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PRICE ELASTICITIES*
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1. Introduction

If more than two variable factors are involved in a production process,
the degree of substitutability between factors, measured by the Elasti-
city of Substitution (ES), may de defined in a variety of ways. Mundlak
(1968b) has shown that the different concepts of ES are different
combinations (constrained or unconstrained) of elements of the under-
lying Hessian matrix. Following his classification, we distinguish be-
tween one factor-one price ES concepts (such as Allen-Uzawa partial
ES, denoted here by A;), two factors—one price ES (TOES), and two
factors—two prices ES (TTES) (such as Hicks’ Direct ES) (DES;;), or
McFadden’s Shadow ES (SES;).!

*This article comprises a revision of parts of two earlier papers: Section 6 of “Genera-
tion of New Production Functions Through Duality” and “Production with Constant Two
Factors-One Price Elasticities of Substitution”, Discussion Papers nos. 118 and 117,
respectively, Harvard Institute of Economic Research, April 1970. It also draws from a
more recent article in Econometrica [Hanoch (1975a)). I am thankful to Zvi Griliches, who
encouraged and supported this research. [ have benefited from discussions with Kenneth
Arrow, Erwin Diewert, Melvyn Fuss, Dale Jorgenson, Lawrence Lau, Daniel McFadden,
Michael Rothschild, and Christopher Sims. I am indebted to the National Science Foun-
dation for financial assistance (Grant No. 2762X), and to Harvard University, where 1
visited in 196970 and in 1973-74, while on leave from the Hebrew University, Jerusalem.

1See Allen (1938), Hicks (1963), McFadden (1963), and Mundlak (1968b).
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Mundlak argued correctly, that the choice of the relevant ES measure
is independent of assumptions regarding constancy of any particular
measure, and generally of the choice of functional forms and methods of
estimation of the production relation. However, traditionally the search
for econometrically convenient functional forms with a limited set of
parameters was attempted by imposing constancy on some ES concept.
This yielded disappointing results for both the one factor-one price and
the TTES concepts for more than two variable factors. Uzawa (1962)
and McFadden (1963) have shown, that constant A;, DES;, or SES;
yield functional forms which are too restrictive, and generally unac-
ceptable, for more than two or three factors. For example, constant A;
implies that all A; are equal for pairs of factors within the same group,
and A; = 1 for factors belonging to different groups. (For two factors, all
ES concepts coincide, and constant A; vield the well-known two-factor
CES model.%)

This chapter presents and analyzes several useful polar pairs of
functional forms for production functions and joint production frontiers,
the common feature of which is the constancy of some TOES concept.’
All these functions are true generalizations of the CES model, which
yield, in many cases, less restrictive but manageable estimation equa-
tions for factor-demand and output—supply relations under competitive
markets.

As shown below, the two TOES concepts held constant in these
models are simply related to the more basic ES concepts A;. The first,
R, equals the ratio A/ Ay, the constancy of which yields the family of
Constant-Ratio-ES (CRES) functions defined by Gorman (1965), and the
specific subfamily analyzed in Hanoch (1975a). Two noted special cases
of CRES are: (1) the homothetic case of CRESH, defined and analyzed
in Hanoch (1971); and (2) the non-homothetic Mukerji (1963) function,
used also by Dhrymes and Kurz (1964).

The second TOES concept, Df, equals the difference Ay — Ax. The
major focus of the present analysis are functional forms with constant
R;;, and their polar functions, which turn out to yield constant D;;, and to
have some additional desirable properties.

The family of implicitly additive models with a single output, given in

2Gee Arrow et al. (1961). The statement refers to ES defined for constant output. See
Mundlak (1968b, p. 231).

30n polar functions, see Chapter 1.2. Another common feature of these models is their
Implicit Additivity, as defined in Hanoch (1975a), where constancy of TOES concepts is
shown to be equivalent to implicit additivity.
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Hanoch (1975a), yields many well-known special cases of polar pairs of
production functions, when equality of certain parameters is imposed.

In joint production situations with multiple outputs, the ES between
outputs is defined in an analogous manner to A, R %, and Dj}, substitut-
ing maximum revenue {(at fixed inputs) for minimum costs (at fixed
outputs). To each constant TOES production function model, there
corresponds a similar constant TOES factor requirement function (with
modified parameter restrictions to assure convexity instead of
concavity). Equating two such functions to each other, clearly yields a
frontier which exhibits separability of outputs from inputs, and constant
R% or D} for both outputs and inputs.

The concept of Elasticity of Transformation® (T;) is defined as a
generalization of A; to the situation of competitive profit maximization
with multiple variable outputs and inputs. Again, we define two quan-
tities—one price ET (TOET),

RTY=Ty/Tx and DTj= Ty~ Ty

Finally, polar pairs of production relations with constant TOET are
presented, generalizing the single-output non-homothetic CRES and
CDE models, through the profit-polar transformation suggested in
Hanoch (1975a).

