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Abstract

In the single-IV model, researchers commonly rely on #-ratio-based inference, even
though the literature has quantified its potentially severe large-sample distortions. Build-
ing on |Stock and Yogo| (2005)), we introduce the ¢F critical value function, leading to
a standard error adjustment that is a smooth function of the first-stage F-statistic. For
one-quarter of specifications in 61 AER papers, corrected standard errors are at least 49
and 136 percent larger than conventional 2SLS standard errors at the 5-percent and 1-
percent significance levels, respectively. ¢F confidence intervals have shorter expected
length than those of /Anderson and Rubin| (1949), whenever both are bounded.
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Consider the commonly employed single-variable, just-identified instrumental

variable (IV) model, with outcome Y, regressor of interest X, and instrument ZEI

(1) Y = BX +u, where
C(u,2)=0,C(Z,X) #0.

Conducting hypothesis tests and constructing confidence sets for f with correct
significance and confidence levels has been pursued for several decades. In this
setting, the validity of the Anderson-Rubin test (henceforth, AR) is well established
(Anderson and Rubin, 1949ﬂ and results expressing its advantages and optimality
come in several flavors ]

Despite these findings, applied research, with rare exceptions, instead relies on
t-ratio-based inference. Many studies have shown, numerically or theoretically,
that the 7-ratio test for IV significantly over-rejects and associated confidence in-
tervals under-cover in situations when instruments are not sufficiently strongﬂ To
deal with this problem, researchers have relied upon the first-stage F-statistic as a
pre-test for instrument weakness. Staiger and Stock (1997) and Stock and Yogo
(2005) provide a framework for precisely quantifying the distortions in—and there-
fore correcting—inference, with the use of the first-stage F'-statistic. Importantly,
although much of the econometric literature considers the general case of the over-
identified model with multiple instruments, Stock and Yogo| (2005) make clear that

the distortions in inference also occur in the single instrumental variable, just-

Tt will be shown that all of our results apply to the single excluded instrument case more
generally, allowing for other covariates and variance estimators that accommodate departures from
i.i.d. errors, such as heteroskedasticity-consistent, clustered, or time series approaches. Throughout,
we use V(-) and C(-,-) to denote population variance and covariance, respectively.

2Staiger and Stock! (1997)) show that AR-based inference delivers correct size/confidence with
nonnormal and homoskedastic errors under arbitrarily weak instruments. |Stock and Wright| (2000),
among others, show that AR-based inference is valid under more general error structures.

3The test of|Anderson and Rubin|(1949) in the just-identified case has been shown to minimize
Type II error among various classes of alternative tests. These include classes of either unbiased tests
(whose rejection probabilities under all alternatives are larger than that under the null) or invariant
tests (which remain the same after transforming the data linearly). This is shown for homoskedastic
errors, by Moreiral (2002, 2009) and |Andrews, Moreira and Stock] (2006), and later generalized to
cases for heteroskedastic, clustered, and/or autocorrelated errors, by Moreira and Moreira) (2019).

4See, for example, Nelson and Startz] (1990), |Bound, Jaeger and Baker (1995), and |Dufour
(1997), and an earlier discussion by |Rothenberg| (1984). For a simple STATA program that demon-
strates the inaccuracy of the standard approximation compared to the "weak-iv" asymptotic approx-
imation, see http://www.princeton.edu/~davidlee/wp/SupplementarytF.html
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identified case—a common case for applied work, and the exclusive focus of the
current paperE]

Unfortunately, the implementation and interpretation by practitioners of the ap-
proach and results of [Staiger and Stock| (1997)) and Stock and Yogo| (2005) has typ-
ically been imperfect or deficient. For example, pre-testing using the rule-of-thumb
F-statistic threshold of 10 is commonplace, rather than the actual values provided
in Stock and Yogo (2005) tables. Or, practitioners erroneously refer to the interval
E +1.96-se (3) as a “95% confidence interval” (after pre-testing using F > 10
as a diagnostic), even though the Bonferroni bounds of [Staiger and Stock]| (1997)
make clear that using F > 16.38 from [Stock and Yogo (2005) implies that such an
interval is in fact an 85% confidence interval Bl

In the current paper, focusing on the single-instrument case, we meet practi-
tioners “where they are” by introducing a new method of inference using only the
first-stage F statistic and the 2SLS z-ratio. Rather than relying on a fixed pre-
testing threshold value, we show how to smoothly adjust #-ratio inference based on
the first-stage F statistic. In its simplest form, this amounts to applying an adjust-
ment factor to 2SLS standard errors based on the first-stage F' with the adjustment
factors provided in tables below for 95% and 99% confidence levels. We refer to
this procedure as the ¢F procedure and list some of its advantages here.

