across all couples. The social
marginal value (expressed in terms of government funds) of redistributing $1 to every couple is exactly the sum
of the g’s across the full population.
14As V0(n) is increasing in n, g0(n) is obviously decreasing in n. As we will see, g1(n) will in general be

decreasing in n as well.
15Conceivably, we may alternatively have defined q as the value of home production–say, the spouse’s ability

in cooking or child care–by adding q in the utility function such that u = z+w · l−T −n ·h(z/n)+q ·(1− l). The
work decision would be identical in this model, but one-earner couples would be better off than two-earner couples
and hence g0 − g1 < 0. It is easy to show that our negative jointness result would become a positive jointness
result in this context. However, we believe that inequality in work opportunities is much more important than
inequality in home production abilities.
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Proposition 1 The first-order conditions for the optimal marginal tax rates T 00 and T
0
1 at ability

level n can be written as

T 00
1− T 00

=
1

ε0
· 1

nf(n)(1− P (q̄|n)) ·
Z n̄

n

©
(1− g0)

¡
1− P

¡
q̄|n0

¢¢
+ [T1 − T0]p

¡
q̄|n0

¢ª
f(n0)dn0 (10)

T 01
1− T 01

=
1

ε1
· 1

nf(n)P (q̄|n) ·
Z n̄

n

©
(1− g1)P

¡
q̄|n0

¢
− [T1 − T0]p

¡
q̄|n0

¢ª
f(n0)dn0, (11)

where all the terms outside the integrals are evaluated at ability level n and all the terms inside the

integrals are evaluated at n0. These conditions apply at any point n where there is no bunching,

i.e., where zl(n) is strictly increasing in n. If the conditions generate segments over which z0(n)

or z1(n) are decreasing, then there is bunching and z0(n) or z1(n) are constant over a segment.

Kleven et al. (2006) presents a detailed discussion of the relation between these tax formulas

and classic Mirrlees-type formulas. At the present moment, let us remark on just two aspects.

First, the average marginal tax rate faced by primary earners in one- and two-earner couples

is identical to the optimal marginal tax rate in the Mirrlees framework. By taking the sum

of (10) and (11), we obtain a weighted average of T 00 and T 01 which is exactly identical to the

Mirrlees formula in the case with no income effects (as in Diamond, 1998). This implies that

redistribution across couples with different primary earners follows the standard logic in the

literature. The role of introducing a secondary earner in the household is to create a potential

difference in the marginal tax rates faced by primary earners with working and non-working

spouses, which we explore in detail below.

Second, the famous results that optimal marginal tax rates are zero at the bottom and the

top carry over to the couple model, and follow directly from the transversality conditions (see

Appendix A.1). As is well-known, these results have limited practical relevance, because the

bottom result does not apply when there is an atom of non-workers, and because the top-rate

drops to zero only for the single top earner in empirical earnings distributions (Saez, 2001).

2.3.2 Asymptotic Properties of the Optimal Schedule

Suppose that the ability distribution of primary earners f (n) has an infinite tail so that n̄ =∞.
Since top tails of income distributions are well approximated by Pareto distributions, we assume

that f(n) has a Pareto tail with parameter a > 1.

As n tends to infinity, the additional income generated by the secondary earner becomes

infinitesimal relative to primary-earner income in the limit. For any reasonable welfare function,

9



we would then have that g0(n) and g1(n) converge to the same value g∞.16 It is also natural

to assume that primary-earner elasticities ε0 and ε1 converge to ε∞, and that the distribution

of fixed work costs P (q|n) converges to a distribution P∞(q). We can then prove the following

result:

Proposition 2 Suppose T1−T0, T 00, T
0
1, q̄, τ converge to ∆T

∞, T 0∞0 , T
0∞
1 , q̄

∞, τ∞ as n→∞.
Then we have

• ∆T∞ = τ∞ = 0, i.e., the second-earner tax rate goes to zero as n tends to infinity.

• T 0∞0 = T 0∞1 = (1− g∞) / (1− g∞ + a · ε∞) > 0, exactly as in the Mirrlees model.

Proof:

Because T1 − T0 converges as n goes to infinity, it must be the case that T 0∞0 = T 0∞1 = T 0∞.

Because q̄ converges, we have that P (q̄) and p(q̄) also converge, and we denote their limits by

P∞ and p∞. The Pareto assumption implies that (1−F (n))/(nf(n)) = 1/a for large n. Taking

the limit of (10) and (11) as n→∞, we obtain

T 0∞

1− T 0∞
=

1

ε∞
· 1
a
·
∙
1− g∞ +∆T∞

p∞

1− P∞

¸
,

T 0∞

1− T 0∞
=

1

ε∞
· 1
a
·
∙
1− g∞ −∆T∞ p∞

P∞

¸
.

For this to be satisfied, we must have ∆T∞ = 0, and the formula for T 0∞ then follows. ¤

The result in Proposition 2 is quite striking. The earnings of spouses to the highest-income

earners should be exempted from taxation, even in the case where the government tries to

extract as much tax revenue as possible from high-income couples (g∞ = 0). Although the

result may seem similar to the classic result of no distortion at the top, the logic behind our

result is completely different. Indeed, in the present case with an infinite tail for n, the traditional

result does not apply and we have T 0∞0 = T 0∞1 > 0.17

To understand the economic intuition for this result, consider a situation where T1−T0 does
not converge to zero. This is illustrated in Figure 2 which shows the two schedules T0, T1 as

a function of ability n, assuming that T1 − T0 converges to ∆T∞ > 0. We want to establish

a contradiction by arguing that, in this situation, it is always possible to increase welfare by

reducing T1 − T0 a little bit at the top. Consider specifically a reform which increases the tax

16 In the case where g∞ = 0, the optimal tax system extracts as much tax revenue as possible from the very
rich (‘soaking the rich’).
17Conversely, in the case of a bounded ability distribution, the top marginal tax rate on the primary earner

would be zero, but then the tax on the secondary earner would be positive.
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on one-earner couples and decreases the tax on two-earner couples above some high n, and in

such a way that the net mechanical effect on government revenue is zero.18 These tax burden

changes are achieved by increasing the marginal tax rate for one-earner couples in a small band

(n, n+ dn), and lowering the marginal tax rate for two-earner couples in this band.

What are the welfare effects of the reform? First, there are direct welfare effects as the

reform redistribute income from one-earner couples (who lose dW0) to two-earner couples (who

gain dW1). However, because social marginal welfare weights for one- and two-earner couples

have converged to g∞, these direct welfare effects cancel out. Second, there are fiscal effects due

to earnings responses of primary earners in the small band where marginal tax rates have been

changed (dH0 and dH1). Because T1−T0 have converged to a constant for large n, the marginal
tax rates on one- and two-earner couples are identical, T 0∞0 = T 0∞1 , which implies z0 = z1 and

hence identical primary-earner elasticities ε0 = ε1. As a consequence, the negative fiscal effect

dH0 offsets the positive fiscal effect dH1. Third, there is a participation effect as some secondary

earners are induced to join the labor force since the extra tax on two-earner families has been

reduced. Because T1 − T0 is initially positive, this response will generate a positive fiscal effect,

dP > 0. Since all other effects were zero, dP > 0 is the net total welfare effect of the reform.

Since the reform increases welfare, the original schedule with ∆T∞ > 0 cannot be optimal.19

2.3.3 Desirability of Negative Jointness

A key point of this paper is to demonstrate that optimal schedules are characterized by negative

jointness. To show this, we introduce two additional assumptions.

Assumption 1 The function V −→ Ψ0(V ) is convex.

This is a very natural assumption on social preferences which is satisfied for all standard social

welfare functions such as the CRRA form, Ψ(V ) = V 1−γ/(1 − γ) with γ > 0, and the CARA

form. As we show formally below, the assumption is directly related to the property that g0−g1
is decreasing in n which, as we discussed above, is intuitively appealing. Notice also that,

in the context of consumer theory, convexity of marginal utility of consumption is a common

assumption, since it captures the notion of prudence and generates precautionary savings (e.g.

Deaton, 1992).

18Because q̄ and hence P (q̄) have converged, revenue-neutrality requires that the tax changes on one- and
two-earner couples are dT0 = dT/(1− P (q̄)) and dT1 = −dT/P (q̄), respectively.
19Of course, the opposite situation with ∆T∞ < 0 cannot be optimal either, because then the opposite reform

would improve welfare.
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Assumption 2 q and n are independently distributed.

Abstracting from correlation in spouse characteristics (assortative matching) allows us to isolate

the implications for the optimal tax system of the interaction between spouses occurring through

the social welfare function. Obviously, we do not expect this assumption to hold in practice and

in Section 2.4 we examine numerically how assortative matching affects our results.

The most transparent way to demonstrate the desirability of negative jointness is by a tax

reform argument starting from the optimal separable tax system. Under separable tax treatment,

the primary-earner marginal tax rate is identical in one- and two-earner couples, T 00 = T 01 ≡ T 0,

and it is straightforward to show that T 0 is given by the standard Mirrlees formula with no

income effects (as in Diamond, 1998). Moreover, separable tax treatment implies that T1 − T0

is constant in n, and its value can be obtained by shifting the T1- and T0-schedules uniformly

by dT . For the T1-schedule, this generates the formula

(T1 − T0) ·
p(q̄)

P (q̄)
= 1−

Z n̄

n
g1(n)f(n)dn,

and for the T0-schedule, we obtain

(T1 − T0) ·
p(q̄)

1− P (q̄)
=

Z n̄

n
g0(n)f(n)dn− 1.