Section 2 below defines and interprets various ES and ET concepts
used here. Section 3 summarizes, in the most part, previous results
concerning CRES and CDE models, for production functions with a
single output, and their corresponding various special cases. Finally,
Section 4 includes generalizations of both the CDE and the CRES
models to joint production relations with many outputs, under constant
ratios or differences of elasticities of substitution or transformation.

2. Elasticities of Substitution and Transformation

Let y; and x; denote output and input guantities, respectively, with p;
and w; the corresponding prices. Assume first that a firm produces
efficiently a single output y, minimizing costs 2 x;w;, under competitive
factor markets (exogenous w;). The production function y=
f(X1.X2,00%z) = f(x) is assumed to be a strictly increasing, twice
continuously differentiable, quasi-concave function, possessing a unique

*For the definition of Tj;, see Diewert (1973a).
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dual cost function C(w;y), which is twice continuously differentiable,

concave and linear-homogeneous in w, and increasing with y from 0 to
5

o o]

Following the notation in Mundlak (1968b), let
. N
Zi=dlogz = z dz;.

The elasticity of demand for factor x; with respect to w;, at constant
output, is

E; =X =

-

Wily X;

K = sjAj, (1)

where Kj; is the element of the inverse bordered Hessian matrix,

[0 f...fa |
[K] — ,:fl .:fll---_:fln ,
| fn fnl-"fnn_

and s; is the optimal share of factor x; in total variable costs, or the
elasticity of C with respect to w;,

WiX; ¢ . aC
s = == I since —=x;®

C w;ly aw;

! F)

A useful interpretation of Allen’s A; is as follows:

i = _E'L = &l_‘&i = i

s Clw; C
namely, A; is the elasticity of x; with respect to C, for a change in
another price w; (output and all w; constant). It is also the demand

cross-elasticity Ej;, “normalized’ by the relative change in C. Also,

) (2)

@dw))

X
Aj=A;=+4 )

dw;)

due to the symmetry of [K].
Generalizing this particular interpretation to two factors—one price

’See Chapter 1.2 for specifications of the conditions for the general (non-differentiable)
case, and for references with respect to this particular case.
*See Shephard (1953, p. 11).



Polar Functions with Constant TOES 291

elasticities,” we get

Df}=(—'t/i—l,}ﬁ =2 -4 = A — Aj> (3)
C (dwy) c (dwy) C (dwy)

that is, D} is the elasticity of the factors ratio x;/x; with respect to costs
C, for a change in another price w;. It is also the cross-elasticity of
relative demand,
N
(Xi/ X;)
Wi

y
normalized by Cli = sk
Another TOES concept is defined as follows:
_%C
P Te
hence RY is the elasticity of x; with respect to x;, for a change in another

factor’s price w;, output and other prices w; (i# k) constant. Also, by
equation (1), '

K _ Xi
Rij == »
@wo Ak

A

X;

K E.!it| - Eu
"%y T B

Thus, both D% and R defined in equations (3) and (4) are subject to
relatively simple and intuitive economic interpretations. In addition
these TOES concepts are free from a basic flaw common to all TTES
concepts, as pointed out by Mundlak; namely, that the relative magni-
tude of two price changes, w; and Ww;, has to be restricted. Any particular
such restriction (equivalent to picking a particular directional change in
the prices space) is essentially arbitrary, and yields a different TTES
concept.?

The polar pairs of CDE and CRES models presented here, have
constant D% and Rf, respectively — with the additional (necessary) pro-
perty, that both are independent of k, for any i,j (i# k# ).

For the case of multiple outputs y = (¥1,....ym), assume the joint
production frontier to be given by F(y;x) =0, where F is increasing in y,
decreasing in x, continuously twice differentiable and convex in (y;x),

"The “pure” TOES concept defined by Mundlak (1968b, p. 229) is H f}=(f;f3‘cj)lﬁk|,.
hence H% = s, D%, analogous to E; = 54
8See Mundiak (1968b, Sect. 3.3).
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with F(0:0)=0.> A competitive firm maximizes profits (Z y;p; — 2 x;w:),
under exogenous (positive) prices (p;w). The unique dual profit function
ar(p;w), is increasing in p and decreasing in w, and is also twice
continuously differentiable; = is non-negative, positive linear homo-
geneous in (p;w), and convex over the domain where = is finite.'” The
partial derivatives of m(p;w) yield the factor-demands and output-
supplies, as follows:"
dmr _ * om _
3—W,'_ - X and Ep—i—y i
The ES between inputs may be generalized to this joint-production
case, by simply substituting in their definition the fixed vector of outputs
y for the single output y. Analogously, the corresponding ES between
outputs are defined so that maximization of revenue at fixed input
quantities x is substituted for minimization of costs at fixed y, with the
revenue function R(p;x) being linear homogeneous and convex in p. At
any point (y*x*) which yields maximum profits = at given prices (p;w),
costs are minimized, subject to fixed y*; revenue maximized for fixed x*,
and 7 satisfies 7 = R(p;x*)— C(w;y*). The output-output ES are then
defined as