First, smooth adjustment yields usable finite confidence intervals for smaller
values of the F statistic. In particular, for 95% confidence, finite adjustment fac-
tors are available for any value of F > 3.84. This puts the smooth adjustment
approach on equal footing with AR, which yields bounded 95% confidence inter-
vals for F > 3.84. Second, the confidence levels specified with the 7F" adjustment

SThis single-variable case includes applications such as randomized trials with imperfect com-
pliance (estimation of LATE, Imbens and Angrist| (1994)), fuzzy regression discontinuity designs
(see discussion in [Lee and Lemieux| (2010)), and fuzzy regression kink designs (see discussion in
Card et al.| (2015)).

*We write ﬁ for the IV estimator and s¢(-) for the estimated standard error of an estimator.

n their formulation, Staiger and Stock|(1997) point out that this inferential statement requires
a pre-commitment to a confidence set that is the entire real line in the event that F'<16.38. Hall,
Rudebusch and Wilcox| (1996) show that over-rejection can be even worse in the presence of pre-
testing for weak instruments. |Andrews, Stock and Sun|(2019) also discuss in detail the practice of
selectively dropping specifications when first-stage F-statistics do not meet a particular threshold,
and show that severe distortion can result.



factors leave little room for practitioner misinterpretation. These confidence levels
incorporate the effects of basing inference on the first-stage F'; again, this puts the
confidence interval on equal footing with AR, or other procedures that have zero
distortion. Third, even though the ¢F critical value function tends to infinity as F
approaches 3.84 from above (e.g., for the 5 percent test), any alternative function
that is uniformly below the ¢F critical value function in a neighborhood of 3.84
leads to over-rejection for some data generating process.

Fourth, our table of adjustment factors is “robust” to commonly considered er-
ror structures (e.g., heteroskedasticity or clustering). That is, no further adjustment
is needed for these scenarios as long as the same type of robust variance estima-
tor is used for the first-stage as for the IV estimate itself. Fifth, we compare the
tF approach to AR based on expected confidence interval length. Given the well-
established power properties of AR, our results here are surprising: conditional on
F > 3.84, the expected length of the AR interval is infinite, while that of the tF
interval is finite. Sixth, the tF adjustment can be easily applied to re-assess studies
that have already been published, provided that the first-stage F-statistic has been
reported, and does not require access to the original data.

In order to gauge the likely magnitude of tF' adjustments in applied research
going forward, we use a sample of studies recently published in the American Eco-
nomic Review (AER) that utilize a single-instrument specification. For at least one-
quarter of the specifications where the first-stage F'-statistic is reported or can be
computed from the published tables, applying the tF adjustment to the standard
errors leads to an increase in confidence interval lengths of at least 49 and 136 per-
cent for S-percent and 1-percent significance levels, respectively. We observe that
among the specifications for which F > 10 and 7> > 1.967 (for the null hypothe-
sis that the slope coefficient is zero)—which without our adjustment would likely
have been deemed “statistically significant”—the use of #F adjustment would cause
about one-fourth of the specifications to be statistically insignificant at the 5-percent
level. We conclude therefore that these adjustments are likely to have a substantive
impact on inferences in applied research that employ #-ratio inferences.

The paper is organized as follows. Section [I| uses recent papers published in

the AER to characterize current inferential practices for the single-instrument IV



model. In Section we first describe the tF procedure—the critical values, the
main results on power, and its application to our sample of studies. Section |[II

describes how the results stated in Section [T are derived. Section [[V]concludes.

I Inference for IV: Current Practice

To motivate our emphasis on improving ¢-ratio-based inference, this section doc-
uments facts about current practice for the single instrumental variable model, as
reflected by recent research published in the American Economic Review. We later
use this sample of studies to gauge to what extent our proposed adjustments could
make a difference in practice.

Our sample frame consists of all AER papers published between 2013 and 2019,
excluding proceedings papers and comments, yielding 757 articles, of which 123
include instrumental variable regressions. Of these 123 studies, 61 employ single
instrumental variable (just-identified) regressionsﬁ Consistent with the conclusion
of /Andrews, Stock and Sun| (2019), this confirms that the just-identified case is an
important and prevalent one, from an applied perspective.