Summing these two equations implies

(T1 − T0) ·
p(q̄)

P (q̄) · (1− P (q̄))
=

Z n̄

n
[g0(n)− g1(n)]f(n)dn > 0, (12)

where the positive sign follows from the property g0 (n)− g1 (n) > 0 ∀n. As pointed out above,
this property derives from the fact that one-earner couples are worse off than two-earner couples

at any n along with Ψ being concave. Hence, the optimal separable tax schedule involves

T1 − T0 > 0. Any separable tax system also satisfies the following important property.

Lemma 2 Under Assumptions 1 and 2 and with a separable tax system, g0(n)−g1(n) is (weakly)
decreasing in n.

Proof:

Because the tax system is separable, we have that q̄ = w− (T1−T0) is constant in n. Moreover,

by Assumption 2, we also have that p(q|n) = p(q) and P (q̄|n) = P (q̄) are constant in n. Then,

by using the definitions of g0 (n) and g1 (n), we obtain

d [g0(n)− g1(n)]

dn
=

"
Ψ00(V0)

λ
−
R q̄
0 Ψ

00(V0 + q̄ − q)p(q)dq

λ · P (q̄)

#
· V̇0,

12



where we have used V1 = V0+ q̄ from eq. (6). By Assumption 1, Ψ00 is increasing and hence the

expression in square brackets is negative. Moreover, V0 is increasing in n, which demonstrates

the Lemma. ¤

Starting from the optimal separable tax schedule, consider a tax reform introducing a little

bit of negative jointness as shown in Figure 3. The tax reform has two components. Above

ability level n, we increase the tax on one-earner couples and decrease the tax on two-earner

couples. Below ability level n, we decrease the tax on one-earner couples and increase the tax on

two-earner couples. As shown the figure, these tax burden changes are associated with changes

in the marginal tax rates on primary earners around n.

To ensure that the reform is revenue-neutral (absent any behavioral responses), let the size

of the tax change on each segment be inversely proportional to the number of couples on the

segment. This implies that, above n, the tax change for one-earner couples is dT a
0 = dT/[(1 −

F (n))(1− P (q̄))], while the tax change for two-earner couples is dT a
1 = −dT/[(1− F (n))P (q̄)].

Below n, the tax change for one-earner couples is dT b
0 = dT/[F (n)(1−P (q̄))] and the tax change

for two-earner couples is dT b
1 = dT/[F (n)P (q̄)]. These changes imply that the direct welfare

effect of redistributing income across the different types of couples can be written as

dW =
dT

F (n)
·
Z n

n
[g0(n

0)− g1(n
0)]f(n0)dn0 − dT

1− F (n)
·
Z n̄

n
[g0(n

0)− g1(n
0)]f(n0)dn0. (13)

Lemma 2 implies that dW > 0. That is, the gain created at the bottom by redistributing from

two-earner to one-earner couples (the first term in 13) dominates the loss created at the top

from the opposite redistribution (the second term in 13), because g0−g1 is higher at the bottom
as second-earner participation is relatively more important in low-income families.

Besides the direct welfare effect, the tax reform gives rise to behavioral responses along the

intensive and extensive margins. First, since the reform increases (reduces) the marginal tax rate

on the primary earner in one-earner (two-earner) couples around n, there are earnings responses

going in opposite directions in the two types of couples. Since we start from a situation with

separable taxation, T 00 = T 01, we have identical primary-earner elasticities ε0 = ε1. This implies

that the fiscal effect of these intensive responses offset one another exactly.

Second, the tax reform induces some secondary earners to change labor force participation

status. Above n, non-working spouses will be induced to join the labor force, whereas below

n, working spouses have an incentive to drop out. Because spouse characteristics q and n are

independent, and because we start from a separable tax system, the participation elasticity is

constant in n (from eq. 7) and the positive and negative participation effects then cancel out.

13



n+dnn-dn n

{

T -T > 01 0

Tax paid

Ability

Figure 3. Desirability of Negative Jointness

T : Two-earner

Couples
1

T : One-earner

Couples
0

Reform



To see this more formally, note that the number of switchers above n is (1 − F (n))p(q̄)dq̄a

where dq̄a = dT a
0 − dT a

1 = dT/[(1 − F (n))P (q̄) (1 − P (q̄))]. Symmetrically, the number of

switchers below n is F (n)p(q̄)dq̄b where dq̄b = dT b
0 − dT b

1 = −dT/[F (n)P (q̄) (1− P (q̄))]. Since

the positive and negative participation effects have the same magnitude, and because T1−T0 is

initially constant in n, the net fiscal effect of participation responses is zero.

We can then conclude that dW > 0 is the net total welfare effect of the reform, allowing us

to state the following proposition.

Proposition 3 Under Assumptions 1 and 2, and starting from the optimal separable schedule,

introducing some negative jointness always increases welfare.

This tax-reform result represents a first step in establishing that negative jointness is a

feature of fully optimized schedules. In Kleven et al. (2006), we show formally that, under

additional regularity assumptions on the functions h(.) and P (.), the optimum schedule does

indeed display negative jointness everywhere, i.e., T 00 > T 01 ∀n and τ is decreasing in n. We omit
the formal proof here because it does not provide any additional economic insight, and because

the proof in the double continuous model in Section 3 is mathematically more elegant.

Although our results may seem surprising at first glance, they obey a simple redistributive

logic. The government wants to support one-earner families because they are less well-off than

two-earner families. If the tax schedule for two-earner couples is seen as the base schedule, the

schedule for one-earner couples is obtained from this base by giving a tax break for having a

dependent spouse. Because the importance of second-earner participation declines with primary

earnings, the dependent spouse tax allowance should be declining in primary earnings. In the

limit where primary earnings go to infinity, the allowance converges to zero.

2.4 Numerical Simulations

We make the following simple parametric assumptions. First, we assume that h(x) = x1+k/(1+

k), so that we have a constant primary earner elasticity ε = 1/k. Second, we assume that

F (n) is distributed over [n, n̄] as a truncated Pareto distribution with parameter a > 1. Third,

we assume that q is distributed as a power function on the interval [0, qmax] with distribution

function P (q) = (q/qmax)
η and density function p(q) = η · (qη−1)/qηmax so that the elasticity

of participation with respect to net gain of working is constant and equal to η. Fourth, we

assume that the social welfare function Ψ is CRRA with coefficient of risk aversion γ > 0, i.e.,

Ψ(V ) = V 1−γ/(1−γ). We set n = 1, n̄ = 4, w = 1, qmax = 2 ·w, and a = 2. For our benchmark
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case, we assume γ = 2, ε = 0.5, η = 0.5. In all cases, we check that the implementation

conditions (zl(n) increasing in n) are satisfied. Details about our simulations are presented in

Appendix A.7.

Figure 4 plots the optimal T 00, T
0
1, and τ as a function of n. Consistent with our theoretical

results, we have T 00 = T 01 = 0 at the end points and T 01 < T 00 everywhere else. The difference

between T 01 and T 00 is about 7 percentage points which makes T
0
0 about 30% percent larger than

T 01. The graph also shows that the tax on secondary earners τ is decreasing in n from about

37 percent at n to 22 percent at n̄. This suggests that the negative jointness property is not

a negligible phenomenon and that it generates a significant difference in marginal tax rates

between one- and two-earner couples.

Figure 5 examines the sensitivity of optimal tax rates with respect to alternative parameter

values. It shows optimal tax rates T 00, T
0
1, and τ in four situations. In Panel A, we increase the

participation elasticity η to one. We find that this decreases the level of the tax on secondary

earners by about 10 percentage points but the decreasing slope for τ (or, equivalently, the gap

between T 00 and T 01) remains significant and fairly close to the benchmark case. In Panel B,

we increase the intensive elasticity ε to one. We find that this decreases the level of marginal

tax rates on primary earners by about 10 percentage points but again the decreasing slope for

τ (and the gap between T 00 and T 01) remains significant as a proportion of tax rate levels. In

panel C, we increase both η and ε to one. This reduces T 00, T
0
1, and τ but the negative jointness

pattern remains. Taken together, results from Panels A, B, C show that levels of tax rates

obey the traditional Ramsey principle: when the elasticity increases, the corresponding tax rate

decreases. In Panel D, we increase redistributive tastes of the government to γ = 4. We find

that all tax rates increase significantly but, again, the negative jointness pattern remains about

the same in proportion to tax rates.

Figure 6 explores two other departures from our benchmark case. Panel A focuses on the

Rawlsian case (γ =∞). In this case, we have that g1(n) = 0 and that g0(n) is a Dirac distribution
with all mass concentrated at n. The optimal tax formulas from Proposition 1 continue to apply

but the transversality condition T 00 = 0 is no longer true at the bottom. Indeed, the simulation

shows that T 00(n) = 59% in this case. Interestingly, the negative jointness result carries over to

this case. The Rawlsian case is theoretically interesting because it is formally equivalent to a

multi-product nonlinear pricing problem as analyzed in the Industrial Organization literature.

This shows that the negative jointness result would carry over in that case as well.

Figure 6, Panel B, explores the case with a long tail. In the simulation, we set n̄ = 200
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(which is a close approximation to an infinite tail). The figure shows that in this case, T 00 and

T 01 converge to the theoretical asymptotic value of 1/(1 + a · ε) = 1/2. We also see that, as

expected, τ converges to zero.

