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4.1 Introduction

This chapter considers two problems: the first, and most important, is the
problem of inital conditions that arises in estimating a discrete time-
discrete data stochastic process; the second problem considered is the
problem of incidental parameters that besets one potentially attractive
solution to the problem of initial conditions.

Before parameters generating a stochastic process with dependence
among time-ordered outcomes can be estimated, the process must
somehow be initialized. In much applied work in the social sciences, this
problem is treated casually. Two assumptions are typically invoked: either
the initial conditions or relevant presample history of the process are
assumed to be truly exogenous variables, or else the process is assumed to
be in equilibrium.

The first assumption is valid only if the disturbances that generate the
process are serially independent or if a genuinely new process is fortuitously
observed at the beginning of the sample at the analyst’s disposal. If the
process has been in operation prior to the time it is sampled, and if the
disturbances of the model are serially dependent, the initial conditions are
not exogenous variables. Treating them as exogenous variables results in
inconsistent parameter estimates. The confluence of serial dependence in
unobservables and state dependence in the process results in an important
and neglected problem that is considered in this chapter.

The second assumption—initial stationarity of the process——does lead
to a tractable solution to the problem. But this assumption is unattractive
in many applications, especially when time-varying exogenous variables
drive the stochastic process.

This chapter proposes exact and approximate solutions to the problem
of initial conditions that arises in the class of discrete-time, discrete-data
stochastic processes considered in chapter 3. Limited Monte Carlo
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evidence is presented on the performance of certain estimators that are
simple to use.

One potentially attractive solution to the problem of initial conditions
that does not require a stationarity assumption is based on the fixed effect
probit estimator proposed in chapter 3, section 3.6. However, this solution
gives rise to another problem also discussed in this chapter : the problem of
incidental parameters first considered by Neyman and Scott (1948).

For any panel of finite length estimators of individual fixed effects are
necessarily inconsistent. As Neyman and Scott have demonstrated, the
inconsistency in estimating fixed effects does not necessarily give rise to
inconsistency for estimators of the structural parameters of interest,
provided that estimators for these parameters can be derived that do not
depend on the incidental parameters (e.g., first difference estimators in
linear regression). However, it is not always possible to derive such
estimators, and in such a case the inconsistency in the estimator for the
fixed effect is transmitted to the estimator for the structural parameters. In
particular the fixed effect probit estimator suffers from this defect.

All empirical samples are of finite size. All estimators based on
necessarily finite samples are inconsistent. The issue here, as always, is
whether or not the asymptotic theory provides a good guide in practical
work.

In this chapter a limited set of Monte Carlo sampling experiments is
conducted as a first step toward evaluating the properties of the fixed effect
estimator. Two main conclusions emerge from these experiments. First, for
a panel of length eight the inconsistency for the fixed effect estimator is
found to be small for a multivariate probit model with strictly exogenous
variables. This conclusion is in general agreement with results from a set of
Monte Carlo experiments for a fixed effect logit model performed by
Wright and Douglas (1976). Second, for a panel of length eight the
inconsistency for the fixed effect estimator is found to be disturbingly large
for a multivariate probit model with fixed effect that generates a discrete
data first-order Markov process.

Additional limited Monte Carlo evidence is presented on the perfor-
mance of certain alternative simple approximate procedures for the
solution of the problem of initial conditions that do not rely on the fixed
effect probit model. These procedures are found to produce more attractive
estimates than those derived from the multivariate probit model with fixed

effect.
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This chapter is in four sections. In sections 4.2 and 4.3 the problem of
initial conditions and some solutions to it are discussed in the specific
context of a first-order Markov model generated from the latent variable
models presented in chapter 3. In sections 4.4 and 4.5 results from some
limited Monte Carlo sampling experiments are presented. The chapter
concludes with a brief summary.

