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Abstract

The traditional regression-based estimator of Alan Blinder (1973) and Ronald Oaxaca
(1973) constitutes a reweighting estimator based upon a linear model for the conditional odds
of being treated. As such it enjoys the status of a "doubly robust" estimator of counterfactuals
as in Robins, Rotnizky, and Zhao (1994) and Egel, Graham, and Pinto (2009) �estimation
is consistent if either the propensity score assumption or the model for outcomes is correct.
To illustrate the method, the Blinder-Oaxaca estimator is applied to LaLonde�s (1986) study
of the National Supported Work program where it is found to replicate experimental impacts
more closely than competing approaches.
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A large applied econometrics literature focuses on the use of reweighting methods for estimation
of treatments e¤ects and missing data problems.1 Though much has been made of the e¢ ciency
properties of semi-parametric versions of reweighting estimators (Hirano, Imbens, and Ridder, 2004),
in practice virtually all applications involve use of a parametric propensity score.2 The purpose of
this note is to point out that the traditional regression based estimator of Alan Blinder (1973) and
Ronald Oaxaca (1973) constitutes a reweighting estimator based upon a linear model for the con-
ditional odds of being treated �a functional form which emerges, for example, from an assignment
model with a latent log-logistic error.3 As such it enjoys the status of a �doubly robust�estimator
of counterfactuals as in Robins, Rotnizky, and Zhao (1994) and Egel, Graham, and Pinto (2009)
�estimation is consistent if either the propensity score assumption or the model for outcomes is
correct. To illustrate the method, the Blinder-Oaxaca estimator is applied to LaLonde�s (1986)
study of the National Supported Work program where it is found to replicate experimental impacts
more closely than competing approaches.

1 The Blinder-Oaxaca Estimator

Consider a population of individuals falling into two groups indexed by Di 2 f0; 1g. We will refer
to observations with Di = 1 as the treatment group and those with Di = 0 as the controls. A
relevant example comes from LaLonde (1986) who studies a treatment group consisting of workers
participating in a job training program and a corresponding set of controls composed of workers in
the same cities known not to be participating.
Let Xi be a K � 1 vector of covariates (which we assume includes an intercept) and Yi some

outcome of interest such as earnings. I assume throughout that E [XiX
0
i] is �nite and invertible.

We begin by indexing the potential outcomes associated with treatment as follows:

Yi = DiY
1
i + (1�Di)Y

0
i

where Y 1i is the outcome individual i would experience if treated and Y
0
i is the outcome he would

experience in the absence of treatment.
The Blinder-Oaxaca (B-O) approach is predicated on a model for the potential outcomes of the

form:

Y di = X
0
i�
d + "di (1)

E
�
"di jXi; Di

�
= 0 for d 2 f0; 1g (2)

Hence, one merely needs to obtain estimates of (�1; �0) in order to compute counterfactual means
among covariate groups. Natural estimators of these coe¢ cients come from linear regression in the
two populations indexed by Di.
Suppose in particular that we are interested in the counterfactual mean outcomes the treatment

group would have experienced in the absence of treatment which we denote as:

�10 � E
�
Y 0i jDi = 1

�
1Imbens (2004) provides a review.
2See Dinardo, Fortin, and Lemieux (1996) for a prominent example.
3A special case of this equivalence was worked out in Dinardo (2002).
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According to the model in (1) and (2):

�10 = E
�
X 0
i�
0jDi = 1

�
= E [XijDi = 1]

0 �0

= E [XijDi = 1]
0E [XiX

0
ijDi = 0]

�1
E [XiYijDi = 0]

� �BO

where in the second line I have used the fact that �0 is identi�ed by the population regression of
Yi on Xi among members of the control group. When each of the moments in �BO is replaced by
its sample analogue one obtains the B-O estimate of the counterfactual mean, which by standard
arguments can be shown to be consistent for the parameter of interest.

2 Reweighting Estimators

A popular alternative to the Blinder-Oaxaca approach is to assume that the potential outcomes are
conditionally independent of treatment given covariates or that:�

Y 1i ; Y
0
i

�
?? DijXi (3)

This restriction, which was popularized by Rosenbaum and Rubin (1983), amounts to assuming that
treatment status (Di) was assigned randomly conditional on covariates. Note that the parametric
B-O model would satisfy this condition were we to strengthen the mean independence assumption
(2) to encompass full conditional independence of the errors.4 However (3) is usually considered
less restrictive than the B-O assumptions since it is agnostic about the dependence of the potential
outcomes on the covariates. It is instructive then to consider the population moments that identify
�10 using only the nonparametric restrictions inherent in (3).
We must �rst make an additional assumption that ensures identi�cation:

p (Xi) < 1 (4)

where p (Xi) = P (Di = 1jXi) is the propensity score. This "common support" assumption merely
states that suitable controls can be found for every treated unit, which allows us to state the
following useful result:

Lemma 1 If (4) holds then:

dF (XijDi = 1)

dF (XijDi = 0)
=

p (Xi)

1� p (Xi)

1� �
�

where � = P (Di = 1) and dF (XijDi) = P (XijDi).