Figure 7 examines the implications of introducing positive or negative correlation in spouse

characteristics, n and q. If we think of a low q as reflecting a high ability of the secondary earner,

a negative correlation in n and q would correspond to a positive correlation in ability, and vice

versa. We introduce correlation by making qmax a function of n; it will be a decreasing function

in the case of positive ability correlation and an increasing function in the case of negative ability

correlation. The correlations are calibrated so that the average participation rates of spouses

remains approximately the same. Panel C displays the participation rates of spouses by potential

earnings in the cases of independent abilities (benchmark), positive correlation in ability, and

negative correlation in ability. Panel C shows that we have introduced significant correlation

with participation rates doubling from n to n̄ in the positive correlation case and decreasing by

50% from n to n̄ in the negative correlation case. Panels A and B display the optimal tax rates

in the positive and negative correlation case, respectively. The levels of tax rates are higher

in the positive correlation case because inequality is more important in that case and hence

redistribution more desirable. However, the negative jointness pattern is very similar to the

cases with no correlation. This suggests that the empirical observation of positive correlation

in ability across spouses (positive assortative mating) would not overturn the negative jointness

result we have obtained.

3 A Continuous Labor Supply Choice for the Secondary Earner

3.1 Model and Optimal Tax Formulas

In this Section, we model primary and secondary earners symmetrically. There is a distribution

of earnings abilities (np, ns) over the population of couples with density f(np, ns) on the domain

D = (np, n̄p) × (ns, n̄s).20 We define fp(np) =
R n̄s
ns

f(np, ns)dns as the unconditional density

distribution of np, and fs(ns) symmetrically as the unconditional density distribution of ns. We

then define fp|s(np|ns) = f(np, ns)/fs(ns) as the density distribution of np conditional on ns,

and fs|p(ns|np) = f(np, ns)/fp(np) as the density distribution of ns conditional on np.

The utility function is given by

u(c, zp, zs) = c− nphp(zp/np)− nshs(zs/ns),

20We assume that D is open and we denote by D̄ the closure of D.
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with c = zp + zs − T (zp, zs). The first-order conditions with respect to earnings zp and zs are

given by

h0p(zp/np) = 1− T 0p and h0s(zs/ns) = 1− T 0s. (14)

The indirect utility function is denoted by V (np, ns), and its first-order derivatives with respect

to np and ns are given by (using the envelope theorem):

∂pV = −hp + (zp/np)h0p and ∂sV = −hs + (zs/ns)h0s. (15)

The government’s problem is to is to maximize social welfare

W =

Z Z
D
Ψ (V (np, ns)) f (np, ns) dnpdns,

subject to a government budget constraintZ Z
D
T (zp, zs) f (np, ns) dnpdns ≥ E,

and subject to the conditions for couple utility maximization in (15).

This is a continuous two-dimensional screening problem. There is a small literature in

optimal tax theory considering this type of multi-dimensional screening models originating with

Mirrlees (1976, 1986). There is a larger literature on multi-dimensional screening problems in

nonlinear pricing theory (see McAffee and McMillan, 1988; Wilson, 1993; Armstrong, 1996;

Armstrong 1999; Rochet and Choné, 1998; and Rochet and Stole, 2002). We explain the link to

this literature in Section 3.4.

We can state the following proposition:

Proposition 4 The first-order conditions for the optimal marginal tax rates T 0p and T
0
s at ability

level (np, ns) can be written as

T 0p
1− T 0p

=
1

εp
· 1

npfp|s(np|ns)
· tp, (16)

T 0s
1− T 0s

=
1

εs
· 1

nsfs|p(ns|np)
· ts, (17)

where tp and ts are multipliers satisfying the transversality conditions tp(np, ns) = tp(n̄p, ns) = 0

for all ns and ts(np, ns) = ts(np, n̄s) = 0 for all np, along with the divergence equation

∂tp
∂np

· fs(ns) +
∂ts
∂ns

· fp(np) = [g(np, ns)− 1] · f(np, ns), (18)

where g(np, ns) = Ψ0(V (np, ns))/λ is the marginal welfare weight for couples with ability (np, ns).
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The proof is presented in Appendix A.2.

The formulas are obtained from the first-order conditions to the Hamiltonian. The divergence

equation (18) has many solutions satisfying the boundary transversality conditions. The fact

that the second-order derivative of the indirect utility function V (np, ns) has to be symmetric,

gives an additional condition making the optimum solution unique generically. In addition, the

global individual maximization conditions need to be satisfied. If those conditions fail, then

there is bunching and the first-order conditions from the proposition break down. We come

back to this important issue in detail in Section 3.4. In Sections 3.1-3, we always assume that

those conditions are met and hence that there is no bunching.

It is easy to show that the average T 0p across ns is the same as in the individualistic Mirrlees

(1971) model. Let us define Fp(np) =
R np
np

fp(n
0
p)dn

0
p as the cumulated unconditional distribution

of np. We then define Gp(np) as the average of marginal welfare weights g(n0p, n
0
s) above np:

Gp(np) · [1− Fp(np)] =

Z n̄p

np

Z n̄s

ns

g(n0p, n
0
s)f(n

0
p, n

0
s)dn

0
sdn

0
p.

We can then show,

Proposition 5

T 0p
1− T 0p

=
1

εp
· (1− Fp(np)) · (1−Gp(np)) + δp(np, ns)

npfp(np)
, (19)

where δp(np, ns) averages to zero when summed over ns, i.e., for all npZ n̄s

ns

δp(np, ns)f(np, ns)dns = 0.

The symmetric equations hold when substituting p for s.

Proof:

δp(np, ns) is defined as:

δp(np, ns) = npfp · εp ·
T 0p

1− T 0p
− (1− Fp) · (1−Gp).

Hence, equation (16) implies:

δp(np, ns) · f(np, ns) = tp · fp · fs − (1− Fp) · (1−Gp) · f(np, ns).

Integrating this expression over (ns, n̄s), we have:Z n̄s

ns

δp(np, ns)f(np, ns)dns = fp(np)

Z n̄s

ns

tp(np, ns)fs(ns)dns− fp(np) · (1−Fp) · (1−Gp). (20)

18



Integrating the divergence equation (18) over ns and using the transversality conditions, we

have: Z n̄s

ns

∂tp
∂np

fs(ns)dns =

Z n̄s

ns

[g(np, ns)− 1] · f(np, ns)dns,

Integrating again from np to n̄p, we have:Z n̄s

ns

tp(np, ns)fs(ns)dns =

Z n̄p

np

Z n̄s

ns

[1− g(np, ns)] · f(np, ns)dns = (1−Gp(np)) · (1− Fp(np)).

This implies that the expression (20) is zero which completes the proof. ¤

3.2 Asymptotic Properties of the Optimal Schedule

Suppose that the ability distribution of primary earners has an infinite tail, n̄p = ∞. Let us
assume that f(np, ns) = fp(np)fs(ns) and that, for np large, fp(np) is the density of a Pareto

distribution with parameter a > 1.

As np tends to infinity, the additional income generated by the secondary earner becomes

infinitesimal relative to primary-earner income in the limit. For any reasonable welfare function,

we would then have that g(np, ns) converge to the same value g∞ for all ns. It is also natural

to assume that elasticities εi converge to ε∞i when np →∞ for i = p, s. We can then prove the

following result:

Proposition 6 If T 0p (z (np, ns)) converges to τ
∞
p (ns) and T

0
s (z (np, ns)) converges to τ

∞
s (ns) as

np →∞ (and assuming that the limits are bounded from below uniformly in ns), then we have:

• τ∞s (ns) = 0 for all ns.
• τ∞p (ns) = (1− g∞) /

¡
1− g∞ + a · ε∞p

¢
for all ns.

Proof:

We first establish that τ∞p (ns) is constant in ns. By contradiction, suppose that there are

n1s, n
2
s so that τ

∞
p (n

2
s) < τ∞p (n

1
s). Using ∂pV = −hp(zp/np)+(zp/np)h0p(zp/np) which is increasing

in zp/np and hence in 1−T 0p from (14), we have ∂pV (np, n2s)−∂pV (np, n1s)→ δ > 0 when np →∞.
That implies that V (np, n

2
s) − V (np, n

1
s) → +∞ when np → ∞. However, ∂sV (np, ns) =

−hs(zs/ns) + (zs/ns)h0s(zs/ns) converges to a finite limit for any ns uniformly bounded in ns

(because T 0s converges and is uniformly bounded from below). Therefore, V (np, n
2
s)−V (np, n1s) =R n2s

n1s
∂sV (np, n

0
s)dn

0
s converges to a finite limit when np → ∞ which is a contradiction. Let us

now denote τ∞p the uniform limit of T 0p.
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Integrating the divergence equation (18) over the NE quadrant (np,∞)× (ns, n̄s), and using
the transversality conditions implies:Z n̄s

ns

tp(np, n
0
s)fs(n

0
s)dn

0
s+

Z ∞

np

ts(n
0
p, ns)fp(n

0
p)dn

0
p =

Z n̄s

ns

Z ∞

np

[1−g(n0p, n0s)]fp(n0p)fs(n0s)dn0pdn0s.