4.2 The Problem of Initial Conditions and Some Formal Solutions

In order to focus the discussion on the essential aspects of the problem of
initial conditions and its solution, consider the estimation of a discrete data
first-order Markov process generated as a special case of the general model
presented in chapter 3. For present purposes few new points arise in a
discussion of the general model, and an analysis of the Markov model,
which is widely used in applied work, is of interest in its own right. For
simplicity exogenous variables are initially assumed to be absent, and it is
further assumed that the disturbance that generates the process has a
components of variance structure.
The process is defined by dichotomization of latent variable Y (i, 1):

Y(it) =B, +yd(i,t — D) +e(iyn), i=1,..., Lt=1,...,T,
Y({i,bty=0 iffd(i,t)=1,
Y(i,) <0 iffd(i,1)=0,
e(i,t) = (i) + U(i, 1), 4.1)
where
E(U(i,1)) =0 = E(t(i)), E(z(i)*) = 62,
EWU(LYY)=0cf=1LEWUGENUG, ")) =011,

E@(DHU’, ") =0,foralli,t,and t",

d{i, 0) = a fixed nonstochastic constant for individual ;.

Assuming that U(i, ) is normally distributed, an inessential assumption in
the present context, the transition probability for individual i at time # given

T(i) is
Prob{d(i,z) | d(i,t — 1),7(7)]
= QB + yd(i,t — 1)+ (D)) [2d (i, ¢) — 11}, 4.2)

where @ is the unit normal cumulative distribution function.
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The marginal probability of d(i, J), T = J given (i) is
Pld(i,J)|=(i)] =
1
( Y O{[Bo +yd(.J— 1)+ t(if[24(,T) — 1]})
d

(i,J-1)=0

( Y O([Bo + yd(i,J — 2) + ()] [2d(i,J — 1) — 1]})
a

(i,J-2)=0

1
( Y, ®{[B +vd(i,0) + ()] [2d(, 1) — 1]})- (4.3)
d(i,1)=0
In other words, it is the sum of the probabilities of all possible sequences of
events prior to J that leads to a specific value for d(i, J).
The process is ergodic for bounded y, 8, and 7(7). The limiting marginal
probability for the state d(i, ) = 1 for all ¢ (assuming an infinite past) is

Q(Bo + (1))
1 —®(By + 7 + () + (B, + () 4.4)

and the limiting probability for state 0 is ITo(7(i)) = 1 — I1,(z(¥)).! I1, and

I1, are the equilibrium population proportions in state 1 and state 0,

respectively. Note that, if the transition probabilities are of the probit

functional form, the limiting probabilities are not of that form.
Further, if the process is in equilibrium,

P[d(,J) | z()] = I, (z())*¢ P T (z(2)) ~4%7),

so that it is possible to write a closed form expression for the probability.
The likelihood function for a sample of 7 observations per person, given
nonstochastic initial condition d(i, 0), is

I, (z(?)) =

O{[Bo + yd(i,t — 1) + t}[2d(i,2) — 11} f(z)dr, “.5)

ll:q

@«
I
=TI f
i=1 r=1

-
where f(7) is the population density of 7. It is not necessary to assume that 7
is normally distributed, although it is convenient to do so, and for that
reason this assumption is maintained for the rest of the chapter.

1. The equilibrium probabilities are obtained by solving the equation for equilibrium
I,z () = ®B, + 7 + TNz (D)) + BB, + t(I)Ty(x(d)) and using the fact that
Mz () =1 = I1,(2(¥)); see, e.g., Karlin and Taylor (1975).
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Maximum likelihood estimators of f,, 7, and the variance of t are
consistent if 7 — oo and I — oo or just I — oo. If the z(i) are treated as
parameters rather than integrated out, maximum likelihood estimators of
Bo, v, and 7(¢) are consistent as T — co, whether or not /s fixed or tends to
infinity.