Proof. Direct application of Bayes�rule.

We now use this Lemma to prove the following well-known result justifying the use of propensity
score reweighting estimators:

4This would be equivalent to assuming in addition to (2) that E
�
g
�
"di
�
jXi; Di

�
= E

�
g
�
"di
�
jXi
�
for any continuous

function g (:) vanishing outside a �nite interval and for d 2 f0; 1g. See e.g. Theorem 1.17 in Chapter V of Feller
(1966).
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Proposition 1 If (3) and (4) hold then:

�10 = E [w (Xi)YijDi = 0] (5)

w (Xi) =
p (Xi)

1� p (Xi)

1� �
�

Proof.

E [w (Xi)YijDi = 0] = E
�
w (Xi)Y

0
i jDi = 0

�
= E

�
w (Xi)E

�
Y 0i jXi

�
jDi = 0

�
=

Z
E
�
Y 0i jXi

�
w (Xi) dF (XijDi = 0)

=

Z
E
�
Y 0i jXi

�
dF (XijDi = 1)

= E
�
Y 0i jDi = 1

�
where the second line makes use of (3) and the fourth makes use of Lemma 1.

Thus, a weighted average of the control outcomes, with weights proportional to the conditional
odds of treatment, identi�es the counterfactual mean of the treated population. A large literature
considers using sample analogues of (5) for estimation of �10, where p (Xi) is replaced by some
parametric or nonparametric estimator.5

3 Equivalence

Let us now return to the parametric B-O estimand �BO. That this quantity has an interpretation
as a weighted average of the control outcomes is self-evident. Here I show that these weights have a
particularly simple interpretation given the common support assumption (4). The following result
is useful in developing that interpretation:

Lemma 2 If (4) holds then:

E [XijDi = 1] = E

�
Xi

p (Xi)

1� p (Xi)

1� �
�

jDi = 0

�
Proof. Application of Lemma 1 to de�nition of E [XijDi = 1].

Note that this Lemma, which states that any covariate moment in the treated population has a
representation as a propensity score reweighted moment in the control population, does not depend
on (3). Armed with this relationship we may now show that the B-O estimand is equivalent to a
propensity score reweighted average of the control outcomes given a linear model for the odds of
treatment:

Proposition 2 If (4) holds then:

�BO = E [ ew (Xi)YijDi = 0]

ew (Xi) = X
0
iE [XiX

0
ijDi = 0]

�1
E

�
Xi

p (Xi)

1� p (Xi)

1� �
�

jDi = 0

�
5See Rosenbaum and Rubin (1983), Rosenbaum (1987), Dinardo, Fortin, and Lemieux (1996), Hirano, Imbens,

and Ridder (2003), and Imbens (2004).
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Proof. By Lemma 2, �BO = E
h
Xi

p(Xi)
1�p(Xi)

1��
�
jDi = 0

i0
E [XiX

0
ijDi = 0]

�1E [XiYijDi = 0]

Note that the B-O weights ew (Xi) are simply the normalized projection of the true treatment
odds p(Xi)

1�p(Xi) onto the column space of Xi �i.e. they are the predicted values from an (infeasible)
population regression of w (Xi) on Xi. Hence, the B-O speci�cation provides a minimum mean
squared error approximation to the true nonparametric weights w (Xi).
Of course if the true odds of treatment are actually linear in Xi then ew (Xi) = w (Xi) and

Proposition 1 implies the B-O estimand will identify �10 even if the model for the outcomes is
misspeci�ed provided that (3) and (4) hold.6 This functional form for the treatment odds arises
naturally from an assignment model of the form:

Di = 1 [X
0
i� + vi > 0]

where 1 [:] is an indicator for whether the condition in brackets is true and the assignment error vi
is an iid draw from a standardized log-logistic distribution.
Conversely, if the model for the outcomes in (1) and (2) is correct, the B-O estimand will identify

�10 even if the common support condition (4) fails and/or the implicit model for the propensity score
is incorrect. Hence the estimator is "doubly robust" as in Robins, Rotnizky, and Zhao (1994) and
Egel, Graham, and Pinto (2009) as it identi�es the parameter of interest under two independent
sets of assumptions.