A'k - S;IIPAIK _S._ir_
Rlpk R (dpy) ’

Dk = —@J“ = A — Ajk,

R (dpy)
and

Vi A;

R .
Vildpy A

where i,j,k refer to outputs, and x* constant.
Generalized separable CRES and CDE models presented in Section 4,
exhibit constant TOES between inputs as well as between outputs.

SF(y.x) as given may not satisfy these conditions, although some transformation F* =
h(F) does. In this case, choose F*(y,x)=0 to represent the production frontier. The
differentiability requirements restrict this relative to the general (non-differentiable) case of
duality discussed in Chapter 1.2.

"See McFadden Chapter 1.1 and Diewert (1973a) for proofs of this version of the duality
theorem and a more complete specification of the properties of  and F.

1See Diewert (1973a) for this extension of Shephard’s Lemma, and Hanoch in Chapter

1.2.
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A one quantity—one price Elasticity of Transformation (ET) is the
following generalization of A;:T; = — wm;/mam;, where ij=1,..m+n,
and subscripts of 7 denote partial derivatives.”? In analogy to equation
(2), we may interpret T; as (minus) the elasticity of a variable quantity
with respect to profits =, for a change in one price (holding constant
other prices, including the variable’s own price); that is, for inputs x; and

_ fi _ éL 13
- 1‘!] A A ’
Tldwpy Tl@w)
for outputs y; and y;:
% i
— T‘ii = -Tl = -:L , (5)
Tlapp Tl

and for output y; and input x;:

-T;=

A
3|30

(dw;) (dp,').
Equations (5) are easily derived from the definition of T; above. noting
that the elasticity of = with respect to a price is the corresponding share

in profits,

F_ Xwi _ - T _WPi_ - ~ . _
= =35 = = = S 2 Sk—l,
Wi T pP; ™ k=1

where 5, is negative for inputs and positive for outputs.
Extending the analogy, define two concepts of two quantities-one
price ET (TOET), in analogy to equation (3),

N
il 7
pr =il

= Ty~ Ti, 6)
_ T Vdwy) or (dpy) oo (
and, in analogy to equation (4),
RT =T s (7)
Wil (dwy) or (dpy) T;

CDET and CRET models, which generalize the corresponding single-
output CDE and CRES models, are production frontiers with constant

12Gee Diewert (1973a). This is in analogy to A; = CC;/C:C; with respect to the cost

" function.
The last equality follows from the symmetry of [m;]. in the continuously twice

differentiable case. Note that #/w; <0.
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DT and RT#, respectively, which are again independent of k (i# k# j;
n+m>3).

3. A Summary of CRES and CDE (Implicitly Additive) Models

This section presents without proofs functional forms with constant R P
or D% between inputs, for production functions with one output. These
are discussed in more detail in Gorman (1965}, Hanoch (1971, 1975a) and
others. The polar functions are derived through the cost-polar trans-
formation (Chapter 1.2, Theorem 3). Profit-polar transforms (Theorem 5
may also be derived, if the production functions are restricted to be
concave, but are omitted. Note, however, that in the homothetic cases,
the cost-polar and the profit-polar functions have identical i1soquant-
maps (see Chapter 1.2). Observe first, that constant Al Ay (i# ] k# 1)
for all pairs of factors is equivalent to constant R} = Ay/Ay for all

i# k# j, since

A A Ay -
Ai _ 2 Lk _ pi Rk
Au Ay Ax s

Gorman (1965) proved, that the general form of a CRES production
function is the function y(x) defined implicitly by the equation'

> Di(yxf0=1, (8)

where

g1
d(y) =1-g55m

assuming that a;, Di(y) and 6(y) preserve the required conditions on
y(x);" if di(y) =0, log x; is substituted for x{’. The ES are given by

Ay = 0(y)——, ©)
Sy

where

“The function ¢(y) appearing on the right-hand side in Gorman (1965) may be absorbed

in the functions Di(y), as in equation (8).
1’Namely, the conditions for yielding a positive, finite, quasi-concave and increasing

function y = f(x).
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thk
Sk —

2 xiw
is the (variable) share of costs at optimal factor combinations. Thus,
Rf‘,— = a;/a; is constant everywhere, and is independent of k.

The specific CRES and CDE models. Any econometric application of
CRES production functions requires specification of the general
functions D;(y) and #(y) appearing in equation (8).