Thus far it has been assumed that the analyst has access to the entire
history of the process. Suppose, however, that the analyst only has access to
the last T — J observations on the process, so that he knows d(i, ),
t' =J, ..., T. In this case the initial state for individual i, d(i, J), is not
fixed or exogenous. It is determined by the process generating the panel
sample. Unless f(z) is degenerate, random variable d(i, J) is not exogenous
and is in fact stochastically dependent on 7.2 This gives rise to the problem
of initial conditions.

The sample conditional likelihood function for d(i, T), . . . ,d(Z, J + 1)
given d(i, J) is

o

= [=]1 [[ JJL OB, + yd(i,t — 1) + t][2d(, 1) — 1]}

- Pld(i,J) | tlf(t)dt] / J P, d) <] (r)dr], 4.6)

- ®

where the term inside the large brackets is the conditional probability of
di, T), ..., d(i, J+ 1) given d(i, J) for observation i. The sample
likelihood for d(i, T'), . . ., d(i, J) is

y T
< =11 f 11 (o +rd(it — 1) +1}12d(,0) ~ 1]}

- P[d(i,J)| 1] f(r)dx. @.7)

2. In the case of a degenerate f(r) distribution, maximum likelihood estimators of the
parameters of the model are consistent. Amemiya (1978) proves this for a logit first-order
Markov case, and his proofs carry over fully to the probit case considered in this
chapter. For a discussion about estimating a Markov model without serially dependent
unobservable variables, see Anderson and Goodman (1957) and Anderson (1976).
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Maximizing either the conditional likelihood function (4.6) or the uncon-
ditional likelihood function (4.7) with respect to parameters fo, 7, and o?
generates consistent parameter estimators that are asymptotically nor-
mally distributed if 7 - c0 and T — oo or just I — oo (provided 7 >2).
Recall from equation (4.3) that P[d(i, J) | ] depends on B, y, and d(7, 0).

Unless f(z) is degenerate, so that there is no serial dependence in the
disturbance of the model, maximizing the likelihood function treats d(i,J)
as a fixed nonstochastic constant, that is, the function

:j~

¥ =

i

T
f [T {8, +yd(i,t — 1)+ 1J2d(i.0) — 1]} f(x)dr  (4.8)
1 t=J+1
leads to inconsistent estimators for B, 7, and ¢2. Intuitively this is so
because d(i, J) is stochastically dependent on 7.

Maximizing likelihood (4.6) or (4.7) is a computationally forbidding
task, even in the case where initial stationarity of the process can be

assumed, so that
PId(i,J) | T(0)] = I, (z())!& D T, (x(@)) ~ 4.

Further, without the assumption of stationarity it is necessary to determine
d(i,0), and this information is hard to come by, although in certain contexts
it is plausible to assume a specific value for this variable. These difficulties
become more pronounced when exogenous variables are added to the
model, so that B, is replaced by Z(i, t)p, where the Z(i, 1), i =1, . . ., I,
t=1,...,T,are bounded exogenous variables. In this case two additional
problems arise.

First, it is generally untenable to assume stationarity for the marginal
probabilities P[d(i, 1) |t(D], t=1,.. ., T, without stringent additional
restrictions on the process generating the exogenous variables, such as an
assumption that the exogenous variables are generated by a stationary
stochastic process—an assumption that excludes time and age trends.
Second, the analyst typically will not know the values of the relevant
exogenous variables in the presample period t =1, ..., J— 1. {If these
values are known, they may be substituted into the expression forP[d(i,
t)| (i)] given in (4.3), replacing B, by Z{, t)B.)