From these papers, we transcribe the coefficients, standard errors, and other
statistics associated with each IV regression specification. Each observation in our
final dataset is a “specification,” where a single specification is defined as a unique
combination of 1) outcome, 2) endogenous regressor, 3) instrument, and 4) com-
bination of covariates. The dataset contains 1311 specifications from 61 studies;
among those studies, the average number of specifications is 21.5, with a median of
9, and with 25th and 75th percentiles of 4 and 21, respectively. The purpose of our
dataset is to fully characterize specifications that are reported in published studiesﬂ

Each specification is placed into one of four categories, as shown in Table [I]

according to the types of regressions for which coefficients and standard errors

8Specifically, we include papers that exclusively employ just-identified specifications with one
endogenous regressor and presented 2SLS results in the main text; i.e., we exclude a paper if it
contains over-identified models, and we exclude papers if the only mention of a just-identified IV
model is in an appendix.

9See |Andrews, Stock and Sunl (2019) for a more in-depth comparison of AR and ¢-ratio-based
inference.



Table 1: Current Practice Implementing IV Estimation, Published Papers from AER

First Stage F-statistic?

Combinations of regressions reported

No Yes Total

Two-Stage Least Squares 445 132 577

(0.339) (0.101) (0.44)

[0.251] [0.088] [0.339]

Two-Stage Least Squares and First Stage 247 212 459

(0.188) (0.162) (0.35)

[0.204] [0.154] [0.358]

Two-Stage Least Squares and Reduced Form 13 7 20

(0.01) (0.005) (0.015)

[0.024] [0.035] [0.059]

Two-Stage Least Squares, First Stage, and Reduced 181 74 755
Form

(0.138) (0.056) (0.195)

[0.15] [0.094] [0.244]

Total 886 425 1311

(0.676) (0.324) (1

[0.628] [0.372] [1]

N=1311. Drawn from 61 published papers. Each observation represents a unique combination
of outcome, regressor, instrument, and covariates. Unweighted proportions are in parentheses, and
weighted proportions are in brackets, where the weights are proportional to the inverse of the number
of specifications in the associated paper.

are reported: the coefficients and standard errors from 1) only the 2SLS, 2) the
2SLS and first-stage regression, 3) the 2SLS and the reduced-form regression of
the outcome on the instrument, and 4) the 2SLS, the first-stage, and the reduced
form. In addition, we identify whether or not, for each specification, the first-stage
F-statistic is explicitly reported (as indicated by the first two columns in Table

For each configuration, Table[I|reports the number of specifications, proportions
(in parentheses), and weighted proportions (in brackets) where the weight for each

specification is the inverse of the total number of specifications reported from its

10We include in the second column F-statistics that were actually reported by authors as the
"Kleibergen-Paap" (henceforth, KP) statistic from Kleibergen and Paap|(2006), rather than as an F-
statistic. As noted in|/Andrews, Stock and Sun| (2019), in the case of a single endogenous-regressor
with single instrument, KP = F. In our sample, about 39 percent (weighted) of the F statistics in
the second column were reported as KP statistics.



study. Henceforth, unless otherwise specified, when we refer to proportions, we
refer to the weighted proportions since we wish to implicitly give each study equal
weight in the summary statistics that we report.

Table [I] shows that the most common combination among the eight possible
types is the reporting of 2SLS coefficients without explicitly reporting the first-
stage F'-statistic, representing about a quarter of the specifications. The second
most-common practice is to report both the 2SLS and the first-stage coefficients
without reporting the F-statistic (about 20 percent), but it should be clear that the
F-statistic can be derived from squaring the ratio of the first-stage coefficient to its
associated estimated standard error. The least common reporting combination is
2SLS and the reduced form, without reporting the first-stage F (2.4 percent).

In our analysis of the data, in order to maximize the number of specifications
for which we have a first-stage F'-statistic, we compute it from the reported first-
stage coefficients and standard errors, but whenever this is not possible, we use the
explicitly reported F —statisticjzr]

Figure [I] displays the histogram of the F-statistics in our sample on a logarith-
mic scale. The weighted 25th percentile, median, and 75th percentiles are 14.23,
45.84, and 225, respectively. The figure shows that most of the reported first-stage
F-statistics in these studies do pass commonly cited thresholds such as 10 More
detail on these specifications is provided in Table 2] which is a two-way frequency
table for whether or not the square of the ¢-ratio for the hypothesis that B = 0 ex-
ceeds 1.96%, and whether or not the computed F statistic exceeds 10 (a commonly-
used or cited threshold). Overall, the table indicates that for about 60 percent of
the specifications, the estimated 2SLS coefficient would be “statistically signifi-

cant” under the practice of using a critical value of 1.96 and a first-stage F -statistic

"'We find that among studies in which both the reported and computed F-statistic are available,
about 63 percent of the time the two numbers are within 5 percent of one another. For those speci-
fications in which the reported F is the only F-statistic available, there are some situations where it
is not entirely clear whether the F-statistic is the first-stage F’; it is possible that they are F-statistics
for testing other hypotheses.

