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9.1 Introduction

Recently a class of econometric models involving dichotomous, limited,
and censored dependent variables was introduced by Amemiya (1974),
Heckman (1976a, 1976b, 1977), Lee (1976, 1977), Nelson and Olsen (1977),
and others in econometrics literature. In this chapter we will investigate the
estimation principle posed by Amemiya, using a unified general simul-
taneous equation model. The simultaneous equation model includes
censored simultaneous equation models, switching simultaneous equation
models, and Nelson-Olson and Heckman models without structural
change as special cases. Estimation methods that are computationally
simple and consistent are also proposed. Alternative estimates can be
derived from Amemiya’s principle (Amemiya 1977a, 1977b). The Ame-
miya principle is a general principle used to derive structural parameter
estimates from estimated reduced form parameters. Amemiya proved that
his principle can lead to simple estimators more efficient than the
estimators derived in Nelson-Olsen (1977) and Heckman (1977).) Since
Amemiya only demonstrated the efficiency of his approach in a case-by-
case basis, one may wonder whether it still holds in more general and
complicated models.

9.2 Two-Stage Methods and Amemiya’s Principle

To provide an unified framework, let us consider the following simul-
taneous equation model

This chapter is a shortened version of a paper prepared for the NBER-NSF Conference
on Decision Rules and Uncertainty, Carnegie-Mellon University, March 29-April 1,
1978, with a slightly different title: “On the Estimation of Probit Choice Model with
Censored Dependent Variables and Amemiya’s Principle.” I would like to thank Jerry
Hausman, James Heckman, G.S. Maddala, Charles F. Manski, Daniel McFadden,
Randall Olsen, Richard Westin, and a referee for their comments. Any errors remaining
are solely my own.

1. In the Neison-Olson model he used one limited dependent and one continuous
endogenous variable (Amemiya 1977a) and in Heckman’s model a continuous and
dichotomous dependent variable (Amemiya 1977b).
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Y, =YB+XI +¢, 9.1)

i=1,...,N,whereY;isal x Grow vector ofendogenous variables, X is
a 1 x k vector of exogenous variables, I — B is a G x & nonsingular
matrix, I' is 2 £ x G matrix, g ~ N(0, X) and are 1.i.d. The model differs
from the usual simultaneous equation model in that Y; may consist of
latent variables and limited and censored dependent variables as well as
observable continuous variables. Without loss of generality, we assume
that 0 <G, <G, <£G3 <G and

1. the first G, variables Y,,,. . . , ¥ ; are observable continuous variables,

2. the next G, ~ G, variables Y; .y, ..., Y;,; are limited dependent
variables, that is, one can observe it only when Y;; > 0,

3. the next G, — G, variables Y ,,;, ..., Y, are unobservable latent
variables. However binary indicators /;, are observable and are determined
by the latent variable Y;; as follows;

I;; =0 otherwise,
j = G2 =+ 1, s e ey G3.

4. the last G — G5 variables are censored dependent variables. The
variables Y, ,y;,. - . , Y, arecensored by a subset of latent variables in the
preceding assumption. Specifically the index set {G; +1,...,G} can be
partitioned into finite mutually exclusive and exhausted nonempty subsets
S, that is, {G3+ 1, ..., G} = UL S, where L <G, — G,. For each
1 </ <L there is a unique latent variable Y ., activating it; Y}, is
observedif Yg, . ; > 0, for all j e S}, and ¥,; is observed if Y, ,,; < 0, for
L €S,/SF, where Sf is a subset of S, which may be empty or equal §,.

The model in (9.1) is well defined and contains models developed by Lee
(1976, 1977) as well as Heckman’s models without structural shifts (1976,
1977) and Nelson and Olson (1977) models as special cases.

The B and I' can be identified under rank conditions and suitable
normalization rules. However, in general only certain nonlinear transfor-
mation of T will be identifiable when G, < G and ¢ # S¥ &S, for some /.
The analysis of identification conditions will be similar to that in Lee

(1977), but the details will be omitted here.
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To estimate model (9.1), maximum likelihood methods are too com-
plicated to be useful. However, consistent methods proposed by Heckman
(1976, 1977), Lee (1977), Maddala and Lee (1976), and Nelson and Olson
(1977) can be easily extended. Alternative estimates can also be derived
from Amemiya’s principle (Amemiya 1977a, 1977b). All those methods
require estimation of reduced form parameters in the first stage. For the
model in (9.1) reduced form equations always exist:

Y, = XM +u, 9.2)

where I1 =I'A — B) ™! and u, = (I — B)"!. Equation (9.2) can be esti-
mated by a single equation method such as probit or tobit maximum
likelihood methods, depending on the nature of the dependent variable.
The variables are defined in terms of the four specified categories.