3. The proof of this assertion is straightforward and amounts to showing that the

expectations of the partials of the log likelihood (equation 4.8) with respect to the
structural parameters do not vanish at the true parameter value.
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If the presample exogenous variables are not available to the analyst, in
principle the parameters of the distribution of the missing data can be
estimated, provided that such a distribution exists. This procedure is a
straightforward application of the work of Kiefer and Wolfowitz (1956).
Thus, if the joint distribution of the presample values of Z(i, t=1,...,
J — 1, is a finite parameter distribution g[Z(1), . . . , Z(J — 1)],and P*[d(i,
D) t@), Z(), . . . , Z(J))] is defined as the marginal probability of di,J)
conditional on Z(i, ),z = 1,. . . ,J,and 7(i) (obtained by substituting Z(,
1)B for B, in equation 4.3), one can define

Pld(i, J)| (i), Z{J)]
= (... [P¥dG, )1 l), Z(1), - . ., Z()]
gZ(), ..., ZJ = DEZ(), . . ., dZ{J - 1),

and with this modification likelihood functions (4.6) and (4.7) remain valid.
Those likelihood functions, suitably modified, can be maximized with
respect to the structural parameters of the g distribution.* Note that in
general due to the fact that the regressors enter P¥d(i,J) | (D), Z(Y), - . .,
Z(J)]in a nonlinear fashion, it is not correct to use estimated sample means
to replace the missing values of the exogenous variables.

This procedure is not as complicated as it appears to be. If the analyst has
access to other data from which it is possible to estimate g consistently, he
can use the estimated distribution to form P[d(i, J) | ©(i), Z(1),. . . , Z(J)]
for each set of values of B, y, and 7(i). Therefore it is not necessary to
estimate the parameters of the g distribution simultaneously with the
structural parameters of interest.

4.3 Simpler Solutions and the Problem of Incidental Parameters

The preceding section presents the problem of initial conditions and
sketches some formal solutions to it. The solutions presented there are
somewhat computationally forbidding. In this section some alternative,
simply computed estimators are considered.

Following a suggestion made by Mundlak (1978) for a linear regression
model, it is possible to estimate a model with a components of variance
structure conditional on error component (i) and to estimate the (i),
i=1,..., 1 The advantage of this approach is especially clear in the

4. Kiefer and Wolfowitz (1956) also consider a case of nonparametric estimation of the g
function.
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context of estimating conditional likelihood function (4.6). Treating z(?) as
a parameter, the conditional likelihood function for d(i, T), ...,
d(i,J+ 1) given d(i, J) is

LT OB +yd(i, 1 — 1)+ <(i)][2d(, 1) — 1]} P(d(, ) | (1))
‘= Hl Ul P(dG,J) ] ()
I T
& = H H (D{[ﬁo +yd(i,t — 1) + 1(i)] [2d(i,t) — 1]}. (4.9)
i=1 =J+1

This model is the discrete data analogue of the linear regression model with
fixed effects, and it is very easy to compute.’ Maximizing function (4.9)
with respecttoz(i),i =1, . . . , I, B, and y,as T — co, these parameters are
consistently estimated.® For further discussion of this model see chapter 3,
section 3.6.

The principal advantage of this procedure is that presample information
about the process is not required to estimate the structural parameters. In a
mode] with exogenous variables, the analyst can avoid estimating the
distribution of missing data and computing the marginal probability
P[d(i, J) | 7(i)]. Another advantage of this procedure is that it is not
necessary to assume an arbitrary distribution of the t to estimate the
model.’

There are two problems with the fixed effect model.® First, for any
observation i that does not change state over the sample period the
estimated fixed effect is +c0. A fixed effect can be chosen that perfectly
explains the data for such observations. For those observations for which
Sd(i, t) = T — J, 7(i) is estimated to be co. For those observations for
which 2d(i, 1) = 0, t(i) is estimated to be —co. The effective sample for
estimating parameters is the subsample of individuals who change state.
While this may be intuitively displeasing, because it apparently manufac-

5. A copy of a computer program that computes this model is available at cost.

6. Note that B, may be absorbed into the estimated fixed effects and recovered by
invoking the requirement that the mean of the fixed effects is zero.

7. As discussed in note 3, Kiefer and Wolfowitz (1956) suggest nonparametric estimation
of the density of z. In most work in econometrics arbitrary parametric schemes are
imposed. Estimating the fixed effect permits one to estimate the density of 7. This
procedure is not the one proposed by Kiefer and Wolfowitz.