12Consistent with the pattern observed in |/Andrews, Stock and Sunl (2019)), we observed in our
sample that among those specifications where the F (or KP) statistics were explicitly reported, KP
statistics were somewhat smaller: the weighted median KP statistic was 14.23, and among all the
reported statistics below 10, about 61 percent were reported as KP statistics.



Table 2: 72 and First-stage F'-statistics, Conventional Critical Value, Rule of Thumb
Threshold of 10

F<10 F>10 Total
* >1.96 64 408 472
(0.076)  (0.482)  (0.557)
[0.104]  [0.595]  [0.699]
°<1.96° 41 334 375
(0.048)  (0.394)  (0.443)
[0.062] [0.238]  [0.301]

Total 105 742 847
(0.124)  (0.876) (1)
[0.167]  [0.833] []

N=847. Unweighted proportions are in parentheses, and weighted proportions are in brackets. See
notes to Table[I] All specifications use the derived F-statistic, and when not possible, the reported
F-statistic. F-statistics can be derived for specifications that report nonzero standard errors in the
first-stage; 6 specifications that report (rounded) first-stage standard errors of zero and do not report
F-statistics are excluded.

threshold of 10 as a basis of trusting the inference.

We recognize that the null hypothesis of B = 0 may not always be the hypoth-
esis of interest across all the studies. Furthermore, in our data collection, we do
not make any judgments as to the extent to which any particular regression speci-
fication is important for the conclusions of the article. Indeed, in some cases, the
2SLS specification is used for a “placebo” analysis, where insignificant results are
consistent with the identification strategy of the paper. In that spirit, it is beyond the
scope of our paper to determine whether or not any particular study’s overall con-
clusions are still supported despite any changes to the statistical inferences caused
by using the corrections that we describe below. Instead, we focus more narrowly
on gauging to what extent the ¢F critical values are likely to impact the length of
confidence intervals in research going forward, using a recent sample of published
studies to guide and inform that estimate.

Most importantly, we observe from our sample that AR test statistics or AR con-



Figure 1: Distribution of First-stage F'-statistics
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N=847 specifications. Scale is logarithmic. All specifications use the derived F-statistic or, when not
possible, the reported F-statistic. F-statistics can be derived for specifications that report nonzero
standard errors in the first-stage. Six specifications that report (rounded) first-stage standard errors
of zero and do not report F-statistics are excluded. Proportions are weighted; see notes to Table [T}
Dashed lines correspond to the 25™ (14.23), 50" (45.84), and 75™ (225) percentiles of the distribu-
tion. The shaded region denotes the range between the 0.5™ and 99.5™ percentiles of a non-central
7512 distribution with a non-centrality parameter equal to 142.6.

fidence regions are reported for less than 3 percent of the specifications, despite the
fact that the econometric literature has noted that AR inference is valid and robust to
weak instruments and has a number of other attractive properties; see the discussion,
for example, in Andrews, Stock and Sun|(2019). It is this stark difference between
theoretical considerations and practice that motivates our focus. We surmise that
practitioners may elect to use 7-ratio inference, not because they believe it has supe-
rior properties compared to AR-based inference, but rather because it is presumed
that any inferential approximation errors associated with the conventional z-ratio

are minimal or acceptable. Or practitioners may presume that the inference has



the intended significance or confidence level, as long as the observed first-stage F-
statistic is sufficiently large—even though Stock and Yogol| (2005) explicitly point
out that using 1.96 critical values can lead to over-rejection (or under-coverage)
even with the use of their critical values for the F'-statistic.

tF inference eliminates this known and quantified distortion, taking as given the
common practice of computing the 2SLS and standard errors and providing critical
values that result in the intended significance or confidence levels.

An additional and separate motivation for exploring alternatives to AR is that,
if our sample is any indication, there are likely hundreds of other published studies
that use the single-instrument /V model, most of which do not use AR-based infer-
ence. In many cases, it may be prohibitively costly to obtain the original data to
assess how inferences might change when using AR. The adjustment we introduce
below allows one to adjust the reported 2SLS standard error solely on the basis of

the already-reported (or implicitly computed) first-stage F-statistic.

II Valid ¢-based Inference: Theoretical Results and

Empirical Implications

This section states our main theoretical findings, emphasizing the motivation for
the ¢F procedure, and how to use the critical value tables in practice. We defer
the derivations of our results to Section [lII, and details of the proofs to the Online
Appendix.