The second stage is to estimate the structural parameters. To simplify
notations, each single equation is specified as

Yi = Riao + leEk 61 + si’ (9.3)

where Y* is a subvector of endogenous variables other than Y; inY,.
Equation (9.3) can be modified to

Yi == R,~50 + (X;H*)Jl + U[, (9.4)

where Y¥ = X;IT* + u}. With consistent estimates I* derived in the first
stage, the second stage in the methods proposed by Lee (1976, 1977),
Maddala and Lee (1976) and Nelson and Olson (1977) is to estimate (8, 8;)
from

Y; = R, + (XII%)6, + w,, (9.5)

where w, = v; + X(IT* — [1*),. Equation (9.5) is estimated by probit,
tobit, and so on, depending on the nature of ¥ in (9.5).

Instead of estimating (9.5), Amemiya suggests one should solve by
regression methods the structural parameters from the estimated reduced
form parameters. Based on this principle, one can derive alternative
estimates. Let R = XJ,, where J, consists of unit and zero column vectors.

.From (9.4) one has

Y, = X,J,0, + I1*5,) + v.. (9.6)
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Let ¢ be the corresponding reduced form parameter vector of ¥;in(9.2). It
is obvious that

¢ =J,5, + 11*5,. ©9.7)

The estimates suggested by Amemiya are ordinary least squares, OLS, or
generalized least squares, GLS, estimates derived from

8=1J,6, + 1*8, + ¢, 9.8)
where £ =€ —¢ — d1* — I1%)5,.

Under general conditions all these estimation methods give consistent
and asymptotic normal estimates. Amemiya in the two mentioned cases
showed that his GLS estimates are more efficient. The question remaining
is to compare his GLS estimates with the other consistent methods in the
general model with arbitrary number of equations and different type of
endogenous variables.

9.3 Structural Equations with Probit Structure

The G, — G, equations have unobservable latent variables at the left-hand
side that belong to this category. In our model the endogenous variable Y,
is an unobservable latent variable. The two-stage estimates are derived
from maximizing the function In L in (9.9) w.r.t. @1 = (80, 81) which are
the identifiable parameters under the normalization oz =1.

=Y {LIn®RS,+ (XI1*9,)

1
+ (1 —1)in(l — PR6, + (X101%)8,))}, .9)
where I, is the observed dichotomous indicator of Y;, @ is the standard
normal c.d.f. Let P= [X&,,...,Xd4) ©3=F,... . I}), 8=
[RXIT*], where §; =[5y, - . - » O15] and II* = (1%, ..., II%). Let
¢
A _ 1 ’_(Dl . O
S o
1 - (DN

and
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! 0
A= 2
1 — @,

where ¢, and @, are standard normal density and distribution functions
evaluated at R, + X.IT*4,. Following Amemiya, the asymptotic distri-
bution of this two-stage estimator @, can be derived from

6, — ©, 2 (S'AS)™! (S'A,(1 -®) — SAP®, — ©,)), (9.10)

where & means both sides have the same asymptotic distributions and
I —@isaN x 1 vector consisting of I, — ®;. The detailed expression for the
asymptotic variance matrix is lengthy but can be derived in a straightfor-
ward manner. The two-stage estimates can then be compared with
Amemiya’s GLS estimates.

PROPOSITION 9.1:  For equation (9.3) with unobservable latent variable
Y, and its dichotomous realization I,, the two-stage estimate 0, derived
from maximizing equation (9.9) is asymptotically less efficient than the
GLS estimate @ derived from Amemiya’s principle.

pROOF: From (9.10), the asymptotic variance of O, is

Vo, = (S'AS)"{S'AS + S'APV P'AS — S'AE5PAS
— S’APE,A,S} (S'AS) Y,

where E, is the asymptotic covariance of (@, — ©,) and (I — ®). The
asymptotic variance matrix of @7 is

VOA — (Zfﬂé—l Z)—l,

where Z = [J, I1*] and Q; in this probit structural equation is

(X'AX)7! * I
=[P
2 =1 1][— E,AX(X'AX)™! Vo, |{Pif
. with P = XP,. The two expressions Vg and £, follow, because ¢ is the

probit maximum likelihood estimate of the reduced form equation and
é — ¢ (X’AX)"'X’A,(I — ®).On the other hand, Ve, can be rewritten as
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Vo, = (Z'X'AXZ) ' ZX'AXQX'AXZ(Z'X'AXZ) ™.