8. A third disadvantage is that for large T(> 3). the fixed effect estimator is not a
conditional version of a model with arbitrary serial correlation in the disturbances. An
assumption of a components of variance error structure is required to justify the method.
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tures a form of small sample selection bias, as T — co this problem becomes

unimportant.
Second, for fixed T, estimates of structural coefficients are inconsistent.

This conclusion follows from the analyses of Neyman and Scott (1948) and

Andersen (1973, pp. 68—78). Andersen explicitly considers a fixed effect
logit model. The inconsistency of the maximum likelihood estimator for
the structural parameters arises for the following reason. Estimators of 7(i)
are necessarily inconsistent. Since the roots of the likelihood equation

involve the joint solution of structural parameters and fixed effects, the
inconsistency of the estimator for the fixed effects is transmitted to the

estimator for the structural parameters.’
For these reasons the fixed effect scheme appears to be unattractive.
However, the analysis of Andersen’s model (as it applies to the multivariate

9. Using Andersen’s example (1973, pp. 68-71), it is possible to examine these difficulties
more closely. Andersen assumes y = 0 and lets T = 2. Define a dummy 5(t) that equals
zero in period 1 and one in period 2. The likelihood function is thus

12
F =T M O{@) + ()24, 1) — 1)}

i=11=1

Maximize the logarithm of % with respect to t(i) and §. Then for observation i for
which d(i, 1) = 1 and d(i, 2) = 1, 7(i) = 0. For observation i for which d(i, 1) =0 and
d(i, 2) =0, ©(i) —» —oco. For the other observations the likelihood function may be
concentrated in the 7(j) and then maximized with respect to .

From the symmetry of the derivative of @ it is obvious that 7(i) = — B/2. (This is true
for any symmetric @, not just the probit. Thus Andersen’s analysis for the logit yields
the same resuit.)

Substituting this expression into the likelihood function, it is straightforward to prove
that if 62 — 0, plim f = 28. If 62 - co, plim | f | » co. The proof in the normal case for
the first result closely parallels Andersen’s proof. The second proof is trivial and hence is
not given here.

Andersen (1973) demonstrates that conditioning the likelihood function on the event
Td(i, 1) = 1 eliminates the fixed effect in a logit model, so that conditional maximum
likelihood estimators are consistent. (This result is originaily due to Rasch 1960. See also
the analysis of Haberman 1977.) This result is specific to a logit model. In a probit model
such conditioning does not eliminate the fixed effect. In fact for the probit model the
conditional maximum likelihood estimator generates unbounded estimators of the fixed
effect for certain subsets of the observations.

Thus while conditional likelihood methods are heipful in a logit model, they are not
helpful in a probit model, or in a general qualitative choice model. Conditioning the
likelihood function in a logit model eliminates the fixed effect. First differences in a linear
probability model eliminate the fixed effect, and thus the natural estimator for that model
is linear regression. At this point the transformation of the probit function that
eliminates the fixed effect is not known. The key point for the present discussion is that
the lesson to extract from the binary logit case is noz that conditional likelihood methods
are a general approach in fixed effect models but that conditional likelihood methods in
that case happen to be a convenient representation (or transformation) that eliminates
fixed effects.
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probit model with fixed effect) gives no guide to the performance of the
fixed effect estimator when T'is as large as 8, a feasible sample size in many
data sets currently available. Recent Monte Carlo evidence by Wright and
Douglas (1976) for the fixed effect Rasch-Andersen logit model finds that
for T as small as 20 a fixed effect logit estimator performs as well as
alternative consistent estimators.!®

In Monte Carlo results reported in section 4.4 the fixed effect probit
estimator performs well for T as small as 8 as long as no lagged values of
dummy variables are included in the model. When lagged values are
included, as is required to generate a first-order Markov model for discrete
data, the fixed effect estimator performs badly.