(21)

The first-order condition (16) and the Pareto assumption imply that tp(np, n0s)/(1−Fp(np))

converges to a · ε∞p · τ∞p /(1− τ∞p ) for any n0s. The first-order condition (17) imply that ts(np, ns)
converges to t∞s (ns) = nsfs(ns) · ε∞s · τ∞s (ns)/(1 − τ∞s (ns)). Dividing (21) by 1 − Fp(np) and

taking the limit when np →∞, we have:

a · ε∞p ·
τ∞p

1− τ∞p
·
Z n̄s

ns

fs(n
0
s)dn

0
s + t∞s (ns) = (1− g∞)

Z n̄s

ns

fs(n
0
s)dn

0
s. (22)

The transversality condition implies that t∞s (ns) = 0 so that the second term on the left-hand-

side of (22) vanishes when ns = ns. This establishes the second bullet of the lemma. Equation

(22) then implies that t∞s (ns) = 0 for any ns and hence τ
∞
s (ns) = 0 for any ns which proves the

first bullet of the lemma. ¤

This proposition shows that the no tax on spouses at the top result generalizes to the double-

continuous model. The intuition is the same as in the binary case.21

3.3 Desirability of Negative Jointness

Suppose the government implements the optimal separable tax schedule. It is then straightfor-

ward to show, using the standard one-dimensional approach, that the optimal schedules take

the form
T 0p

1− T 0p
=
1

εp

(1− Fp(np)) · (1−Gp(np))

npfp
, (23)

T 0s
1− T 0s

=
1

εs

(1− Fs(ns)) · (1−Gs(ns))

nsfs
. (24)

Let us introduce the equivalent of Assumption 2 in the current model:

Assumption 2’: np and ns are independently distributed.

Now, as in the binary case, it is possible to show that under Assumptions 1 (Ψ0 convex) and

Assumption 2’, and starting from the optimal separable schedule characterized above, a tax

21 If both distributions of np and ns have an infinite tail with the same Pareto parameter and the same asymptotic
elasticity of labor supply ε∞, then, along the diagonal np = ns, both marginal tax rates should be equal and
converge to (1− g∞)/(1− g∞ + 2 · a · ε∞) when np = ns tend to infinity.
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reform introducing a little bit of negative jointness increases welfare. The proof is given in

Kleven et al. (2006), but we omit it here and focus instead on the properties of optimal schemes.

Of course, the result that it is welfare improving to introduce a little bit of negative jointness

establishes a strong intuition that negative jointness is a feature of optimal incentive schemes.22

Indeed, we can show:

Theorem 1 Under Assumptions 2’ and assuming that the optimal tax system is smooth and

displays no bunching, we have:

• If Ψ0 is convex, the optimal tax scheme features negative jointness, i.e., for all np, ns,

∂T 0p
∂ns
≤ 0, and

∂T 0s
∂np

≤ 0, and T 00ps ≤ 0. (25)

• If Ψ0 is concave, the optimal tax scheme features positive jointness everywhere.

• If Ψ0 is linear, the optimal tax scheme is separable and the optimal tax rates are given by
equations (23) and (24).

Proof:

The proof proceeds by contradiction. Let us consider the case where Ψ0 is convex. We define as

C the subset of D where property (25) is not met.

First, we note that eq. (14) and the fact that the functions hp and hs are convex imply

that the signs of ∂T 0p/∂ns and ∂zp/∂ns are opposite (such that one is positive/zero/negative iff

the other is negative/zero/positive). Similarly, the signs of ∂T 0s/∂np and ∂zs/∂np are opposite.

Second, from eq. (15) we obtain ∂2psV = (zp/n
2
p) ·h00p ·∂zp/∂ns and ∂2spV = (zs/n

2
s) ·h00s ·∂zs/∂np,

and the symmetry condition ∂2psV = ∂2spV then implies that the signs of ∂zs/∂np and ∂zp/∂ns

are identical. Hence, the first two inequalities in (25) are equivalent.

Assumption 2’ implies that fp|s(np|ns) = fp(np) and fs|p(ns|np) = fs(ns). Hence, the optimal

tax formulas from Proposition 4 imply:

tp(np, ns) =
T 0p

1− T 0p
· εp · npfp(np) =

1− h0p(zp/np)

h00p(zp/np) · zp/np
· npfp(np), (26)

ts(np, ns) =
T 0s

1− T 0s
· εs · nsfs(ns) =

1− h0s(zs/ns)

h00s(zs/ns) · zs/ns
· nsfs(ns). (27)

22The proof of the desirability of introducing negative jointness requires to assume no bunching. The analysis
of bunching in the optimal separable tax system is the same as in the one dimensional Mirrlees (1971) model.
Therefore, there will be no bunching in a wide set of cases as in the Mirrlees (1971).
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We show in Appendix A.3 that the second order condition of the government maximization

program imply that x→ (1−h0p(x))/(xh00p(x)) is decreasing at any point x = zp(n)/np for n ∈ D.

Therefore, differentiating (26) with respect to ns, we have that ∂tp/∂ns has the opposite sign of

∂zp/∂ns and hence the same sign as ∂T 0p/∂ns. Similarly, ∂ts/∂np has the same sign as ∂T
0
s/∂np.

We can then define our contradiction set C as follows:

C = {(np, ns) ∈ D|∂ts/∂np > 0} = {(np, ns) ∈ D|∂tp/∂ns > 0}.

C is an open set (because ∂ts/∂np and ∂tp/∂ns are continuous functions by assumption). We

denote by ∂C the boundary of C. Again, by continuity of ∂ts/∂np, we have ∂ts/∂np = ∂tp/∂ns =

0 for any (np, ns) ∈ ∂C. We denote by Cc the complement of C in D.

Lemma 3 If Ψ0 is convex then, for any (np, ns) ∈ C, we have ∂2g/(∂np∂ns) > 0.

By definition, g(np, ns) = Ψ0(V (np, ns))/λ where λ > 0 is the multiplier of the government

budget constraint. Hence, λ · ∂g/∂np = Ψ00(V ) · ∂pV and λ · ∂2g/(∂np∂ns) = Ψ000(V ) · ∂pV ·
∂sV + Ψ00(V ) · ∂2psV . The first term in this expression is positive because Ψ0 is convex and

∂pV, ∂sV > 0. In the second term, we have ∂2psV = (zp/n
2
p) ·h00p · ∂zp/∂ns. By definition of C, we

have ∂zp/∂ns < 0 and hence ∂2psV < 0. Hence, since Ψ is concave such that Ψ00 < 0, the second

term is also positive, and the lemma is then established.

The property ∂2g/(∂np∂ns) > 0 captures the notion that the difference in social marginal

welfare weights between families with low- and high-ability primary earners decreases when

secondary-earner ability increases. This property is directly equivalent to Ψ000 > 0 when the tax

system is separable (in which case ∂2psV = 0). The lemma shows that it holds a-fortiori when

the tax system displays positive jointness.

Using f (np, ns) = fp (np) · fs (ns), the divergence equation (18) can be rewritten to

1

fp
· ∂tp
∂np

+
1

fs
· ∂ts
∂ns

= g(np, ns)− 1. (28)

Therefore, we have

∂2g

∂np∂ns
= −

f 0p
f2p
· ∂2tp
∂np∂ns

+
1

fp
· ∂3tp
(∂np)2∂ns

− f 0s
f2s
· ∂2ts
∂np∂ns

+
1

fs
· ∂3ts
∂np(∂ns)2

. (29)

Let us now introduce the field vector K = (Kp(np, ns),Ks(np, ns)) defined as:

Kp =
1

fp
· ∂2tp
∂np∂ns

and Ks =
1

fs
· ∂2ts
∂np∂ns

.
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Routine differentiation shows that:

∂2g

∂np∂ns
=

∂Kp

∂np
+

∂Ks

∂ns
. (30)

This allows us to apply the Divergence Theorem relating the area integral of the divergence of

a function to the boundary integral of the function:Z Z
C

∂2g

∂np∂ns
dnpdns =

Z Z
C

µ
∂Kp

∂np
+

∂Ks

∂ns

¶
dnpdns =

I
∂C
K · dm, (31)

where m is the unit vector outward normal to C on ∂C. Figure 8 displays an illustration in

the case of a region C with no holes with a simple curve ∂C.23 Lemma 3 establishes that the

left-hand side of (31) is positive. We are now going to show that K ·m ≤ 0 on ∂C to establish

a contradiction.

Lemma 4 For any (np, ns) ∈ ∂C, we have K ·m ≤ 0.

The proof of this Lemma is illustrated in Figure 8. We have ∂tp/∂ns > 0 inside C and ∂tp/∂ns ≤
0 outside C. Hence, ∂tp/∂ns increases as one goes from outside C to inside C along a horizontal

line (constant ns and changing np) as shown in the figure. Consider the two points where this

horizontal line intersects the boundary ∂C. If area C is on the right side of the intersection

point, then we have that ∂tp/∂ns is increasing in np and hence ∂2tp/(∂np∂ns) ≥ 0 at the

intersection point. Area C is on the right side of the intersection point if and only if mp, defined

as the p component of vector m, is negative.24 Conversely, if area C is on the left side of the

intersection point, then we have ∂2tp/(∂np∂ns) ≤ 0 and mp > 0. By definition of Kp, this

means that Kp ·mp ≤ 0 in all cases. In a similar way, we can show that Ks ·ms ≤ 0 by using
that ∂ts/∂np increases as one goes from outside C to inside C along a vertical line (constant

np and changing ns). If area C is above the intersection point of this vertical line with ∂C,

it means that ∂2tp/(∂np∂ns) ≥ 0 at ∂C. Area C being above the intersection point means

that ms < 0, and we then have Ks ·ms ≤ 0. When area C is instead below the intersection

point, we have ∂2tp/(∂np∂ns) ≤ 0, ms > 0, and then again Ks · ms ≤ 0. Hence, we have

K ·m = Kp ·mp +Ks ·ms ≤ 0 and the lemma is established.
Finally, we need to show that ∂ts/∂np ≤ 0 and ∂tp/∂ns ≤ 0 implies T 00ps ≤ 0 such that the

direct tax function T (zp, zs) has a negative cross-derivative on the image domain of the solution.