It follows that Vg — Vg + is nonnegative definite.

9.4 Structural Equations with Observable Continuous Endogenous
Variables

Thefirst G, equations in our model (9.1) are in this category. Y;in (9.3) isan
observable continuous variable. Let @] =(dy, 6;), S =[R  XII¥] be a
matrix with (R; X JT*)inits ith row, and § be its estimated value. An OLS
procedure can be applied to (9.5). The two-stage estimate is thus

0, = 88)"'8Y. (9.11)

This two-stage method is similar to Theil’s two-stage least squares method
(1971) and was used in Heckman (1976, 1977). Amemiya GLS estimate
derived from (9.8) is

O = ZQ;'Z)y 20, (9.12)

whereZ =[J;, II*], £ is the variance matrix of £, and Z and ﬂ§ are their
estimated values.

Using the two-equation Neison-Olson and Heckman models, Amemiya
derived the asymptotic variance matrices for @, and ©{. He also gave
separate proofs in the two models that @ # is more efficient than @,. For our
model the asymptotic covariance matrices are quite lengthy but can be
derived in a straightforward manner. The interesting thing is to compare
their efficiency. This follows in proposition 9.2.

PROPOSITION 9.2: For equation (9.3) with observable continuous vari-
able Y, the estimate @4 in (9.12) is asymptotically more efficient than the
estimate @, in (9.11).

PROOF: Let P =[Xéyy, ..., Xd,0], @3 =1}, ..., II}¥), where
6; = [0y, - - ., Oy and IT* = (I1F, . . ., IT¥). Denote the asymptotic
variance matrix of @5 = (I}, ..., [I}) by Ve, and the asymptotic

covariance of @, and v by E,. From (9.5) it is obvious that the variance
matrix of @, is

Vo, = (§S)7'S{¢21 + PV P' — PE, — E;P'}S(S'S)™".

The asymptotic variance matrix of @' is
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Vo4 = (ZQ1Z)7.

To compare V¢, and Vg 4, one notes from (9.8) that

e2(X’X)"! (X'X)"'X'E; 1
LT
e, 1

where P, = ; ®I, & being the Kronecker product. Since P = XP, and
S =XZ,

Vo, = (Z'X'XZ)'Z'X'{c]1 + XP,Vo,P X' — XP,E,
- E{PX}XZ(Z'X'XZ)™!
= (ZX'XZ)'ZX'XQX'XZ(Z'X'XZ)™ .
It follows Vg, — Vg 4 is nonnegative definite, and @4 is more efficient.
It is interesting to note that the proposition holds no matter how @, is

derived so far as the asymptotic variance ©, — @, exists and @, is
consistent.

9.5 Structural Equations with Censored Dependent Variables

The last G — G5 equations belong to this category. The variable Y; is
censored. When S} and its complement set S,/S§ are nonempty, there are
switching systems. For the variable Y in S} which is observed when
Y, +1: > 0, based on observed subsamples, equation (9.4) can be rewritten

¢Xa)

;= R; JI* ; 9.13
Yl R150 + (Xln )61 + &q)(xla) + én ( )
where E(&, | I, = 1) = 0, I, is the dichotomous indicator of the underlying
latent variable that activates the censoring, and « is the reduced form
parameters of that latent variable. The two-stage estimator is to find « and
IT* in the first stage from probit maximum likelihood and similar equations
in (9.19) and estimate @; = (35, 81, 4) in the second stage from
o(X2) 9.14)

oxga)

Yi = Riao + (Xif[*)51 + i

where

_ oXz)  ¢Xiz) T




Models with Discrete and Censored Dependent Variables 353

For the variable ¥ in S/S¥, (9.14) should be modified to

- d(X &)
=R, X+ A—— 4, 9.15
Y, =Ry + XI1*)9, + A—0 X3 + 1 (9.15)

where

¢(X:a) ¢(Xx) R

All these expressions can be represented as

Y, =R, + (XII*)6, + AG (X&) + m;, {9.16)
where G (X,a) is a nonlinear function of X;a and

1, =& — MG (Xg) — G (X)) — X, (IT* — IT*)d,.