We begin by briefly reviewing the inferential problem with the z-ratio for IV, as
already established in the econometric literature. This motivates /F as a solution
to that problem. We then present the ¢F critical values for the 5 percent and 1 per-
cent levels[™] Since the use of the ¢F critical values allows one to achieve intended
significance and confidence levels, we then present some results on how the power

of the tF procedure compares to that of AR. Finally, we describe how the applica-

13We focus the specific cases of obtaining valid tests at the 5 percent and 1 percent significance
levels and the corresponding 95 percent and 99 percent confidence intervals, because these standards
of evidence are commonly used in applied research. However, it will be clear in Section [[T]] that our
formulas can be adapted to analyze other levels of significance or confidence levels.



tion of the ¢F adjustments impacts the statistical inferences in our sample of AER

studies.

IILA The ¢F procedure: Notation and Motivation

We begin with the notation for the structural and first-stage equations including

additional covariates:

Y=XB+Wy+u
X=Zrn+WE+v

where W denotes the additional covariates which can include a constant correspond-
ing to an intercept term. Without loss of generality, we assume orthogonality be-
tween W and each of Y, X ,ZE

The key statistics are given by

f= h—ho and f= Aﬁ- L F=f?
VN(B) VN(ﬁ-)

A

where 3 is the instrumental variable estimator. Vy (ﬁ) represents the estimated

variance of 3, which can be a consistent robust variance estimator to deal with de-
partures from i.i.d. errors, including one- or two-way clustering (e.g., see Cameron,
Gelbach and Miller (2011)). 7 is the usual ¢-ratio, where we first consider the distri-
bution of this statistic when the null hypothesis is true, but later on, when discussing
power in greater detail, we make the distinction between the true value 8 and the
(possibly false) hypothesized value By. f is the ¢-ratio (for the null hypothesis that
7t = 0) for the first-stage coefficient, and its square is equal to the F-statistic, which
we denote F.

14 A1l of our results allow for covariates, since one can redefine Y, X, and Z as the residual from
regressing each of those variables on W. Using these residuals after partialing out the covariates

delivers the exact same point estimates, and standard errors, as if 2SLS was employed including the
covariates.

10



The traditional argument for z-ratio inference is as follows. Under the null hy-
pothesis 7 % 2. That is, the argument is that in large samples, a good approxi-
mation of the statistic 7 is the random variable ¢, a standard normal, with its square
therefore being a chi-square with one degree of freedom. This approximation un-
derlies the use of the standard normal critical values +1.96 for testing hypotheses at
the 5 percent level. More generally, the critical values +, /g1 ¢ are used for tests at
the o level of significance, where ¢ is the (1 — a)th quantile of the chi-squared
distribution with one degree of freedom.

What has been established and understood in the theoretical literature for quite
some time—but perhaps not fully internalized by practitioners more broadly—is
that 1) the use of a standard normal to describe the distribution of the random vari-
able 7 can lead to systematically distorted inference even with very large samples,
and 2) the magnitude of the distortion can be precisely quantified. More specifi-
cally, it has been understood in the econometric literature that even when samples
are large, t has a known non-normal distribution, which in some cases might be
"close" to the standard normal, but in other cases, the deviation from normality can
be significant.

Specifically, Stock and Yogo| (2005) derive a formula for using Wald test statis-
tics based on 2SLS (and other k-class estimators). In the just-identified case with
one endogenous regressor, their results show that 2 under the null can be seen as
a function of two jointly normal random variables. With some re-arrangement of
terms, the two normal variables can be seen as f and t4z, where f LA f and f has

mean fy = ——Z— and unit variance, where AV (#) is the asymptotic variance of

\/ LAV (%)
7t and tqg is ab;tandard normal with AR = ti r- The correlation p of f and #4g is the
correlation of Zu and Zv[™]
Their > formula allows one to precisely quantify the degree of distortions in
inference from using the rule 1> > g_q to reject the null hypothesis. Based on this
formula, Panel (a) of Figure[2]provides a visualization of this relationship: it graphs

rejection probabilities—the probability that 2 > 1.96% under the null hypothesis—

SWhen the data are homoskedastic, p simplifies to the correlation between u and v. |Stock and
Yogo| (2005) use a homoskedastic model.

11



for different values of E[F] and p, where E [F] = f3 + IE The figure illustrates that
with low values of p (e.g., 0 or 0.5)—a lower degree of “endogeneity”’—the ¢-ratio
rejects at a probability below the nominal 0.05 rate. On the other hand, for p = 0.8,
for example, the rejection rate can be as large as 0.13, when the instrument is close
to irrelevant. In the extreme, with a maximal value of p equal to 1, the rejection
probability tends to 1 as instruments become arbitrarily weak. The true significance
level (size) of any test is by definition the maximum rejection probability across all
possible values of the nuisance parameters — here, p and E [F]. Thus, the test based
on > > gi_ clearly has incorrect size, as widely understood in the econometric
literature. Indeed Stock and Yogo|(2005) explicitly provide the quantity represented
by the red circle in Figure 2| Panel (a): when p = 1 and E [F] = 6.88, the rejection
probability is 0.10; it represents the minimum value of E [F] one needs to assume
in order for the +-1.96 critical values will lead to significance level of 0.10.