A Remark on Misspeci�cation

The double robustness property o¤ers little comfort to the applied econometrician who suspects
any propensity score model, like any model for the conditional mean, to provide only a rough
approximation to the data generating process. Note from Propositions 1 and 2 that the population
bias in the B-O approximation may be written:

�10 � �BO = E [(w (Xi)� ew (Xi))YijDi = 0]

Though the B-O weights may yield speci�cation errors at particular values of Xi, those errors
will only induce bias if they are correlated with outcomes in the control sample.7 If, for instance,ew (Xi) = w (Xi) + �i where �i is a random speci�cation error obeying E [�iYijDi = 0] = 0 then
the B-O estimator will retain consistency. By Proposition 2 however we know that ew (Xi) is the
projection of w (Xi) onto Xi implying that any speci�cation errors �i must at least be orthogonal
to Xi. If Y 0i is approximately linear in the control sample (as is assumed in 1) then this is enough
to also guarantee orthogonality with respect to Yi.
By contrast, the standard practice of estimating a logistic propensity score via maximum likeli-

hood can be shown to impose:
E [(p (Xi)� ep (Xi))Xi] = 0

where ep (Xi) is the logistic approximation to the propensity score. This expression cannot be
manipulated to yield obvious restrictions on the implied logistic weights. An important question
then is whether, in the absence of prior knowledge of the propensity score, approximations ought
to be sought with respect to the propensity score or the weights themselves. The B-O approach
follows the latter approach, the logistic reweighting model the former. Which approach removes
more bias in a misspeci�ed environment will depend on the true data generating process.

6This is to be contrasted with the standard practice of using a parametric logit model for the propensity score
which assumes the odds of treatment take the form exp (X 0

i
) for some coe¢ cient vector 
:
7Both sets of weights can be shown to have mean one which implies E [w (Xi)� ew (Xi) jDi = 0] = 0.
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4 Sample Properties

Thus far we have focused on the properties of the population moments de�ning the Blinder-Oaxaca
estimator. It turns out that the sample moments have some interesting properties as well. De�ne
N1 =

X
i

Di, and X = [1; x2; :::; xK] where 1 is an N � 1 vector of ones, and the elements of

fx2; :::; xKg are N�1 covariate vectors. Then we may write the B-O estimate of the counterfactual
mean in matrix notation as:

�̂10 =
1

N1
D0X (X 0WX)

�1
X 0WY (6)

=
1

N1
D0HY

where Y is the N � 1 vector of outcomes, D is an N � 1 vector whose elements consist of Di, and
W is a diagonal N � N weighting matrix taking values of one for control observations and zeros
otherwise. The N � N matrix H is a generalization of the conventional �hat�matrix associated
with OLS (Hoaglin and Welch, 1978). Each row h0i of this matrix provides a set of weights b!ij
that sum to one across columns

 X
j

b!ij = 1!.8 The inner product h0iY is a weighted average of

the outcomes that yields a prediction X 0
i
b�0 of the conditional untreated mean. Premultiplying the

hat matrix by 1
N1
D0 averages these weights across across treated observations and hence yields an

estimate b�10 of the average counterfactual outcome in the treated sample. A few properties of the
averaged weights b!j = 1

N1

X
i

Dib!ij = 1
N1
D0H are notable:

1. The weights are zero for treated observations.

2. The weights sum to one.

3. Some of the weights may be negative. This occurs when the treatment odds implied by the
linear model are negative.

Like conventional propensity score weights, B-O weights can be thought of as reweighting the
controls to match the covariate distribution of the treated units. Note that for any covariate xj in
X we have by the properties of projection matrices that:

1

N1
D0Hxj =

1

N1
D0xj

In words, the reweighted mean of every control covariate exactly equals its mean value among the
treated sample. Hence the weights embodied in the Blinder-Oaxaca approach ensure exact balance
of moments included in the regression model as in the recent paper by Egel, Graham, and Pinto
(2009).