LetS =[R XIT* G]andS be its estimated vglue, where G is the vector
consisted of G(X,x). The two-stage estimator @, from (9.16) is

0, = §5)18Y. (9.17)

Let P =X( ®I) and p =& — ADy(& — «), where D, is the gradient
matrix of G evaluated at «. The asymptotic covariance matrix can be
derived from

0,-0,288 '8 -PO,-0,)) (9.18)
To derive the Amemiya’s GLS, one has to estimate the reduced form

parameter ¢’ = (¢, ¢3) for ¥; from

Y, = X, + GX@)e, + pi. (9.19)

It is ¢ = (W'W) 'W’Y, where W =[X GJ]. Let Z =[J;, J,II* Js]be
defined from S = W[J, J,IT* J,]. The GLS derived from Amemiya’s
principle is

0,4 =Z'R'Z)LON, (9.20)
where €, is the asymptotic covariance matrix of =8 —¢c + J,(II*
— 1*)8,. The comparisons of @, and @4 follow from proposition 9.3.

PROPOSITION 9.3: In the equation with censored dependent variable Y,
the GLS estimate (9.20) derived from Amemiya’s principle is asymptoti-
cally more efficient than the two-stage estimator ®, in (9.17)
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PROOF: From (9.18) the asymptotic covariance matrix of @, is
Vo, = (ZWWZ) 'Z’W'(V, + PV, P’ — PE — EPYWZ(ZWWZ)™ ',

where V is the asymptotic variance matrix of p, E is the asymptotic
covariance matrix of @, — @, and p. On the other hand, Vg* =
(Z'Q;'Z)7? from (9.20). Since & — ¢ & (W'W)™'W’p, it implies

Q, = (WW) 'WV,WW'W)"! +J,5; ®I)V,, (5, ®DJ
— J,(6; @DEW(W'W)~! — (WW) " 'WE'(3, )]

Since P = WJ,(8; ®I), Vo, can be rewritten as
Vo, = (ZWWZY 'ZWWQ WWZ(ZWWZ) 1.

It follows that Vg — Vg 4 is nonnegative definite.

It is interesting to point out that this conclusion applies not only to the
censored dependent variables in (9.14) and (9.15) but also to other models.
Amemiya (1977b) derives the asymptotic covariance matrix for a two-
equation Heckman model with structural shift but fails to apply his
principle to that model. Consider the following equation with structural
shift;

YZ!' = R,-50 + Yliél + Iiéz + &, (9'21)

where Y, is an unobservable latent variable with dichotomous realization
I, and Y,; is an observable continuous variable. From the reduced form

equation for Y,,,

Y, =Xic +u. (9.22)
Equation (9.21) is modified to

Y, = Ridy + (Xi€)d;, + ®(Xie)d, + &, (9.23)

where @ is standard normal c.d.f. With consistent estimates ¢ available,
Heckman’s two-stage estimator for @; = (8, 81, 8,) is derived by least
squares applied to

Y, = R8¢ + (Xi€)0, + ©(X )0, + 1;. (9.24)

It is obvious that equation (9.24) is a special case of (9.16). Hence it is
possible to apply Amemiya’s principle to equation (9.21), and more
efficient estimates can be derived.
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9.6 Structural Equations with Tobit Structure

This is the case where Y, in (9.3) is limited dependent. Equations G, + 1,
..., G, in the general model (9.2) are in this category. A two-stage
estimator @, was proposed by Nelson and Olson (1977). This estimation
method can be generalized to our model. The two-stage estimators are
derived by maximizing the following function:

N

1 1
InL(®)=) {— —Z-Iiln ol — Flf( Y; — R;8, — (X;11*)8,)

i=1

+ (1 =)In(l — R, + (Xifl*)dl))}. (9.25)
Define
2
5.0, b, ~ b; -0,
o, 1 -0,
Q= 52 s

v

1 Si®1 3 SiG‘)l Si®1 2 ¢12
022i=40_4(¢i( p ) +—a—¢i—( ps —]—_:E—zq)i ’

v v v

_—¢i Si@1 2+1__Si®1 ¢i
“20= 257 \Uo? 5, 1-9,)

where S; = [R, X;II*] and ©; = (;, J;).