The specific form of CRES presented in Hanoch (1975a) is sufficiently
flexible and generalizes many other well-known functions. It is derived
by specifying D;(y) = D;y~%% and @(y)=1, where D; (the “distribution
parameters””) and ¢ (the ‘“expansion parameters”) are positive
constants.'®

Applying the polar transformation” yields another model defined
through the dual cost function, in which the ES have constant
differences, D% = d; — d..

The following defines implicitly a function f(z) of n variables z:

> Diftzii=1, (10)

where D, >0, ¢, >0, d; < 1, and all d; of same sign; i.e., either 0 < d; <1,
or d; <0, i = 1,....n. Log[f iz] replaces [f~*¥z{i] if d;=0."°
The CRES production function is defined by

y = f(x). (1)

The polar CDE cost function C* is defined implicitly by applying the
cost-polar transformation,

Ls()

which is in the form of “reciprocal indirect production function™,
defined in Chapter 1.2, and f( ) is defined in equation (10).

'“The parameter restrictions given here may be relaxed, if f(z) defined in equation (10) is
to be valid only locally, rather than for all x>0 (globally). In particular, d,(say) may
satisfy d,>1 (a;<0), if n =3 and Z, is large enough, relative to other Z;. See Hanoch
(1971, 1975a) for specification and analysis of the weaker local conditions.

17] e., substituting 1/y and w/C* for y and x, respectively. See Hanoch’s Theorem 3 in
Chapter 1.2

8The conditions for local validity are weaker. allowing one d; to be larger than 1. and
some D; and d; to be of different sign (if Did; are all of the same sign, and max; D; > 0). See

footnote 16.
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More specifically, the equation defining C*(w,y) implicitly is
>, Dy i(wi/ C*)* = 1, (12)
where log[y%(w;/C*)] replaces [y5%(w;/ C*)%] for d; = 0.

The ES corresponding to equations (11) and (12) are given by
(i#jij=1,..,n)"

1-d

o G4 K Gi _
Ar} L) Ru a} 1_ di, (13)
SiQi

* 1 P
A +——2 k— D,’j =—‘“‘_=dj—d,‘, (14)

a a qj
where a; = 1/(1 —d;)> 0, and the corresponding cost shares are given by
= Dkdky _e"d"ng Sr = Dkdky ekdkwdk , (15)

> Ddyy ‘r"ixf Z Didjy““iw i
7

where x, are the cost minimizing quantities for output y, and y is defined
as a function of x or w, respectively, in equations (11) or (12).

As shown in Hanoch (1975a), this pair of polar functions may be
estimated by log-linear equations, and yield various well-known models
as special cases, by assuming equality restrictions on various
parameters. Thus, many special cases are testable within the more
general framework of these models.

The following summarizes some of these special cases. [For more
details, see Hanoch (1975a).]

The homogeneous and homothetic cases (CRESH and HCDE). If ¢; =

e =1/u, all i, both production functions are homogeneous of degree p.
Let a function H (z) be defined as

S Di(zlH)% =1, (16)

specializing equation (10) for this case, with H = f*. H(z) is clearly linear
homogeneous. The CRESH homogeneous production function is

=[HX)I", (17)

19See Hanoch (1971, 1975a).
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and its polar CDEH function is defined by its cost function,
C* — y”“H(W), (18)

where equation (18) implies that the polar production function is also
homogeneous of degree . Replacing y'* by any function h(y), where
h is strictly increasing in y from 0 to = gives the general homothetic

CRES and CDE models.

If the expansion parameters e¢; are not equal to each other, the
functions defined in equations (11) and (12) are non-homothetic. A
sufficient condition for concavity of the production functions for all
x>0is ¢ > 1, i = 1,....n, for both models.

Explicitly additive models. If the products {ed;} are constant,
e,-d,- = d/,u, [ = 1,...n,

the corresponding production and cost functions are explicitly additive.
The CRES case:

y= (2 D;x?")“’d, (19)

is the Mukerji (1963) and Dhrymes—-Kurz (1964) production function,

analyzed also by Hanoch (1971).
The polar CDE function exhibits ‘“‘indirect explicit additivity”, with

the “‘indirect production function” given by
—pld
y= (2 D;(w;/C*)"f) : (20)

Both equations (19) and (20) yield constant TOES, as given in equations
(13) and (14), and have simplified log-linear estimation equations as
compared with equations (11) and (12). However, as shown in Hanoch
(1975a), their usefulness is limited, due to the built-in restrictions
connecting expansion behavior to substitution behavior in any explicitly
additive (direct or indirect) models.

Direct and indirect addilog. The special cases, d = u in equation (19) and

d = — u in equation (20), yield the functional forms applied in consumer
demand analysis by Houthakker (1965).