8See Appendix for proof.
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5 Application

To illustrate use of the Blinder-Oaxaca estimator we revisit LaLonde�s (1986) classic analysis of the
National SupportedWork (NSW) program using observational controls from the Current Population
Survey. Attention is con�ned to a sample of men studied by Dehejia and Wahba (1999) with valid
earnings data in both 1974 and 1975 who were present either in the NSW experimental sample or
in Lalonde�s �CPS-3�control group which consists of the poor and recently unemployed.9 Because
these data have been studied many times, I omit summary statistics which are reported elsewhere.10

Three estimators: OLS, B-O, and reweighting based upon a logistic propensity score are contrasted;
each using the set of demographic controls considered in Dehejia and Wahba (1999) along with 1974
and 1975 earnings.
Figure 1 plots a scatter of the renormalized B-O weights (the elements of D0H) against the

weights bp(Xi)
1�bp(Xi) 1�b�b� derived from a propensity score reweighting estimator where bp (Xi) are predicted

probabilities from a logit model estimated by Maximum Likelihood and b� is the fraction of treated
observations.
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Figure 1: Blinder­Oaxaca vs. Logit Weights

Unsurprisingly, the relationship between the two sets of weights is approximately logarithmic. How-
ever the B-O weights are often negative, a sign the implicit log-logistic propensity score model is
likely misspeci�ed. Of course the logistic model, despite yielding predictions in the unit interval,
may also be misspeci�ed. Ultimately, interest centers not on whether a propensity score model is
literally correct, but the quality of approximation that can be provided to the true counterfactual
�10.
Table 1 assesses this question empirically by comparing treatment e¤ect estimates generated by

9See Smith and Todd (2005) for a detailed discussion of the implications of these sample restrictions.
10See for example Dehejia and Wahba (1999), Smith and Todd (2005), and Angrist and Pischke (2009).
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each estimator using the observational CPS-3 controls and the experimental NSW controls.11

Table 1 - Estimated Impact of NSW on Men�s 1978 Earnings
Estimator/Control Group CPS-3 NSW
Raw Di¤erence �$635 $1794

(677) (671)
OLS $1369 $1676

(739) (677)
Logistic Reweighting� $1440 $1808

(863) (705)
Blinder-Oaxaca $1701 $1785

(841) (677)
Sample Size 614 445
Note: Heteroscedasticity robust standard errors in parentheses.
�Reweighting standard errors computed from 1000 bootstrap replications.

Clearly covariate adjustments of virtually any sort help to remove bias in the observational
sample. However, the B-O estimator yields observational impacts closest to those found in the ex-
perimental sample. This suggests the assumption of near linearity of untreated earnings in covariates
provides a better approximation to the data generating process than the implicit assumptions of the
workhorse logistic reweighting estimator or of simple OLS. Also of note is that the B-O estimator
yields slightly smaller standard error estimates than logistic reweighting, even in the experimental
sample.

6 Conclusion

The regression based Blinder-Oaxaca estimator of counterfactual means is equivalent to a propensity
score reweighting estimator modeling the odds of treatment as a linear function of the covariates.
This is be to contrasted with the standard practice in the applied literature of modeling the propen-
sity score via a logit or probit link and using the estimated parameters to form estimates of the
odds of treatment. The latter approach can be thought of as indirectly approximating the unknown
odds via a di¤erent set of basis functions, albeit a set that imposes the side constraint that the odds
are nonnegative. Whether, in the presence of misspeci�cation, the imposition of this side constraint
yields a better approximation to the counterfactual of interest is an empirical question and will
depend on the data generating process.
Despite its allowance of negative weights, the Blinder-Oaxaca estimator has several features to

commend it. It is easy to implement and allows for straightforward computation of standard errors
and regression diagnostics. It is consistent if either the linear model for the potential outcomes or
the implicit log-logistic model for the propensity score are correct. And if the outcome model is
correctly speci�ed and the errors are homoscedastic Blinder-Oaxaca is parametrically e¢ cient even
if the model for the treatment odds is incorrect or if the common support condition is violated.
Finally, unlike standard reweighting estimators, the B-O weights yield exact covariate balance and
are �nite sample unbiased for the counterfactual under proper speci�cation of the outcome equation.

11The Blinder-Oaxaca treatment e¤ect estimate simply subtracts �̂10 from the mean sample outcome of treated
units.
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Appendix

Proof that
X
j

b!ij = 1:
From (6) we may write

!ij = X
0
i(X

0WX)
�1
Xj (1�Dj)

and X
j

!ij = X
0
i(X

0WX)
�1
X

0
W1

It follows that:

X
j

!ij = tr
�
X 0
i(X

0WX)
�1
X

0
W1

�
= tr

�
(X 0WX)

�1
X

0
W1X 0

i

�
= tr

�
(X 0WX)

�1
X

0
WJ

�
= tr (B)

Note that (X 0WX)�1X
0
WJ is a multivariate regression of each element of X 0

i on X in the

control sample. Because i is �xed this yields aK�K coe¢ cient matrixB =

�
X 0
i

0

�
. By assumption

the constant term was ordered �rst in X, hence tr (B) = 1.
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