Let A, ;bethe N x N diagonal matrix whose kth diagonal element is &; ., I,/
=1, 2, and

A = [All AIZ].
Az A
It is easy to show that

#InL(O,)
C At ) o ZoXFAXZE,
( 90,00

(52 nL(©,,0,)

= — Z¥X*AP*,
30,00 )
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X 0' IZ 0| P|
* * — * = = = ] I
—|:0 1 b Z 0 10 P [0 , P=XP, P, =46; QI

lis N x 1 vector with unity in all the components, 0 is the appropriate zero
matrix, or vector, and u is a 2N X 1 vector,

1 ¢ 1 1 gy I
== L= L)+ Lo, .., — - Ly,
|:O'vl _q)l( l)+ u 1U1s- le—(DN(I IN)+0_12,INUN
5,0, ¢ 1 1
— (1 -1 =0t 531
20_3 1 _@1( 1) 2 2 4 1vl’
SvOx  In

1
1 — -
* 203 1—¢~( Iv) 2031 241’v ]

It follows from the Taylor series expansion

=

O, — @, & L, [Z¥X*AX*Z*] " 1Z*'X*u — Z*X*'AP*(®, — ©,)),
(9.26)

where L, = [I, 0] is an identity matrix augmented with a column of zeros.
The detailed expression for Vg is quite lengthy but can be derived in a
straightforward manner as in Amemiya (1977a).

With consistent estimator @, from the first stage and ¢ from the tobit
maximum likelihood, one can compare the two-stage estimate in (9.26)
with Amemiya’s generalized least squares estimate (:)f.

PROPOSITION 9.4: For equation (9.3) with limited dependent variable Y,
the two-stage estimator 0, derived by maximizing equation (9.25) is
asymptotically less efficient than (:);4.

PROOF: From (9.26) the asymptotic variance of @, is

Ve, = Ly (Z*'X* AX*Z*)~ 1Z4X* AX*{(X*' AX*)™!
+ P¥V, P — (X¥AX*)™ IX*EP¥
— PrEX*(X*'AX*)” 1}X""AX*Z"‘(Z""X*'AX"‘Z*)“L{,
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where P* =[£!] and E is the asymptotic covariance matrix of u and (®,
— @,)". To compare the asymptotic variance of @4, one notes that & is a

tobit maximum likelihood estimate, and hence
¢ ~c& — L,(X¥AX*) 'X*q,

where L, is an appropriate identity matrix augmented with a zero column.
It follows that the asymptotic variance of @4 is

V91A = (Z,ﬂc_lz)_l,
where

Q, = L,(X*AX*) 'L} + P,V P] — P,E’X*(X*AX*)7'L}
— L,(X*'AX*)"'X*EP;.

To compare Vg, with Vg 4, 0ne has to evaluate L, (Z*'X* AX*Z*)™* and
L,(X*'AX*)"!L5. This can be done with the well-known formulas for
finding the inverse of a partitioned matrix : let

B=A, - szl(l’Azzl)—lllAzr
It is easy to check that the following equalities hold:

L, (Z*X*AX*Z*) ! =

(Z'X'BXZ) I ~Z'X'A 1A 1) ]; (9.27)
L,(X*'AX*)"! =

X'BX) I - Z'X'A,,11'A 1) ] (9.28)
L,(X*AX*)"1X* =

(X'BX)"'[X' —Z'X'A,1(0'A L0 ); (9.29)

M —Z'X'ALI0A,l) JZHX* AX*P¥* = Z'X'BXP, ;
(9.30)

0 —Z'X'A I VA,, D) ZFX* = Z/X'BXL,(X*'AX*) " 1X*".
(9.31)

It follows from (9.27) through (9.31) that
Ve, = (Z’X'BXZ) 'Z’X'BXQ X'BXZ(Z'X'BXZ) ™},

and hence Vg — Vg 4 is nonnegative definite.
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9.7 Switching and Censored Models with Sample Separation Infor-
mation

Switching and censored simultaneous equations systems with sample
separation are special cases of the general model introduced in section 9.2.
These models correspond to the cases in which G, =0, G; = 1,8, = {G;
+1,..., G}, and the unobserved latent variable Y, does not appear
explicitly in other equations. The system is a switching simultaneous
equation model when S} is nonempty; S} # S, the endogenous variables
in S* and S,/S#, form a complete simultaneous equation system in each
regime; and the endogenous variables in one regime do not appear in
another one. This switching simultaneous equation model differs from the
models studied in Goldfeld and Quandt (1972, 1973, 1976), since the
sample separation information is available.? The censored simultaneous
equation model introduced by Heckman (1974, 1976) can also be regarded
as a special case in which either S¥ is empty or S =S,.