Even though one does not know the values of p or E [F], Staiger and Stock
(1997) and |Stock and Yogo| (2005) propose to use the observed first-stage F'. Re-
expressing the 1> formula in Stock and Yogo (2005) in terms of f and f4g, as men-
tioned above, we can determine

pairs of critical values ¢* and F* such that
2 * *
Pr(i*>c" F>F|<a

for a pre-specified significance level o¢. This amounts to a "step function" critical
value function: if F' < F*, set ¢* = o (accept the null); otherwise, use the value
c* as the critical value for t2 Put equivalently, this implies a confidence interval
procedure that sets the confidence interval to the entire real line if F' < F*, and

otherwise uses ++/c* x (standard error) for the confidence interval.

16 A5 we explain in detail in Section rejection probabilities displayed in FigurePanel (a) can
be computed directly from integral expressions, and are accurate up to the precision of numerical in-
tegration. To provide assurance that our formulas and numerical integration give correct answers, we
additionally performed Monte Carlo simulations, and we plot examples of those results as diamonds
in Figure E} Those results match quite closely with our theoretical calculations.

"This approach is in the same spirit as the Bonferroni confidence regions discussed in Section
4B of [Staiger and Stock| (1997). Using their approach, captured by their Equation (4.2), one can
use F* = 16.38 (as reported in |Stock and Yogol (2005)) and ¢* = 1.962 to obtain intervals with 85
percent confidence, while remaining agnostic about the true strength of the first stage.

12



Figure 2: Rejection Probabilities for > and tF

(a) Pr[t? > 1.96%] vs. E[F], for selected values of p
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Utilizing the same analytical expressions in |Stock and Yogo) (2005), this paper

introduces the ¢F critical value function cq (F) such that
Pr[t2 >cq(F)] <o

for a pre-specified significance level o, where cq (F) is a smooth function of F,
instead of a step function As we will show below, inference based on #F has sig-
nificant power advantages over inference based on a test that uses constant thresh-
olds ¢*, F*; furthermore, tF' confidence intervals will have shorter expected length

compared to that of AR when both are bounded intervals.

ILLB The ¢tF procedure: critical values and valid inference

Table reports numbers that reflect the shape of the function cg o5 (F).
Specifically, corresponding to each value of the first-stage F-statistic (the first line
of numbers in each row), is the corresponding critical value +/c o5 (F') for |¢| (the
second line of numbers in each row). \/m tends to infinity as F tends to
1.96 from above, and it is strictly decreasing in F until reaching a minimum, the
constant value of 1.96, when F reaches around 104.7.

The third line of numbers in each row normalize the critical values by 1.96,
and therefore represent a standard error adjustment factor. Adjusted standard er-
rors can be constructed using the table as follows: 1) Estimate the usual 2SLS
(e.g., robust, clustered, etc.) standard error, 2) multiply the standard error by the
adjustment factor (third line of numbers in each row) in the table correspond-
ing to the observed first-stage F statistic. This adjusted standard error should be
called a “0.05 ¢F standard error”, and can be used for constructing the ¢-ratio for
testing a particular hypothesis, or for constructing 95% confidence intervals using
3 +1.96 x (“0.05 ¢F standard error”). Since the table contains selected values from
an underlying convex function, to compute intermediate values, a conservative ap-

proach would be to linearly interpolate between the selected values. As an example

18Similar in spirit to the Bonferroni approach discussed in Section 4B of |Staiger and Stock
(1997), the probability considered is an unconditional one. See |Chioda and Jansson| (2005) for
an analysis of inference conditional on the observed F-statistic.
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of this interpolation, if the first-stage F' is 10, one would multiply the estimated stan-
dard error by 1.727 4 % x (1.767 —1.727) = 1.751 to obtain the “0.05 ¢F
standard error” [

It is important to note that these “adjusted standard errors” are valid only for
0.05 significance or 0.95 confidence levels. Different adjustments are needed for
different significance/confidence levels. We report the analogous critical values and
adjustment factors for corresponding selected values of F, for significance (confi-
dence) levels of 0.01 (0.99), another commonly-used standard in applied research,
in Table 3 Panel Bl