23The divergence theorem is valid for a region with holes. In that case the boundary integral is the sum of all
the simple boundary integrals along all the simple closed curves defining the boundary ∂C. Note that the curves
in ∂C always close because the region C cannot intersect with the boundary ∂D of the domain D. This is because
the transversality conditions imply that ∂ts/∂np = ∂tp/∂ns = 0 on ∂D.
24Remember m is pointing outward from C.
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The proof follows from manipulation of the first-order and second-order conditions from the

individual maximization problem and is presented in Appendix A.4.

The proof in the case Ψ0 concave follows exactly the same path by defining a symmetric

contradictory set. In that case, Lemmas 3 and 4 also apply in the contradictory set but with op-

posite signs. Finally, the case where Ψ0 is linear can be demonstrated by showing that equations

(23) and (24) define an optimum that satisfies all the equations from Proposition 4. ¤

3.4 Bunching and Link with Multi-Dimensional Screening

Our main result Theorem 1 has been demonstrated assuming that the optimal tax system has no

bunching. Yet, the important studies by Armstrong (1996) and Rochet and Choné (1998) have

demonstrated that bunching is generic in multi-dimensional screening problems. Armstrong

(1996) made the important point that bunching happens generically at the bottom. Rochet

and Choné (1998) then characterized with great detail the complex nature of bunching. As

they explain, bunching arises from a conflict between participation constraints and second order

incentive compatibility conditions. However, in the case of social welfare maximization, there

are no participation constraints.

Theoretically, we can show that for moderate redistributive tastes, the solution displays no

bunching. The argument is the following: when Ψ(V ) = V , the government has no concerns

for redistribution and hence the optimal system is the laissez-faire situation with no taxation

T0 = T1 ≡ 0. Obviously, the laissez-faire optimum displays no bunching. If we introduce a

little bit of taste for redistribution, the optimal solution should remain close to the laissez-

faire solution, implying that there should be no bunching for low levels of redistribution. This

argument amounts to proving that the optimal solution varies smoothly with the redistributive

tastes of the government.

In order to make a formal argument, we will make a number of parametric and regularity

assumptions in order to keep the mathematical proofs reasonably simple.25 First, we consider

the CRRA case where Ψ0(V ) = V −γ . The case γ = 0 is the case with no redistribution concerns.

Second, we assume that hp(x) = hs(x) = x1+1/ε/(1 + 1/ε) so that the elasticities are constant

εp = εs = ε. In that case, equations (15) imply that ∂jV = (zj/nj)
1+1/ε/(1 + ε) for j = p, s.

Third, we assume that f is C∞ and bounded away from zero on D̄. Finally, we assume that D

25We conjecture that the no bunching result can be generalized to a wider set of situations. We are particularly
indebted to Jean-Charles Rochet and David Lannes for helping us with the proof in the simple case we consider.
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is convex, bounded, and has a smooth (C∞) boundary.26

We start by ignoring the second order condition for the couples maximization. This is called

the relaxed problem in Rochet (1987) and Rochet and Choné (1998). As they do, we can then

express the government maximization problem solely in terms of V :27

max
V

Z
D

V (n)1−γ

1− γ
f(n)dn,

subject to the government budget constraint (with multiplier λ):

B(V ) =

Z
D

⎡⎣X
i=p,s

ni ((1 + ε)∂iV )
ε

1+ε − ε
X
i=p,s

ni∂iV − V

⎤⎦ f(n)dn ≥ 0.
It is straightforward to show that the objective function is concave (and strictly so when γ >

0). Furthermore, the budget constraint B(V ) ≥ 0 defines a closed and convex set.28 Therefore,
the maximization problem can be written as the following convex minimization problem:

min
V ∈K

Φ(V, γ), (32)

where Φ(V, γ) = −
R
D V (n)1−γf(n)dn is convex and continuous on K = {V ∈ H1(D) | 0 ≤

V ≤ N, 0 ≤ ∂iV ≤ N,B(V ) ≥ 0} convex, closed, and bounded29 in the Sobolev (Hilbert) space
H1(D). A standard theorem in functional analysis ensures that a solution to problem (32)

exists.30 The strict convexity of K ensures that the solution is unique.31 Let us denote the

unique solution of (32) by V (γ). It is easy to show that V (γ = 0) = (np + ns)/(1 + ε) which

corresponds to the case with no redistributive tastes and no taxes where zi = ni for i = p, s.

Lemma 5 The solution V (γ) of the relaxed problem (32) is smooth in γ around γ = 0 so that

V (γ) = V (0)+γ ·U+o(γ) where U ∈ C2(D̄) and o(γ)/γ → 0 when γ → 0 (in the norm C2(D̄)).

26 In our previous subsection, we assumed that D was a rectangle which is not smooth at the corners. We need
to make a smoothness assumption in order to avoid the difficulties arising in elliptic problems in non-smooth
domains (see e.g., Grisvard (1985)).
27This can be done by replacing zj in the budget constraint by ∂jV = (zj/nj)

1+1/ε/(1 + ε).
28 Strict convexity is obtained under general hp, hs disutility of labor functions if and only if x → (1 −

h0i(x))/(xh
00
i (x)) is decreasing for i = p, s. This condition is obviously met in the case of iso-elastic hi.

29The bounded property is obtained by imposing the additional constraints that ∂iV ≤ N where N is a large
and fixed constant.
30The theorem states that a convex lower semi-continuous function attains a minimum on a closed convex and

bounded set of a reflexive Banach vector space (see e.g., Brezis (1983), Corollary III.19, p. 46). The Hilbert space
H1(D) is obviously a reflexive Banach vector space.
31 If V 1 and V 2 are two solutions, then V ∗ = (V 1 + V 2)/2 will be such that B(V ∗) > 0 (unless V 1 = V 2 a.e.)

and hence V ∗+ δ will be in K for δ small enough and will generate strictly higher social welfare than V 1 and V 2.
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We establish this lemma in Appendix A.5 where we show that U is the solution of a linear El-

liptic PDE. U characterizes the direction of the optimal tax distortion when small redistributive

tastes are introduced.

We now need to establish that the solution V (γ) displays no bunching for γ small. If

V ∈ K is solution of the relaxed problem (32), we can define zj(n) for j = p, s using ∂jV =

(zj/nj)
1+1/ε/(1 + ε). We can then define c(n) = V (n) + nphp(zp(n)/np) + nshs(zs(n)/ns). The

direct utility function is defined as u(c, z, n) = c − nphp(zp/np) − nshs(zs/ns). The solution V

satisfies the global individual utility maximization if and only if V (n) ≥ u(c(n0), z(n0), n) for all

n, n0 ∈ D. In that case, the solution of the relaxed problem is actually the solution of the full

problem and be decentralized with a tax system.

Following Mirrlees (1976, 1986), we can establish the following lemma insuring that V (and

the implied z(n)) satisfy global utility maximization:

Lemma 6 If ∂zp/∂np ≥ 0, ∂zs/∂ns ≥ 0, and (∂zp/∂np) · (∂zs/∂ns) ≥ K · (∂zp/∂ns) · (∂zs/∂np)
for all n = (np, ns) ∈ D whereK = (1/4)maxn,m∈D̄

h
1 + (npms)/(nsmp))

1+1/ε
i
·
h
1 + ((nsmp)/(npms))

1+/ε
i
,

then the solution V satisfies global individual utility maximization: V (n) ≥ u(c(n0), z(n0), n) for

all n, n0 ∈ D.

The Lemma is proved in appendix A.6. The lemma condition is obviously satisfied when

γ = 0 as zp = np and zs = ns in that case. The second derivative of V (γ = 0) = (np+ns)/(1+ε)

is zero D2V (γ = 0) = 0 (as a two-by-two matrix), therefore, Lemma 5 implies that D2V (γ) =

γD2U + o(γ) → 0 when γ → 0. As zi = ni((1 + ε)∂iV )
ε/(1+ε) for i = p, s, the cross-partial

derivatives ∂zi/∂nj (for i 6= j) will be close to zero for small γ. Therefore, the condition of

lemma 6 for global utility maximization will be satisfied for small γ. Therefore, V (γ), the

solution of the relaxed problem is also the full solution. Hence, the full solution displays no

bunching for small γ. Therefore, we have proved the following:

Theorem 2 For γ close enough to zero, the optimal tax system displays no bunching.