In this section we would consider procedures such as two-stage least
squares, instrumental variables methods, and Amemiya’s principle in the
estimation of single structural equations in the system.? For each structural
equation (9.3) in regime S¥, based on observed subsamples corresponding
to that regime, equation (9.3) can be rewritten as

, o(Xa)
= R. * i * 932
Y, =R, + Y}, + Acl)(X,-a) + e¥, ( )

where E(s¥ | I, = 1) = 0. For the structural equation in the other regime

. eXia)
=R, * ) ¥, 6.33
Y, =R, + Yo, + / T~ o(Xa) + g ( )

where E(e¥ | I, = 0) = 0. These two expressions can be represented by
Y, =R, + Y13, + G (Xa) + eF, 9349

2. These two approaches have many different aspects in identification, estimation and
empirical applications. In our model the structural equations in each regime can be
identified under the usual rank conditions. This is not the case when sample separation
information is not available, see Goldfeld and Quandt (1975). More discussions on the
value of sample separation can be found in Goldfeld and Quandt (1975), Kiefer (1978),
and Lee (1977).

3. Instrumental variables methods on the estimation of usual simultaneous equation
models can be found in Theil (1971), Sargan (1958), Brundy and Jorgensen (1974), and
Hendry (1976).
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and therefore it is enough to consider the estimation of (9.34). Leta be the
probit maximum likelihood estimator of the reduced form Y,. Equation
(9.34) can be modified to

Y, =Rdo + Y6, + 3G (X) + ;. (9.35)

Let H be a matrix consisting of (R, Y;“, G (X,@)) as its ith row and H be its
estimated value evaluated at . In matrix form equation (9.35) is

Y =HO + 1, (9.36)

where @ = (84, 87, 4). The disturbances ; in (9.36) are heteroscedastic
and autocorrelated as pointed out in Lee, Maddala, and Trost (1977).
There are several methods to estimate equation (9.36).

METHOD 9.1: Let X be a matrix with (X;, G (X,a)) as its rows. Premultiply
(9.36) by X:

X'y =XH0 + X7 (9.37)

This equation can then be estimated by GLS as if X’X were the covariance
matrix. The estimator is

8, = [AXXX) XA AXEX) XY,
with the asymptotic covariance matrix

V(®,,) = X&) XA AXXX)!

KV XXX R ARKES) KA
where V, is the covariance matrix of g and V, is a consistent estimate of V.
Method 9.1 is similar to the usual two-stage least squares procedures; this

method has been discussed in Heckman (1976) and Lee et al. (1977).

METHOD 9.2: Equation (9.37) is estimated by GLS with covariance
matrix X'V _X. The estimator is

0, = [AXEXV,%) XA AKX V%) 7XY,

with the asymptotic covariance matrix V(@) = AXEV.XXH
Method 9.2 differs from method 9.1 in that the correct asymptotic
covariance matrix of X'y is used.

METHOD 9.3: Premultiply equation (9.36) by XV
XV =RVHO + XV (9.38)



360 ‘ L.-F. Lee

The GLS procedure is then applied to (9.38). The estimator is

Oy, = AV XAV TAVOREV, X)XV Y,
with the asymptotic covariance matrix V(®s) =[HV X
XV -1X)"* X'V, *H]™. This method is similar to a two-stage generalized
least squares procedure.

METHOD 9.4: Choose an instrumental variables matrix V 'X(X'X)™*
X 1. The following instrumental variables (IV) estimator can be derived;

O, = AXET) XV AR X)XV, Y.
The asymptotic covariance matrix of 8 is
V@) = XXXV HTTHIXX) XV
XEX)XAAEV XX X) KA
It is of interest to compare these various estimators. Since H = Xz +[o,
v* 0], with Z = [J,, II*, J3] as in (9.6), it can be easily shown that

1

1 5 - o
im—XH=pl X
p1mN1XH pthX z,

1

1o N
phmFIXV,,lH=pllmN—1XV,,’XZ,

where N, is the number of sample observations in the relevant regime. It
follows that

pimN, V(@) = p im N,V (@) = p lim N,[Z’X'V ' XZ] ™,
plim N, ¥ (@) = plim M, [ZXXE'V X)X XZ] ™,

and

plimN,V(®,,) = plim M, [ZX'XZ(Z'X'V,XZ)"'ZX'XZ]™".