0gee Chapter 1.2
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“Direct Addilog™:

y=2> Dxf, 0<d<]l, 2D

and
“Indirect Addilog’’:

y= D(wjC¥%  d;<0. (22)

These functions, however, are not polar to each other. Since ¢; >0, all
i,d; must be positive in equation (21) and negative in equation (22), for
these equations to yield valid (positive monotone and quasi-concave)
production functions, respectively.”

Non-homothetic CES. If ¢ are not all equal, but d; = 4, all i, then both
equations (11) and (12) correspond to the non-homothetic CES model,

with constant and equal ES,

A; = =ga and A}';=1—d=%=a*, (23)

1
1-d
by equations (13) and (14). In this case, the polar pair of production
functions f(x) and f*(x) may both be expressed (implicitly) by similar
forms in the direct mode, namely,

S D(fx)¥=1 and 3 Di(f*x)* =1, (24)

where
D*=D!"® and d*= —d/(1-d).

Thus, these functions are “‘self-polar”, in the weak sense defined by
Houthakker (1965), having the same functional form but different
parameters for the polar function. But the subfamily with 0 <a < 1 has
significantly distinct features from its polar sub-family with ¢* = 1/a > 1.
If a<1, all factors are “absolutely essential”, since the isoquant sur-
faces do not intersect any of the axes; whereas if a* > 1, the isoquant
surfaces intersect all axes, and no factor is essential.

ZThese restrictions are ignored in the discussions of consumer-demand applications,
since utility is ordinal, and may assume negative values.
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Limiting CES cases: Linear and Leontief production functions (non-
homothetic). If d =1 in equation (24) [or d; =1, all i, in equation (11)],
the ES are the limiting cases: a = © and a* = 0 in equation (23). The first
case corresponds to the (non-homothetic) production function,

> Dy ixi=1, (25)

with linear isoquant-surfaces for each y. The polar model exhibits a
linear cost function,

C*= E D;y‘iw;, (26)

and the polar direct production function corresponding to equation (26)
is the (non-homothetic) Leontief fixed coefficients production function,

y = £*(x) = min{(x:/D;)"*}. 27

The optimal quantities (for given y,w) under equation (27) then satisfy
(x*D)"=y or xT=Dy% i=1..n
and thus x* is independent of factor prices w, with C* = 2 x*w;, as in

equation (26).

Homogeneous CES. If both ¢;=e=1/u and d;=d in equation (11), the
well-known homogeneous CES function is obtained:”

y=f(x)= (E Dx{ )M, (28)

where equation (28) is clearly a special case of both equation (19)
(explicitly additive) and equation (24) (CES). The cost function dual to
equation (28) is

C =yl 2 D}’“‘d)w;'d’“‘d’. (29)

Applying the cost-polar transformation to equation (29) gives the polar
production function,

y=f*x)= (E D"Ex‘!')u,d‘,

. 2Gee McFadden (1963) and Uzawa (1962) for this n factor case, and the derivation of
the cost function. See also Hanoch (1975a).
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as in equation (24), with

The homogeneous limiting cases corresponding to d =1 in equation
(28) are the

Linear production function:

I3
y = (2 Dixi) >
and the

Leontief production function:
y = f*(x) = [min{x/ D:}}*,

both homogeneous of degree w.

Cobb-Douglas. If d; =0, all i, in equation (11), the (direct) function is
> D;log(xily*)=1,

which yields, after some manipulations,

y = f(x) = Allx}*, (30)
where
> D
b, = D , Bm= , A=expl]-— 1 ,
2 D E exDi 2 eDy
with 2 b, = 1.

This is the well-known homogeneous Cobb-Douglas production
function, with ES all equal to 1, and degree of homogeneity wu. Its
corresponding (dual) cost function is

C = (ylA)™“ I [(wilb)"] = A*y " II(w?), (31
where
A*= AT II(b7%).

Applying the polar transformation to equation (31) gives the original
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function (except for the scale constant),
y = f*(x) = (A¥IT(x7*).

This production function is thus ‘“‘self-polar” (in the strong sense), and is
exactly self-polar (i.e., f=f*)if (A*)* = A, or equivalently if

A = (ITby*)y™"2

[The function (30) could also be obtained as a limiting case of the homo-
geneous CES case (28), for d -=0.]

The non-homothetic Cobb-Douglas function is defined as a special
case of the general CRES function (8), i.e.,

> Di(y)logx;=1. (32)

However, the previous discussion shows that the specialized CRES
model in equation (11) yields a homogeneous function in this case even
if ¢; are not equal for all i

The models summarized here, as well as all their special cases, could
be generalized somewhat by substituting an arbitrary increasing function
h(y) for y. This will generalize any homogeneous case to a homothetic
function, and will allow some additional fiexibility in estimating the
non-homothetic models as well, if the functional form of h(y) is
specified with a small number of unknown parameters. For example, if
h(y) = e”*, the average cost function in the homogeneous cases will be
U-shaped, with a minimum at y,. Substituting y/yo for logy in the
estimation equations will then preserve their linear properties, and allow
estimation of y,.”