There are four notable consequences of Theorem 2. First, this no bunching theorem for

small redistributive tastes also clearly applies to the standard Mirrlees (1971) one dimensional

problem. In contrast to the multi-dimensional case, it can be demonstrated using the first order

condition for optimality and without invoking advanced functional analysis results. To the best

of our knowledge, this result does not seem to have been noticed in the extensive literature on

the one-dimensional problem.
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Second, it is easy to show that the multi-dimensional screening problem for the monopolist

is formally equivalent to our optimal tax problem in the case of a Rawlsian objective where the

government maximizes the utility of the worse-off couple (np, ns). In that case, it is equivalent

for the government to maximize taxes subject to a minimum utility level constraint and taxes

are then redistributed lump sum (as there are no income effects). In that case, γ = ∞ and

the social marginal welfare weight g(np, ns) becomes a Dirac distribution with all mass at the

bottom point (np, ns). The bunching result from Armstrong (1996) clearly applies in that case

as well. This means that, as γ increases, we should expect bunching to appear. Exploring with

numerical simulations below how large γ needs to be for bunching to appear is left for future

research.

Third, we have shown in the previous subsection that when Ψ is quadratic, the optimal tax

system is separable. In that case, the cross derivatives ∂zi/∂nj , i 6= j are zero and therefore

∂zi/∂ni ≥ 0, i = p, s ensures that there is no bunching exactly as in the one dimensional case.

We know from the one dimensional case that this happens for a wide set of parameters. Starting

from Ψ quadratic, a small perturbation on Ψ will also create only a small deviation on the

solution V of the relaxed problem. As a result, the solution V will also display no bunching.

This shows that there should be a wide set of cases with significant redistributive tastes where

the solution displays no bunching.

Finally, our no bunching result and the negative jointness result we derived in the previous

subsection carry over to the standard industrial organization model used in Armstrong (1996)

or Rochet and Choné (1998) if monopoly profit maximization is replaced by social welfare

maximization as long as redistributive tastes are small enough. Social welfare maximization is of

less direct interest in Industrial Organization than in optimal taxation. However, it is interesting

to note that environments more competitive than monopoly pricing can also generate solutions

with no bunching in multi-dimensional pricing problems (see Armstrong and Vickers 2001 for a

recent analysis in that direction).

4 Model Extensions

4.1 Endogenous Marriage Decisions

We have demonstrated that negative jointness is optimal assuming that marriage is unresponsive

to taxes. Because any form of joint tax treatment for married couples affects the incentives to

marry, it is relevant to consider the case of endogenous marriage. Indeed, a classic argument
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for individual taxation is that tax systems should be neutral with respect to marriage decisions.

Studies estimating the effect of income taxes on marriage tend to find statistically significant

but modest effects (e.g. Alm and Whittington, 1999; Eissa and Hoynes, 2000).

We now present an argument that our results survive endogenous marriage in the context of

the binary model of Section 2 (the argument can easily be extended to the continuous model).

Suppose that the economy is populated by individuals of type p (characterized as our primary

earners by ability n) or type s (characterized as our secondary earners by a fixed work cost q),

and that individuals can choose either to be single or to be married. We start from the optimal

separable tax system so that marriage decisions are initially undistorted, and introduce a little

bit of negative jointness as illustrated in Figure 3. As described above, this reform creates a

positive direct welfare effect, while the fiscal effects from labor supply responses cancel out. In

the case of endogenous marriage, there is an additional behavioral response because incentives

to marry have changed. At low primary earnings, marriage has become less attractive for

two-earner couples and more attractive for one-earner couples while, at high primary earnings,

marriage incentives are changing in the opposite directions. However, the marriage responses

created these changes have no first-order effect on utility (standard envelope theorem) and no

first-order effect on government revenue, because we are starting from a separable tax schedule

whereby marital status has no tax consequences. Hence, the negative jointness reform is still

desirable and Proposition 3 remains valid. This implies that negative jointness should also be

part of an optimal incentive scheme, although the presence of marriage distortions will tend to

reduce the optimal degree of negative jointness.

4.2 The Collective Labor Supply Approach

A growing literature challenges the unitary approach adopted in this paper, arguing that the

family should be viewed as consisting of members with conflicting interests engaging in bargain-

ing over household resources (see Lundberg and Pollak, 1996, for a survey of this literature).

Empirical studies have supported this hypothesis. For example, the influential study of Lund-

berg et al. (1997) showed that a policy reform which transferred a child allowance from the

father to the mother significantly increased spending on the wife and children in the family.

Following the seminal contributions by Chiappori (1988, 1992), the collective labor supply

model has become especially popular. This approach does not model a particular bargaining

process–only Pareto efficiency is assumed–and it encompasses the unitary model as a special

case. In the collective model, the within-family decision process amounts to maximizing a
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weighted sum of individual utilities, where the weights may depend on factors such as innate

characteristics, relative incomes, and on whom receives government transfers. It is natural to

distinguish between two cases depending on the government’s view on intra-family distribution.

In one case, policy makers respect family sovereignty. In this case, it is easy to see that changes

in intra-household distribution have no consequences for social welfare, implying that all our

optimal tax results continue to apply.

In the alternative case, policy makers disagree with intra-household distribution. The find-

ings by Lundberg et al. (1997) suggest that the government can modify within-family consump-

tion allocation at no fiscal cost simply by transferring the benefits from one spouse to the other

keeping total family income constant. As shown in the formal analysis of Kroft (2007), by

transferring enough resources across spouses, the government is able to restore a fair alloca-

tion within the family.32 Moreover, this within-family redistribution is not associated with an

efficiency loss, because it has no fiscal cost and because within-family bargaining is Pareto ef-

ficient. Once within-family distributional issues are fully resolved at no efficiency cost, we are

essentially back to the problem of redistribution across families which we have analyzed in this

paper. Hence, the collective labor supply approach introduces a new intra-family dimension to

the redistribution problem which is very interesting and calls for more work, but which appears

to be independent of the inter-family redistribution problem considered in this paper.

5 Conclusion

This paper explored the optimal income tax treatment of couples allowing for fully general joint

income tax systems. To make progress on this difficult problem, we focused on unitary models of

family decision making, and assumed no income effects on labor supply and separability in the

disutility of work for husbands and wives. We considered models where the secondary earner’s

labor supply is either binary (only extensive response) or continuous (only intensive response).

Assuming independent abilities across spouses, our central theoretical result is that, if the social

marginal utility of income is convex in income, then the optimal tax function has a negative

cross-partial derivative everywhere, implying that the tax rate on one person is decreasing in

the earnings of the spouse. Numerical simulations showed that this negative jointness result

survives positive assortative matching and may even be reinforced.

The intuition for our results can be understood as follows. Redistribution from couples with

32For example, the credit reform studied in Lundberg et al. (1997) did not affect family budget constraints but
yet had an impact on the consumption allocation within families.
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high primary earnings to couples with low primary earnings follows the logic of the Mirrlees

(1971) model. Indeed, the marginal tax rate on primary earners at each earnings level, averaging

over their different spouses, is identical to the marginal tax rate obtained in the Mirrlees model.

At a given level of primary earnings, the government values redistribution from couples with high

secondary earnings to couples with low secondary earnings, and this requires a positive second-

earner tax. But the value of redistributing in favor of couples with low secondary earnings

diminishes as primary earnings increases, because secondary earnings become less important for

family utility. Hence, the optimal second-earner tax is decreasing in primary earnings, and tends

to zero as primary earnings go to infinity.

The negative jointness result may seem surprising at first glance, and at odds with the actual

practice in countries using joint taxation. However, we have argued that the current practice of

many European countries–such as the United Kingdom–combining an individual income tax

with a family-based and means-tested welfare system creates negative jointness. In families with

low primary-earner incomes, secondary earners face high tax rates due to transfer phase-out,

whereas in families with medium or high primary-earner incomes, secondary earners face low

tax rates because the income tax is individual.

It is interesting to note that our result, in the binary model, that the second-earner partici-

pation tax is always positive stands in contrast to Saez (2002) who showed that, for unmarried

individuals, the presence of participation responses tend to make EITC-schemes featuring neg-

ative tax rates at the bottom desirable. We conjecture a generalization of our model allowing

for participation responses for the primary earner would imply negative tax rates at the bottom

for primary earners along with positive tax rates on their spouses.

It would be very interesting to extend the numerical simulations to carefully calibrated

models which are closer to the real world in terms of labor supply responses and the joint

distribution of spouse abilities. Such simulations would allow us to assess the quantitative

importance of the negative jointness result and make it possible to assess quantitatively whether

the current practice in many OECD countries of imposing family based transfer programs along

with individually based income taxes is close to optimal. We leave such important extensions

for future work.

On the theoretical side, we have shown that with smooth and concave social welfare functions,

the solution of the multi-dimensional screening problem is regular with no bunching for a wide set

of parameters. This stands in sharp contrast to previous results in the Industrial Organization

literature showing that, in the case of monopoly profit maximization, the solution displays
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bunching generically. With competitive environments instead of monopoly profit maximization,

multi-dimensional screening problems can sometimes generate solutions with no bunching (see

e.g., Armstrong and Vickers (2001, 2006) and Armstrong (2006)). Using similar techniques as

the ones developed here, it might be possible to obtain qualitative properties of the optimal

solution in some of those cases. Finally, although our model has focused on the case of couples

taxation, it could be easily extended to other settings with multi-dimensional characteristics

where the separability assumptions we have made can be applied. An example could be health

and ability where health status is indirectly revealed by health expenditures while ability is

revealed by earnings. Such a model could possibly be used to analyze how individual health

care expenditures should be refunded by the government as a function of earnings.
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A Appendix

A.1 Proof of Proposition 1: Optimal Tax Formulas in the Binary Model

The government maximizes

W =

Z n̄

n

(Z V1(n)−V0(n)

0
Ψ(V1(n)− q)p(q|n)dq +

Z ∞

V1(n)−V0(n)
Ψ(V0(n))p(q|n)dq

)
f(n)dn,

subject to the budget constraintZ n̄

n

Z V1(n)−V0(n)

0
[z1(n) + w − nh(z1(n)/n)− V1(n)]p(q|n)f(n)dqdn+

Z n̄

n

Z ∞

V1(n)−V0(n)
[z0(n)− nh(z0(n)/n)− V0(n)]p(q|n)f(n)dqdn ≥ 0,

and the constraints arising from the couples utility maximization: V̇l(n) = −h(zl(n)/n) +
(zl(n)/n)h

0(zl(n)/n) for l = 0, 1. Let us denote by λ, µ0(n), µ1(n), the multipliers associ-

ated. The transversality conditions are µ0(n) = µ1(n) = µ0(n̄) = µ1(n̄) = 0. We abbreviate

h(z1(n)/n) into h1, etc.