In view of these results it is of interest to consider alternative solutions to
the problem of initial conditions. An easily computed approximate
solution to the problem of initial conditions is considered in the Monte
Carlo experiments. This solution, which turns out to be relatively
successful, approximates the reduced form marginal probability of the
initial state in the sample by a probit function which has as its argument as
much presample information on the exogenous variables as is available.
The disturbance in the index variable that generates the reduced form
probit function is left freely correlated with the structural errors over the
sample period. This estimator works well in the Monte Carlo experiments,
even though the probability of the initial state is not a probit function.

Specifically the following procedure is proposed and examined:

1. Approximate the probability of d(i, J), the initial state in the sample, by
a probit with index function

J
Y(i, )= DNZGD] + pu(i,J)

i=0
Y(i,J)=0iff d(i,J) =1, Y(i,J) <0 otherwise,
where D(J)[Z(i, /)] is a general function of the Z(i, /), [ =0, ..., J, and
u(i, J) is assumed to be normally distributed with mean zero.!!
2. Permit u(i, J) to be freely correlated with ¢(¢, 1), t=J +1,..., T.
3. Estimate the model by the method of maximum likelihood without

10. Their alternative consistent estimator is the conditional maximum likelihood
estimator proposed by Rasch and Andersen and mentioned in the preceding note.

11. In practice polynomials in Z{i, /) are used to form the D(/) functions.
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imposing any restrictions between the parameters of the structural system
and the parameters of the approximate reduced form probability function

for the initial state of the sample.
Assuming that the model is exact as ] - oo, and for fixed 7, the
maximum likelihood estimator is consistent.

4.4 Some Monte Carlo Evidence

This section presents results from a limited set of Monte Carlo experiments.
In each experiment with fixed effect estimators, 25 samples of 100
individuals (I = 100) are selected for 8 periods (7T = 8). Results are
presented for both a probit model with only exogenous explanatory
variables and the first-order Markov model. The exogenous variables are
assumed to follow a Nerlove process (Nerlove 1971):

Z(i,t)=01r+035Z(,1— 1)+ w(i,f),

where w(i, t) is a uniform random variable with mean zero and range — 1,2
to 1/2. This process well approximates the age-trended variables found in
many microdata panel sets, especially in labor market analysis.

Results for the multivariate probit model with fixed effect but without
lagged dummy variables are presented in table 4.1. Maximum likelihood
fixed effect estimates are presented in the first three rows. The model
generating the data is given at the bottom of the table. Samples are gen-
erated from a normal random number generator. The variance of U{(i, t)
is set at-one. The variance of the fixed effect, 02, is changed for different
experiments. For § = 0.1 the fixed effect estimator does well. The estimated
value (denoted f§) comes very close to the true value. For = —1l,orff =1,
the estimator does not perform as well, but the bias is never more than 10
percent and is always toward zero. As the variance in the fixed effects
decreases, so does the bias.!?

These results are consistent with the findings of Wright and Douglas
(1976) who use Monte Carlo methods to investigate the performance of the
fixed effect logit estimator for the Rasch- Andersen model. In a study with
panels of length T = 20 per person, they find that the fixed effect logit

12. One unusual feature of these experiments is the consistent finding of a bias toward
zero when a bias occurs. Andersen’s two-period analysis would suggest an upward bias.
The exogenous variables in the model investigated in the text have a much more complex
character than the simple treatment effect variable used by Andersen.
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estimator is virtually unbiased and its distribution is well described by a
limiting normal distribution with variance-covariance matrix based on the
estimated information matrix.

To judge the importance of the bias, one requires a benchmark. The
benchmark selected in this chapter is a random effect estimator that
integrates out the fixed effect. This is a multivariate probit model with
random effect as presented in Heckman and Willis (1975) or chapter 3,
section 3.5.

For each set of parameter values 25 samples with 100 observations of 3
periods are generated. The random effect estimator with 7 =3 costs
roughly the same to compute as the fixed effect estimator with T = 8. In
terms of computational cost, the two estimators are equivalent.