The table shows that the —V;);;éF) function has a similar pattern, but three im-
portant differences. First, the adjustment factor now has a vertical asymptote at

F = go.99 = 2.576%. Second, ¢ (F) declines until F = 252.34, at which point

the adjustment factor is 1.059. Finally, we note that %6(” is uniformly strictly

v/ €0.05(F)

1.96
could choose to report only the “0.01 ¢F standard errors” by using the adjustments

in Table |3 Panel B} and the intervals 3 +2.576 x (“.01 tF standard error”) and
ﬁ +1.96 x (“0.01 ¢F standard error””) would be assured of confidence levels at both

above . This implies that from a reporting convenience standpoint, one

the 99th and 95th percent levels. The cost for this reporting convenience is that the

latter interval would be unnecessarily conservative.

19We have also posted code at http://www.princeton.edu/~davidlee/wp/SupplementarytF.html to

allow more precise computation of the adjustment factor for any given value of F'.
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Table 3 Panel A: Selected Values of ¢F Critical Values, 1/cq.0s (F), and tF Standard

Error Adjustments, +/cg.5 (F)/1.96

F 4.000 4.008 4.015 4.023 4.031 4.040 4.049 4.059 4.068 4.079
Veos(F) 18.656 18.236 17.826 17.425 17.033 16.649 16.275 15.909 15.551 15.201

Veos(F) /1.96 9,519 9.305 9.095 8.891 8.691 8.495 8.304 8.117 7.934 7.756
4,090 4.101 4.113 4.125 4.138 4.151 4.166 4.180 4.196 4.212
14.859 14.524 14.197 13.878 13.566 13.260 12.962 12.670 12.385 12.107
7581 7.411 7.244 7.081 6.922 6.766 6.614 6.465 6.319 6.177
4229 4247 4265 4285 4305 4.326 4.349 4372 4396 4.422
11.834 11.568 11.308 11.053 10.804 10.561 10.324 10.091 9.864 9.642
6.038 5902 5770 5.640 5.513 5.389 5.268 5.149 5.033 4.920
4449 4477 4507 4538 4570 4.604 4.640 4.678 4.717 4.759
9.425 9.213 9.006 8.803 8.605 8.412 8.222 8.037 7.856 7.680
4809 4.701 4595 4492 4391 4292 4.195 4.101 4.009 3.919
4803 4.849 4.897 4948 5.002 5.059 5.119 5182 5.248 5.319
7,507 7.338 7.173 7.011 6.854 6.699 6.549 6.401 6.257 6.117
3.830 3.744 3.660 3.578 3.497 3.418 3.341 3.266 3.193 3.121
5.393 5472 5556 5644 5738 5.838 5944 6.056 6.176 6.304
5.979 5844 5713 5584 5459 5336 5.216 5098 4.984 4.872
3.061 2982 2915 2.849 2785 2.723 2.661 2602 2543 2.486
6.440 6.585 6.741 6.907 7.085 7.276 7.482 7.702 7.940 8.196
4762 4.655 4550 4.448 4.348 4250 4.154 4.061 3.969 3.880
2430 2375 2322 2270 2218 2169 2120 2072 2.025 1.980
8.473 8.773 9.098 9.451 9.835 10.253 10.711 11.214 11.766 12.374
3.793 3.707 3.624 3542 3.463 3.385 3.309 3.234 3.161 3.090
1935 1892 1849 1.808 1.767 1.727 1688 1.650 1.613 1.577
13.048 13.796 14.631 15.566 16.618 17.810 19.167 20.721 22.516 24.605
3.021 2953 2886 2.821 2758 2.696 2.635 2576 2518 2.461
1542 1507 1473 1440 1407 1376 1345 1315 1.285 1.256
27.058 29.967 33.457 37.699 42.930 49.495 57.902 68.930 83.823 104.67
2406 2.352 2.299 2247 2197 2147 2.099 2.052 2.006 1.96
1.228 1200 1.173 1.147 1.121 1.096 1.071 1.047 1.024 1.00

The top number in each of the ten rows is the first-stage F statistic, the middle number is the corre-

sponding critical value, /cq o5 (F), and the bottom number in each row is the corresponding value
of v/co.0s5 (F)/1.96, where we write 1.96 as a shorthand for ®~1(0.975). Numerical values in each
pair are rounded up (e.g., 4.0051 rounds up to 4.006).