4. Multiproduct Production Frontiers with Constant TOES or TOET

This section presents several generalizations of the single-output
production functions presented above, for joint-production with multiple
outputs. Some of these frontiers exhibit CRES and CDE for elasticitics
of substitution between inputs (at constant outputs), and between out-
puts (at constant inputs); others have constant TOET, i.e., constant
RT%= Tu/Tx (CRET), or constant DT%= Ty — Ty (CDET).

Special cases of these, which are generalizations to m outputs of the

BSee Hanoch (1971).
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CES and the Cobb-Douglas production functions, are given at the end.
Additional generalizations or specializations may be derived along
similar lines. Proofs of monotonicity and convexity conditions, as well
as details regarding demand and supply relations and estimation equa-
tions are similar in nature to the corresponding single output cases, and
are generally omitted.

Separable frontiers with constant TOES: constant TOES between inputs.
A production frontier F(y,x)=0, where y is a vector of m outputs, is
denoted separable (between outputs and inputs), if y is weakly separable
in F, i.e., there exists a function g(y) such that

F(yx)= Flg(y).x]=0. (33)

with 3F/ag > 0. This implies strong separability as well,” since g(y) =
f(x) may be solved from equation (33), applying the implicit function
theorem.

An immediate implication of this, is that the aggregate y = g(y) may be
substituted for the single output y in all the CRES and CDE models
presented in Section 3. The cost function is defined for a fixed vector y,
hence a fixed scalar y = g(y), and the cost-polar transformation is
applicable in complete analogy to the one-output case. Specifying an
arbitrary (but valid) g(y) thus generates the production models of
Section 3, with constant R% or D} between inputs.

Constant TOES between outputs. The function g(y) may itself exhibit
constant R or DX between outputs (given constant input quantities x), if
it is of similar form to the models discussed above, with appropriate
modifications.

Specifically, the aggregate x = f(x), in the separable frontier g(y)=
f(x), is substituted for the single input x in the revenue function R(p,x).
The revenue function is analogous to the cost function C(w,y), with the
exception that R is convex (and linear homogeneous) in p, whereas
C(w,y) is concave in w. Similarly, g(y) must be quasi-convex, and the
transformation surfaces g(y) =g, are concave [whereas f(x) is quasi-
concave, with convex isoquant surfaces].

The functional form (10) is modified to yield the function g(y) with
CRES between outputs as follows:

2Weak and strong separability are known to be identical concepts with respect to a
partition into two groups. See Goldman and Uzawa (1964).
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2 big™yp=1, (34)
where
bj > 1, Bj,h.j > 0, ] = 1,...,m.

The ES between outputs are

A =24 <0 and R:;-=%f->o, (35)
arSi !
where
_ 1
a; = 1= bj < 0,

and s, are shares of revenues,

YPk

> vipi

and A; are therefore negative (corresponding to concave transformation

surfaces).

The corresponding polar transformation function g*(y) exhibits, by
analogy, CDE between outputs.

The polar revenue function R*(p,x) [dual to g*(y)] is defined implicitly

by

Sk =

>0,

S Bx"*i(pR*) =1,  b>1, (36)
with
*= —b.— b =11 (L)
Al b; b,+(2 stbx 1) a,-+a,- Zs’}: %)
and
D&"Aﬁ—Ai——l-—l= b. — b,
i - j _ai a!_ i i

in analogy to equation (14). Note, that the CDE models (12) or (36) allow
some A% (but not all) to be of opposite sign to A;, if more than two
inputs or outputs exist, and thus allow cases of complementarity be-
tween outputs (A¥ > 0) or inputs (A} <0), if [1/a; + 1/a;| is small relative
to the weighted mean _IE s%(1/a,)|. Thus, CDE models are generally
more flexible in this respect, than their polar CRES models.
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Reductions of the general CRES and CDE models to various special
cases, by imposing equality restrictions on various parameters, are
entirely analogous to all the cases discussed in Section 3, and thus yield
a variety of special functional forms for output transformation functions
g(y) and their corresponding dual revenue functions R(p,x).

Constant TOES between inputs and between outputs. if n >2 and m > 2,
the models with CRES and CDE for outputs and for inputs may be
combined to yield a polar pair of CRES/CDE frontiers for both inputs
and outputs. The following three equations define (simultaneously) the
CRES frontier:

ZD —e,d,de_... d'_<1’
37

> Bg"tiyli=1,  b;>1,

and
f(x) = g(y).