The results with this model are presented in the final two rows of table
4.1. For a variance of 62 = 3, the random effect estimator displays more
bias than the fixed effect estimator. For ¢? = 1, the two estimators do
about equally well. These experiments suggest that there is no clear ranking
of the two estimators.

Test statistics for the random effect estimator (not given in the table)
based on the estimated information matrix lead to rejection of the false null
hypothesis that 8 =0 far more often than test statistics based on the
information matrix for the fixed effect estimator. On the basis of this
limited evidence, if the estimators are to be used to make inference, the
random effect estimator seems preferable.

Next consider some Monte Carlo experiments with the fixed effect
estimator for a first-order Markov process. The results from these
experiments are displayed in the first part of table 4.2. The same Nerlove
process that generates the exogenous variables used in the preceding
experiments is used in these experiments. The process operates for 25
periods before samples of 8 periods for each of the 100 individuals used in
the 25 samples for each parameter set are selected.

The fixed effect probit estimator performs badly. The bias is greatest for
large values of the variance in person effects (¢2) and when there are no
exogenous variables in the model. But even the smallest bias reported in the
table is still bad. The ¢ statistics based on the estimated information matrix
result in misleading inferences. From experimental results not reported in
the table, one does not reject the false null hypothesis of y = = 0 in the
vast majority of samples.

Note that estimates of y are downward biased and estimates of f§ are
upward biased. These results are very similar to Nerlove’s Monte Carlo
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Table 4.1
Monte Carlo results for models without lagged variables®

Values of § for the fixed effect probit model®

B=1 g=—0.1 B=—1
o =3 0.90 ~0.10 ~094
62 =1 091 ~0.09 —095
62 =05 0.93 —0.10 ~0.96

Values of § for the random effect probit model®

B=1 f=-1
o2 1.15 ~0.85
62=1 1.04 —0.92

2The model generating the data is

Y(i,ty=Z(i,0f + (i) + U(i, 1),
i=1,...,LifY(i,i)=0,d(i,n=1,t=1, ..., T, otherwise, d(i,z) = 0.
Z(1,1) is generated by the Nerlove (1971} process,
Z(i,)=01r+05Z(i,t = 1)+ w(i,z)

w(i, 1) ~ U[—-0.5,0.5].

br=100, T = 8.

°I=100, T =3,
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results in a linear equation model analogue of the Markov model (Nerlove
1971). Fixed effect estimators generate a downward-biased estimate of the
coefficient of the lagged value of the endogenous variable in that model, just
as they do for the state dependence coefficient in the Markov model.

In view of the poor performance of the fixed effect estimator as a solution
to the problem of initial conditions, it is of some interest to examine the
performance of some alternative estimators. The middle section of table 4.2
reports the results of a limited Monte Carlo study of the approximate
random effect estimator proposed in section 4.3. The samples used to
generate these estimates are the first three periods of the data utilized in the
samples of the Monte Carlo study of the Markov model estimated by the
fixed effect probit scheme. The first-period marginal probability is assumed
to depend solely on first-period values of the exogenous variables. The
proposed approximate random effect estimator discussed in section 4.3
does somewhat better than the fixed effect estimator. The § consistently
overstates the true y and f understates the true 8. As o2 declines, so does the
bias in the estimator. In results not reported here, ¢ statistics are much more
reliable in this model than in the fixed effect probit model since they lead to
correct inference in a greater proportion of the samples.!?