The first order conditions with respect to z0(n) and z1(n) are

µ0 ·
z0
n2

h000 + λ · (1− h00) · (1− P (q̄|n)) · f(n) = 0,

µ1 ·
z1
n2

h001 + λ · (1− h01) · P (q̄|n) · f(n) = 0.

The first order conditions with respect to V0(n) and V1(n) are

−µ̇0 =
Z ∞

V1−V0
Ψ0(V0(n))p(q|n)f(n)dq − λ(1− P (q̄|n))f(n)− λ[T1 − T0]p(q̄|n)f(n),

−µ̇1 =
Z V1−V0

0
Ψ0(V1(n)− q)p(q|n)f(n)dq − λP (q̄|n)f(n) + λ[T1 − T0]p(q̄|n)f(n).

Using the social marginal welfare weights g0(n) and g1(n), we can integrate those two equations

using the upper transversality conditions and obtain:

−µ0(n)
λ

=

Z n̄

n

©
[1− g0(n

0)](1− P (q̄|n0))f(n0) + [T1 − T0]p(q̄|n0)f(n0)
ª
dn0,

−µ1(n)
λ

=

Z n̄

n

©
[1− g1(n

0
p)]P (q̄|n0)f(n0)− [T1 − T0]p(q̄|n0)f(n0)

ª
dn0.

Plugging these two equations into the first order conditions for z0 and z1, noting that T 0l =

1 − h0l, and using the definition of the labor supply intensive elasticity (3), εl = h0l/(h
00
l · zl/n),

we obtain the expressions (10) and (11) in Proposition 1.
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The transversality conditions imply that T 01 = T 00 = 0 at the end points n and n̄.

Kleven et al. 2006 show that z0 and z1 weakly increasing in n is a necessary and sufficient

condition for implementability (exactly as in the one dimensional Mirrlees model). If (10) and

(11) generate decreasing ranges for z0 or z1 then there is bunching and the formula do not apply

on the bunching portions.

A.2 Proof of Proposition 4: Optimal Tax Formulas in the Continuous Model

We start by forming the integrated Hamiltonian:

H =

Z Z
D
Ψ (V (np, ns)) f (np, ns) dnpdns

+

Z Z
D
λ [zp + zs − nphp (zp/np)− nshs (zs/ns)− V ] f (np, ns) dnpdns

+

Z Z
D

£
∂pV + hp − (zp/np)h0p

¤
µp (np, ns) dnpdns

+

Z Z
D

£
∂sV + hs − (zs/ns)h0s

¤
µs (np, ns) dnpdns,

where λ is the scalar budget constraint multiplier and µp and µs are scalar functions of (np, ns).

To simplify the problem, it is useful to use the divergence theorem from multi-variable calculus

(as in Mirrlees, 1976)Z Z
D

¡
∂pV µp + ∂sV µs

¢
dnpdns +

Z Z
D
V

µ
∂µp
∂np

+
∂µs
∂ns

¶
dnpdns =

Z
∂D

V (µ · ds) ,

where µ =
¡
µp, µs

¢
and ds denotes the normal outward vector along ∂D, the boundary of D.

Using the above expression, we may rewrite the Hamiltonian to

H =

Z Z
D
Ψ (V (np, ns)) f (np, ns) dnpdns

+

Z Z
D
λ [zp + zs − nphp (zp/np)− nshs (zs/ns)− V ] f (np, ns) dnpdns

+

Z Z
D

£
hp − (zp/np)h0p

¤
µp (np, ns) dnpdns

+

Z Z
D

£
hs − (zs/ns)h0s

¤
µs (np, ns) dnpdns

−
Z Z

D
V

µ
∂µp
∂np

+
∂µs
∂ns

¶
dnpdns +

Z
∂D

V (µ · ds) .

The transversality condition is that µ ·ds = 0 on the boundary ∂D. In words, the scalar product
of the normal vector ds to the boundary ofD and µmust be zero at all points along the boundary

∂D. If D = [np, n̄p]× [ns, n̄s], then µp = 0 for np = np, n̄p and µs = 0 for ns = ns, n̄s.
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The first-order conditions in zp and zs are:

∂H

∂zp
= λ

£
1− h0p (zp/np)

¤
f (np, ns)−

zp
np

h00p (zp/np) ·
µp
np
= 0, (33)

∂H

∂zs
= λ[1− h0s(zs/ns)]f(np, ns)−

zs
ns

h00s(zs/ns) ·
µs
ns
= 0. (34)

After routine rewriting and introducing the elasticity of earnings with respect to 1−T 0p, denoted
by εp, for the primary earner, the first-order condition in zp at (np, ns) becomes

T 0p
1− T 0p

=
1

εp
· 1

npf (np, ns)
·
µp
λ
. (35)

Similarly, the first-order condition in zp at (np, ns) is

T 0s
1− T 0s

=
1

εs
· 1

nsf (np, ns)
· µs
λ
. (36)

The first-order condition in V at (np, ns) gives the divergence equation

∂µp
∂np

+
∂µs
∂ns

=
£
Ψ0 (·)− λ

¤
f (np, ns) . (37)

By defining tp = µp/(λ · fs) and ts = µs/(λ · fp) and g (np, ns) = Ψ
0 (·) /λ, we rewrite the

first-order conditions above so as to obtain the conditions (16), (17), and (18) in Proposition 4.

A.3 Establishing that x→ (1−h0j (x))/(xh00j (x)) is decreasing at any x = zj(n)/n

The second order condition in zj of the government maximization problem is:

∂2H

(∂zj)
2 = −λ

1

nj
h00j (zj/nj) f (n)−

1

nj
h00j (zj/np) ·

µj
nj
− zj

n2j
h000j (zj/nj) ·

µj
nj
≤ 0

Using the first-order conditions (33) and (34) to substitute for µj , j = p, s, we have:

−h00j (xj)xj −
¡
1− h0j (xj)

¢Ã
1 +

h000j (xj)

h00j (xj)
xj

!
≤ 0

where xj = zj/nj and j = p, s. This inequality is equivalent to the derivative of x → (1 −
h0j (x))/(xh

00
j (x)) being negative. ¤

Note that if x → (1 − h0j (x))/(xh
00
j (x)) is increasing in some ranges, then at the op-

timum, zj/nj cannot fall in those ranges. Mirrlees (1971) shows that assuming that x →
(1 − h0 (x))/(xh00 (x)) is decreasing ensures that the optimum solution of the one dimensional

problem is such that z(n) is continuous in n.
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A.4 Proof of T 00ps ≤ 0 in Theorem 1

Lemma 7 The second-order conditions of the household imply: ∂zp/∂np > 0, ∂zs/∂ns > 0,

sign
¡
∂T 0p/∂ns

¢
= sign (∂T 0s/∂np) = sign

¡
T 00ps
¢
.

Proof:

The first-order conditions of the household equal 1 − T 0p − h0p(zp/np) = 0 and 1 − T 0s −
h0s(zs/ns) = 0. Hence the second order conditions take the form:

T 00pp +
1

np
h00p (zp/np) > 0, (38)

T 00ss +
1

ns
h00s (zs/ns) > 0, (39)

[T 00pp +
1

np
h00p (zp/np)] · [T 00ss +

1

ns
h00s (zs/ns)]−

¡
T 00ps
¢2

> 0. (40)

Total differentiation of the first-order conditions with respect to np gives

−
∙
T 00pp +

1

np
h00p (zp/np)

¸
∂zp
∂np
− T 00ps

∂zs
∂np

+
zp
n2p

h00p (zp/np) = 0 (41)

−T 00ps
∂zp
∂np
− T 00ss

∂zs
∂np
− 1

ns
h00s(zs/ns)

∂zs
∂np

= 0 (42)

The last equation implies

∂zs
∂np

= −
T 00ps

T 00ss + h00s (zs/ns) /np
· ∂zp
∂np

. (43)

Insert this in (41):

∂zp
∂np

=

zp
n2p
h00p (zp/np)

T 00pp +
1
np
h00p (zp/np)−

¡
T 00ps
¢2
/(T 00ss +

1
ns
h00s (zs/ns))

> 0,

where the inequality follows from the second-order condition (40). It now follows from (39) and

(43) that sign (∂zs/∂np) = −sign
¡
T 00ps
¢
. From 1 − T 0s = h0s(zs/ns), we have sign (∂zs/∂np) =

−sign (∂T 0s/∂np). The symmetric equation (inverting s and p) follows in the same way. ¤

A.5 Proof of Lemma 5

V (γ) is the unique solution of the (strictly) convex minimization problem minV ∈K Φ(V, γ).