The polar CDE frontier applies both the cost (for inputs) and the
revenue (for outputs) polar transformations to equation (37), to give

E Df(wiC*) =1,

2 Big"(pJR*)"i = (38)

and
f(w/C*) = g(p/R™).

It follows, that the direct form of the polar frontier [equation (38)] is also
separable, of the general form f*(x) = g*(y). Various special cases of
either f or g or both are analogous to the single-output cases of Sec-

tion 3.

The profit-polar frontier. The condition for existence of a profit function
dual to the frontier [equation (37)], is that the feasible set T =
{(y,x):f(x) = g(y)} is convex. A sufficient (but not necessary) condition for
this is max; h; =< min; ¢, For example, if all ¢ > 1, the function f(x) in
equation (37) is concave; if all h; <1, g(y) is convex, implying convexity
of the feasible set T, and of the frontier function F = g(y) — f(x).
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If the profit function exists, the profit polar transformation may be
applied to equation (37), in accordance with Chapter 1.2, Theorem 5.
That is, a polar profit function =*(p,w) is defined by the following pair of
equations, after elimination of the common parameter f,

S Df F(wia¥t =1,
(39)

2 ij"hibi(p]./qr*)bi =1.

However, the (direct) frontier corresponding to equation (39) is generally
not separable, not homothetic, and does not in general exhibit constant
TOES.

Constant TOES separable homogeneous and homothetic frontiers. Spe-
cializing the case given by equation (37) to equality of the expansion
parameters, yields a homogeneous frontier.” That is: if k; = h, all j, and
e, = e, all i, the frontier is homogeneous of degree u = hfe.

If u <1, the frontier is convex, the profit function exists, and the
profit-polar transformation is defined, and yields a separable special case
of equation (39).

However, as shown in Chapter 1.2, the cost-polar and the profit-polar
transformations yield the same function f(x) (except for a constant
proportionality factor) in the homogeneous case. By analogy, the rev-
enue-polar and profit-polar transformation are the same. Consequently,
in this special case equations (39) and (38) are virtually identical, with
the CDE property D% = d; — d; between inputs, and D% = b; — b; between
outputs. These results may be generalized somewhat, using a similar
reasoning. If f(x) = h[g(y)] is substituted for g(y) in equation (37), where
h(g) is a positive and strictly increasing function, then the frontiers (37),
(38) and (39) are all homothetic and separable. The two alternative polar
transformations [i.e., the cost/revenue-polar of equation (38) and the
profit-polar of equation (39)] give rise to frontiers with identical maps of
input-isoquants and output-transformation surfaces, all with constant
TOES. (Detailed proofs of these brief statements are left as an exercise
to the interested reader).

A CRET non-homothetic, separable frontier. A non-homothetic separ-
able frontier is derived from equation (37) under the special explicitly

A frontier F(y,x)=0 is u homogeneous, if it satisfies F(A*y,Ax)=0 for all A >0. See
Hanoch (1970).
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additive case, hb; = ed; = ¢ >0 (j = 1,...,m;i = 1,...,n), in analogy to case
(19) for the one-output model. Applying these restrictions to equation
(37), this vields

ff=> Dxf, g =X Byl, f=g
Hence the frontier is
> Byti-2 Dxf=0, (40)

where sufficient parameter restrictions for validity are again B; >0,
Di>0, bj>1, 0=d;<1 or d;=<0, all i,j (with log x; replacing x&if
di=0).
The frontier (40) is directly additive separable, but is non-homothetic
in either outputs (unless all b; = b) or inputs (unless all d; = d).
Derivation of the ET in an analogous manner to the single-output
case® yields

T,=——24_ ji=1..,m+n, (41)

2 Sray

where a; = 1/(1 - d;)> 0 for inputs, a; = 1/(1 — b;) <0 for outputs. §; are
the profit shares, given by & =—wx¥/m <0 for inputs, and & =
pwy¥ @ >0 for outputs, where (y*x*) are optimal input and output
quantities, respectively, yielding positive maximum profits

11=2p,—y}"—2 wx* > 0.

Note that

m+n

> & =1 and 8§a<0, allk

Thus, T; of equation (41) are positive between outputs or inputs, and
negative between an output y; and an input x;, under the sufficient
parameter restrictions given above. Since this is a special case of
equation (37), it also exhibits CRES for ES between inputs (under y
constant) and between outputs (under x constant). This specializes, of
course, to the Mukerji function of equation (19), in the case of a single
output, with B, =1 and b,=d.