As in the discussion of the fixed effect probit model with strictly
exogenous explanatory variables, it is natural to seek a suitable benchmark
with which to compare the performance of the proposed estimators. One
benchmark that provides an ideal case is a model with known non-
stochastic initial conditions. Twenty-five samples with 100 observations of
3 periods are generated for each set of parameter values. Random effect
maximum likelihood estimates for this model are presented in the final
section of table 4.2. While this estimator is less biased than the approximate
estimator, it is nonetheless biased. The difference between the results for the
approximate random effect estimator for the case of stochastic initial
conditions and the results for the estimator with known initial conditions

13. Another ad hoc estimator was tried. This estimator fits a linear probability function
to predict the marginal probability of the first sample period state. The predicted value is
substituted in place of the actual value, and the y parameter associated with the state in
the first period is permitted to be distinct from the y parameter for the sample transition.
In terms of bias the performance of this estimator is intermediate between the fixed effect
estimator and the proposed approximate random effect estimator given in the text, even
when several years of presample data on the exogenous variables are used to predict the
probability of the first sample period state. The estimator works well for the special
problem of testing the null hypothesis of no state dependence (y = 0).
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Table 4.2

Monte Carlo results for models with lagged variables®
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Values of 7 and f for the fixed effects estimator®

62=3 6l=1
B=-01 fg=1 =0 f=-01 =1 B=0
y=05 7 014 0.19 0.03 na‘ 0.25 0.17
g —0.07 1.21 — na’ 1.17 —
y=01 7 —034 —-0.21 —0.04 —-0.28 —-0.15 —-0.01
g —0.06 1.14 — —0.08 1.12 -—
Values of 7 and § for the proposed approximate random effect estimation®
62=3 cl=1
gB=-01 g=1 p=0 =-01 g=1 B=0
y=05 7§ 0.63 0.60 0.70  na’ 0.54 0.62
B —0.131 091 — na? 0.93 —
y=01 7 014 0.13 0.17 0.11 0.11 0.13
g —0.12 0.92 — -0.12 095 —
Values of 7 and f§ for the random effect estimator with known nonstochastic initial
conditions®
gl=3
y=05 § na’ 0.57 na
B na? 0.94 —
y=01 9 0.3 0.12 0.14
g —0.11 1.10 —

*The model generating the data is

Y,y =Z(i, ) +yd(i,t = 1)+ (i) + U(i, 1)

Y(i,) =2 0=d(i,t)=1

and  Y(it)=0<>d(i,1)= 0.

The process operates 25 periods before samples are generated. Z (i, ) is generated
by the Nerlove proces (see table 4.1).

b/=100, T =8.
I=100, T = 3.

9Data are not available because the model was not estimated.
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indicates that the approximate estimator is not badly biased relative to an
ideal alternative.

There is one disquieting feature in the results presented in table 4.2. All of
the maximum likelihood estimators exhibit considerable bias. This point
deserves much further examination in view of the increasingly widespread
use of maximum likelihood methods for the analysis of discrete data
models.

4.5 Conclusions

This chapter has examined the problem of initial conditions that arises m
estimating a discrete time-discrete data stochastic process when serially
correlated unobservable variables generate the process. The analysis has
been confined to a first-order Markov process, although the issues
discussed here apply to the general class of models with structural state
dependence considered in chapter 3. Exact and approximate solutions are
proposed, and Monte Carlo evidence is presented on the performance of
certain simple estimators likely to be used in applied work.

One solution based on a fixed effect probit model is simple to compute
and hence is attractive. However, a limited set of Monte Carlo experiments
reveals that the fixed effect probit model performs badly in panels of length
eight when lagged dummy variables are included as explanatory variables,
asis required to generate the general stochastic process proposed in chapter
3. When the explanatory variables of the model are all strictly exogenous,
the fixed effect probit estimator performs well.

An alternative approximate simple estimator is proposed and examined,
and this estimator is found to perform well in a limited set of Monte Carlo
experiments. A disquieting finding in most of the experiments is that for
panels with 100 observations of 3 periods, which are large samples by
current standards, the method of maximum likelihood produces biased
estimators even under ideal conditions. This finding deserves much further
study.

More than the usual cautionary note is required to qualify the results of
the Monte Carlo experiments reported in this chapter. Only a limited set of
experiments has been performed. Accordingly the Monte Carlo evidence
reported here is best thought of as suggestive rather than definitive. Much
further work is required and would be very desirable.
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