The estimators @, and @, are asymptotically equivalent. But from the
computational point of view, @y, is relatively simpler. Since it is obvious

that*
ZXVXZ > ZXXEXVX)TXXZ = Z2’X'X2Z'X'v,XZ2)'2X'XZ,

4, A > B means that A — B is nonnegative definite.
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©,,) and @, are asymptotically more efficient than 8y, and 8y, is more
efficient than ©,,,.

The estimator @, derived from method 9.4 has an optimal property. It
is the most eﬂigicnt IV estimator in the set of IV estimators in the estimation
of equation (9.36). This can be shown as follows. let W be an arbitrary
instrumental variables matrix. The corresponding IV estimator is
&, = (WH)'W'Y,
with asymptotic covariance matrix V() = (WH) 'W'V,WH'W) .
Since
plim N, ¥(®y) = plim N,[ZX'W(W'V,W) 'WXZ]!
and
VIR = X'WWYV W) WX,

8,,, is asymptotically more efficient than &y,
Now let us consider Amemiya’s principle which is applied to
C=20+o, (9.39)

whereZ =[J, II* J,], with C = XX)~'X'Y and IT* = X X) XY~
The GLS estimator derived from Amemiya’s principie is
O1=ZQ;'72)' 7N C.

As derived in section 9.4, 2, = XXXV X)7!XX. It is obvious that
XXX)'XH =KZ. 1t follows 84 =8, that is Amemiya’s GLS

procedure is exactly method 9.2. Therefore one concludes that the
estimators @5, and @,,, are asymptotically more efficient than the GLS

estimator derived from Amemiya’s principle. Let us now analyze the OLS
estimator derived from Amemiya’s principle. The QLS estimator is

64=2Z2'2¢C.
It follows
04 =[ZXXXX)'XKX)XKZ]'ZXK&XX)'C
= HXXX) X H]'HXX X)Xy,
which is the GLS procedure applied to 9.37 as if (X'X) is the covariance

matrix. This estimator is less efficient than @,,, 93, and @4, but in
general @£ and ©,,, will not dominate each other.
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As a final remark we would like to point out that 8, and 8, are
computationally as simple as the GLS estimator derived from Amemiya’s
principle. As demonstrated in Lee et al. (1977), V,, in the first regime is a
sum of two matrices;

V, = V, + D;(X'AX)"'Dj,

where V, is a diagonal matrix. Hence the following inversion relation can
be used ;

V-l=V[' - V{'D,(X’AX + D;V;*D,)"'D{ V[,

and we do not need to invert numerically an N, x N, matrix. Similarly this
is true for V, in the second regime.

9.8 Conclusion

We have analyzed an estimation principle of Amemiya in a general
simultaneous equation model. The model consists of observable con-
tinuous endogenous variables, unobservable latent endogenous variables
with dichotomous indicator, and limited and censored dependent variables
in a simultaneous equation framework. This general model contains the
Nelson and Olson simultaneous tobit model, the Heckman simultaneous
dummy endogenous variables model, the censored simultaneous equation
model, and the switching simultaneous equations models as special cases.
Various consistent two-stage estimation methods are generalized.
Amemiya’s principles are investigated in this general model, using an
arbitrary number of equations. Amemiya’s generalized two-stage esti-
mators are compared with the other two-stage estimators. It was shown
that Amemiya’s estimators are more efficient in all the cases. Contrary to
Amemiya (1977a) his principle can also be applied to Heckman’s model
with structural shift. A generalized two-stage estimator derived from his
principle is also found to be more efficient than Heckman’s approach. The
proofs are general and do not depend on a case-by-case analysis.

In the censored simultaneous equation models and switching simul-
taneous equation models, GLS and OLS estimators derived from
Amemiya’s principle can be identified as instrumental variables methods.
Two estimation methods that give more efficient estimators than the GLS
estimator derived from Amemiya’s principle are found. These two
estimators are shown to be asymptotically equivalent and are com-
putationally simple.
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