%We omit the details of this derivation, which may be worked ~ut by the reader.
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The polar frontier: non-separable, non-homothetic CDET. By analogy, a
CDET Frontier is obtained through the profit-polar transformation, such
that the polar unit-profit frontier has the same form as equation (40) in
the price variables (p;w). The profit function #(p;w) is then given
implicitly by

3 Bi(pi) — 2, Dilwi )% = 0. @2)

Equation (42) yields a valid profit function, and hence a valid production
frontier, under exactly the same parameter restrictions as in equation

(41).
The ET for this frontier are given, in analogy to previous results, by

T;j = —; — Q; + 2 81(11, (43)

where a; =1-b; <0 for outputs, a;=1—-d; >0 for inputs, and §, are
profit shares, with &a; <0, and 2 & = 1. It follows immediately, that T;
between pairs of inputs are negative, in sharp contrast to the CRET
frontier. This reflects dominance of expansion effects over substitution
effects, for this particular frontier (under the sufficient conditions b; >
1> d;). For output—output and output-input pairs, T; may be of either
sign, depending on the relative magnitudes of a;, a;, and & = 2 S

The polar frontier corresponding to equation (42) is not directly
separable, and is non-homothetic in either outputs or inputs. As a result,
the corresponding short-run ES, for fixed outputs or inputs, do not
exhibit CDES nor any other simple relation to one another or to the
corresponding T

This CDET frontier vields convenient estimation equations for rela-
tive demands or supplies, under competitive profit maximization, in
analogy to the results corresponding to equation (20). That is, (y/yi) is
log-linear in the two variables, (pd#) and (p\/#7), j=2; and (xfy)) is
log-linear in (w/#), and (p/7). Alternatively, # could be eliminated, to
yield (m + n —2) equations, each including two quantity-ratios and two
price-ratios.”

The generalized CES-CET frontier. The homogeneous separable models
discussed above have constant ES between inputs as well as between

7Gee Hanoch (1975a) for the one-output analogous case.
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outputs, under the special case: d;=d, b; = b, e; = e and h; = h, for all ij,
in equation (37).
Denoting i = hle, this frontier is given as follows:

(2 Ba?) " (= pxt) * (44)

where the ES are A; = 1/(1 — d)> 0 for inputs, and A; = 1/(1-b)>0 for
outputs, and the frontier is homogeneous of degree w.

By analogy to the CES production function, the polar frontier has a
similar form, but different parameters [see equation (46)]. The ES of the
polar frontier are given by A% =1-d between inputs, and Af=1-b
between outputs. (The polar frontier is also p homogeneous.)

A homothetic generalization of equation (44), with the same CES
property, is given by

(s o) =1[(£29)"]

where h is an arbitrary positive increasing function.

In the homogeneous CES case, however, the elasticities of trans-
formation are also constant (hence the name CES-CET). This may be
shown directly, by spelling out the explicit form of the profit function
corresponding to equation (44),%

—ufd*(1—p)

o (E B%p ?.)llb-(l—u) (z D"fw}") ’ (46)

where

BY =[(1~p)' p*]"*7 B,

D% = D}I(l—d),
d*=-d/(1-d),
b*=b/(b—1).

Computing the ET for this frontier by direct differentiation of the
profit function (46), we get

=t q-pu-
Tij—b__l(l p)—1,

for all pairs of outputs;

BThe proof is omitted. See McFadden (1963) and Chapter L.1.
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_ d 1-p
T,‘,‘-—l_d i 1,

for all pairs of inputs; and
Ty=-1,

for all input—output pairs (as in all separable, homogeneous frontiers).

A special case of this CET frontier is obtained if d >0 and p = d/b,
which is readily seen to be also a special case of the additive CRET
frontier (40), derived by putting b;=b, d;=d in (40). The ET are then
given by

_b-1
for inputs, and their reciprocal
1-d
Tu=3—7

for outputs, and are all positive.

The generalized Cobb-Douglas frontier. A further specialization of the
homogeneous CET frontier (44) may be called the Generalized Cobb—-
Douglas frontier, which is the limiting case of equation (44) if d >0,
b = 2. The frontier is given by

Y Byi=Ox*P, (47)

where 2 D; = 1, B,D; > 0. It yields unitary ES, A; =1 between inputs,
and A; =—1 between outputs. The constant ET are given by T; =—1
between inputs, T; = 2(1 — p) — 1 between outputs, and T; = —1 between
an output and an input.

Finally, the special case of equation (47), with B;j=B=
p*(1— p)ILDF, all j, may be shown to be exactly self-polar, yielding a
unit-profit frontier BZ p}=IIw}®, which is exactly of the same
functional form as equation (47) with B; = B.”

The weli-known CES and Cobb—Douglas production functions are
obviously special cases of equations (44) and (47), respectively, in the
presence of one single output.

®On self-duality (self-polarity) in the context of consumer demand, see Houthakker
(1965) and Samuelson (1969b). The frontier (47) is viewed as a generalization of Cobb-
Douglas, due to its self-polarity, as well as due to its unitary ES.