Therefore the first order conditions of this convex problem are necessary and sufficient to charac-

terize the solution V (γ). The first order conditions of the Hamiltonian problem is the following

nonlinear Elliptic Partial Differential Equation:
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−ε∇ ·

⎛⎝ np

³
[(1 + ε)∂pV ]

− 1
1+ε − 1

´
f(n)

ns

³
[(1 + ε)∂sV ]

− 1
1+ε − 1

´
f(n)

⎞⎠+µV −γ
λ
− 1
¶
f(n) = 0, (44)

with Neumann boundary conditions on ∂D:⎛⎝ np

³
[(1 + ε)∂pV ]

− 1
1+ε − 1

´
f(n)

ns

³
[(1 + ε)∂sV ]

− 1
1+ε − 1

´
f(n)

⎞⎠ · u = 0, (45)

where ∇· denotes the divergence operator and u is the normal unit vector on ∂D. λ is the

Lagrange multiplier associated to the government budget constraint B(V ) ≥ 0 and is such that
λ =

R
D V −γf(n)dn. Thus, the budget constraint binds at the optimum:

Z
D

⎡⎣X
i=p,s

ni ((1 + ε)∂iV )
ε

1+ε − ε
X
i=p,s

ni∂iV − V

⎤⎦ f(n)dn = 0. (46)

When γ = 0, V = (np+ns)/(1+ε) and λ = 1 is the trivial laissez-faire solution that satisfies

(44), (45), and (46)

Abstractly, the PDE (44), (45), and (46) can be written as:

Ξ(V (γ), γ) = 0, (47)

where Ξ is a functional defined for V ∈ K and parameter γ. If DV Ξ(V (0), 0) exists and is

an invertible linear operator, then we can apply the implicit function theorem and obtain that

γ → V (γ) is differentiable at γ = 0 with a derivative U = DγV ∈ H1(D) which satisfies:

DV Ξ(V (0), 0)U +DγΞ(V (0), 0) = 0. (48)

Note that this equation corresponds exactly to differentiating (47) with respect to γ (at γ = 0)

and applying the standard chain-rule for differentiation. Using standard differentiation rules,

equation (48) can be written as the linear elliptic PDE:

ε∇ ·
µ

npf(n)(∂pU)
nsf(n)(∂sU)

¶
=

µ
log V (0)−

Z
D
log V (0)f(n)dn

¶
f(n), (49)

with Neumann boundary conditions on ∂D:

µ
npf(n)(∂pU)
nsf(n)(∂sU)

¶
· u = 0, (50)

and the linearized budget constraint:
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Z
D
Uf(n)dn = 0. (51)

The linear elliptic PDE problem (49) and (50) is a standard problem of the form ∇ ·
(P (n)∇U) = K(n), with P (n) diagonal two-by-two matrix with diagonal coefficients npf(n)

and nsf(n) bounded away from zero on D. The matrix P (n) is therefore coercive33 and is

smooth on D̄. Furthermore, the boundary condition can be written as P (n)∇U ·u = 0 which is
the co-normal derivative of the elliptic and coercive operator ∇ · (P (n)∇). Finally, the problem
satisfies the integrability condition

R
DK(n)dn = 0.

Therefore, the problem (49) and (50) has a unique solution (up to constant) in H1(D) (see

e.g., Brezis, 1983). The linearized budget constraint (51) pins down the constant so that U is

unique. Finally, because ∂D and f(n) are smooth, the solution U is actually smooth (at least

of class C2) (see again Brezis, 1983) on D̄.

More generally, in order to demonstrate that the operator DV Ξ(V (0), 0) is invertible, we

consider the general equation:

DV Ξ(V (0), 0)U = Θ, (52)

which is the Elliptic PDE problem ε∇ · (P (n)∇U) = Θ1(n) on D, with Neumann boundary

condition P (n)∇U · u = Θ2(n) on ∂D, and the linearized budget constraint
R
D Uf(n)dn =

Θ3. This generalized problem also has a unique solution in H1(D) as long as the integrability

condition
R
DΘ1(n)dn = ε

H
∂DΘ2(n)ds is satisfied. Therefore, DV Ξ(V (0), 0) is an invertible

operator. Thus, we can apply the implicit function theorem and the lemma is demonstrated.

¤

A.6 Proof of Lemma 6

We have u(c, z, n) = c−np(zp/np)1+k/(1+k)−ns(zs/ns)1+k/(1+k) where k = 1/ε. By definition
of z(n), ∂iV (n) = (k/(k+1))(zi(n)/ni)1+k for i = p, s. Hence, ∇V (n) = ∂nu(c(n), z(n), n) where

∂nu denotes the partial derivative of u(c, z, n) with respect to n (keeping c and z constant).

Therefore,

∇V (m) = ∂nu(c(n
0), z(n0),m) +

Z 1

0
A(n0 + s · (m− n0),m)(m− n0)ds, (53)

33There is a constant c > 0 such that, for any vector v ∈ R2, and any n ∈ D, we have: vP (n)v ≥ c|v|2.
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where A(r,m) is the two-by-two matrix derivative of r → ∂nu(c(r), z(r),m). Using V (n) −
V (n0) =

R 1
0 ∇V (n0 + t(n− n0)) · (n− n0)dt, integrating (53) from m = n0 to m = n implies:

V (n)−V (n0) = u(c(n0), z(n0), n)−V (n0)+
Z 1

0

Z 1

0
A(n0+st·(n−n0), n0+t(n−n0))t(n−n0)(n−n0)dsdt.

Thus, the lemma is established if we can show that A(n,m) is a non-negative matrix for any

n,m ∈ D. ∂nu(c(n), z(n),m) = ((k/(k + 1))(zp(n)/mp)
1+k (k/(k + 1))(zs(n)/ms)

1+k), hence:

A(n,m) = k

⎛⎝ zp(n)k

m1+k
p

· ∂zp(n)∂np

zp(n)k

m1+k
p

· ∂zp(n)∂ns

zs(n)k

m1+k
s

· ∂zs(n)∂np

zs(n)k

m1+k
s

· ∂zs(n)∂ns

⎞⎠ (54)

A sufficient condition for a two-by-two matrix (aij) to be non-negative is that a11 ≥ 0, a22 ≥ 0
and a11a22 ≥ (a12 + a21)

2/4. In the case of the matrix A(n,m) in (54), the first two conditions

can be written as ∂zp/∂np ≥ 0, ∂zs/∂ns ≥ 0. We have ∂iV = (k/(k + 1))(zi(n)/ni)
1+k for

i = p, s. Using equality of the cross-partial derivatives of the function V (n), we have ∂2psV =

k · [zp(n)k/(n1+kp )]∂zp(n)/∂ns = ∂2spV = k · [zs(n)k/(n1+ks )]∂zs(n)/∂np. Using this expression,

we can rewrite condition a11a22 ≥ (a12 + a21)
2/4 for matrix A(n,m) as:

∂zp(n)

∂np
· ∂zs(n)

∂ns
≥
(
1

4

"
1 +

µ
npms

nsmp

¶1+k#
·
"
1 +

µ
nsmp

npms

¶1+k#)
· ∂zp(n)

∂ns
· ∂zs(n)

∂np
.

Because D is bounded and bounded away from zero, we can define K as the finite upper bound

over n,m ∈ D̄ of the expression in curly brackets on the right-hand-side above. In that case,

under the conditions of the lemma, we have, for any n,m ∈ D, A(n,m) ≥ 0 and hence global
maximization is established.

A.7 Numerical Simulations

Simulations are performed with MATLAB software and our programs are available upon request.

We select a grid for n, from n = 1 to n̄ = 4 with 1000 elements: (nk)k. Integration along the n

variable is carried out using the trapezoidal approximation. All integration along the q variable

is carried out using explicit closed form solutions using the incomplete β function:Z V1−V0

0
Ψ0(V1 − q)p(q)dq =

Z V1−V0

0

1

(V1 − q)γ
η · qη−1
qηmax

dq

=
η

qηmax

Z V1−V0

0
(V1−q)−γqη−1dq =

η · V η−γ
1

qηmax

Z 1−V0
V1

0
tη−1(1−t)−γdt = η · V η−γ

1

qηmax
·β(1−V0

V1
, η, 1−γ)
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where the incomplete beta function β is defined as (for 0 ≤ x ≤ 1):

β(x, a, b) =

Z x

0
ta−1(1− t)b−1dt.

We pick qmax = 2 ·w1+1/η so that the fraction of spouses working is normalized in the situation
with no taxes (when w or η change). We set w = 1 in the simulations presented so that qmax = 2.

Simulations proceed by iteration:

We start with given T 00, T
0
1 vectors, derive all the vector variables z0, z1, V0, V1, q̄, T0, T1, λ,

etc. which satisfy the government budget constraint and the transversality conditions. This is

done with a sub-iterative routine that adapts T0 and T1 as the bottom n until those conditions

are satisfied. We then use the first order conditions (10), (11) from Proposition 1 to compute

new vectors T 00, T
0
1. In order to converge, we use adaptive iterations where we take as the new

vectors T 00, T
0
1, a weighted average of the old vectors and newly computed vectors.

We then repeat the algorithm. This procedure converges to a fixed point in most circum-

stances. The fixed point satisfies all the constraints and the first order conditions. We check

that the resulting z0 and z1 are non-decreasing so that the fixed point is implementable.
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