We verify that the tF adjustment achieves the intended significance level of 5
percent in Panel (B) of Figure[2] which is analogous to Panel (A), plotting rejection
probabilities for the ¢F procedure for the same values of p and fy. The curves
are accurate up to the precision of our numerical integration. To provide some
additional assurance that our formulas and numerical computations are correct, as
in Panel (A), the diamonds represent Monte Carlo simulation rejection rates, which

line up with the curves, as expected from the theory.
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Table 3 Panel B: Selected Values of tF Critical Values, v/cq.01 (F), and tF Standard
Error Adjustments, +/co.01 (F)/2.576

F 6.670 6.673 6.676 6.679 6.682 6.685 6.689 6.693 6.697 6.701
Vo1 (F) 91.097 87.924 84.862 81.907 79.054 76.301 73.644 71.079 68.604 66.214

Vecoi(F) /2576  35.366 34.135 32.946 31.798 30.691 29.622 28.591 27.595 26.634 25.706
6.706 6.711 6.717 6.723 6.729 6.736 6.743 6.751 6.759 6.768
63.908 61.683 59.535 57.461 55.460 53.529 51.664 49.865 48.129 46.453
24.811 23947 23.113 22.308 21.531 20.781 20.058 19.359 18.685 18.034
6.778 6788 6.799 6.811 6.824 6.837 6852 6.867 6.884 6.901
44835 43.273 41.766 40.312 38.908 37.553 36.245 34.983 33.765 32.589
17.406 16.800 16.215 15.650 15.105 14.579 14.072 13.581 13.109 12.652
6.920 6941 6.963 698 7011 7.038 7.066 7.097 7.129 7.164
31.454 30.358 29.301 28.281 27.296 26.345 25.428 24.542 23.687 22.863
12211 11.786 11.376 10.980 10.597 10.228 9.872 9.528 9.196  8.876
7202 7242 7.285 7331 7380 7432 7.489 7549 7614 7.683
22.066 21.298 20.556 19.840 19.149 18.482 17.839 17.218 16.618 16.039
8567 8.269 7981 7.703 7435 7.176 6.926 6.685 6.452  6.227
7757 7836 7.922 8.013 8111 8216 8329 8451 8581 8.721
15481 14942 14421 13919 13.434 12966 12515 12.079 11.658 11.252
6.010 5801 5599 5404 5216 5.034 4859 4.690 4.526  4.369
8.872 9.035 9.210 9.399 9.603 9.824 10.062 10.320 10.600 10.904
10.860 10.482 10.117 9.765 9.425 9.097 8.780 8474 8179 7.894
4217 4070 3928 3.791 3.659 3.532 3409 3.290 3.176  3.065
11.235 11595 11.988 12.418 12.889 13.407 13.979 14.610 15.312 16.094
7619 7354 7.098 6.851 6.612 6.382 6.160 5945 5738 5.538
2958 2.855 2.756 2.660 2567 2478 2392 2308 2.228 2.150
16.969 17.953 19.067 20.333 21.783 23.455 25.399 27.680 30.383 33.624
5345 5159 4980 4.806 4.639 4477 4321 4171 4026 3.885
2076 2003 1934 1866 1801 1739 1678 1.620 1.563 1.509
37.560 42416 48511 56.324 66.592 80.502 100.069 128.950 174.370 252.342
3.750 3.620 3.494 3372 3254 3141 3.032 2926 2.824 2.726
1456 1406 1357 1309 1264 1220 1177 1136 1.097 1.059

The top number in each of the ten rows is the first-stage F statistic, the middle number is the corre-

sponding critical value, /cq.01 (F), and the bottom number in each row is the corresponding value
of /co.01 (F)/2.576, where we write 2.576 as a shorthand for ®~'(0.995). Numerical values in
each pair are rounded up (e.g., 6.6712 rounds up to 6.672).

II.C ThetF procedure: power comparisons to AR and step rules

In this subsection, we state our results on power, deferring derivations, proofs, and
further discussion to Section |IIl] and the Online Appendix. Since the ¢F and AR
tests (as well as rules like > > ¢*,F > F* with appropriately chosen ¢* and F*)
can deliver inferences at the same intended significance/confidence levels under the
same asymptotic approximation, it is natural then to investigate the relative power of
these test procedures. For the purposes of this power comparison, we set ¢* = 1.962

and use the minimum F*—104.7—needed to ensure a test with significance level
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Figure 3: Power curves for p = 0.5 and fo =3

Rejection rate

Normalized B-Bo

tF ——— AR
--------- t'>1.96°, F>104.7

Note: A black diamond represents the rejection probability, from 250,000 Monte Carlo simulations,
each with a sample size of 1,000.

0.05. We summarize the results below. Note that in our comparisons, we focus
only on procedures that allow the researcher to be completely agnostic about the
nuisance parameters@

We produce standard power curves by generalizing the analytical expressions
for the probability of rejection to depend on an additional parameter—a normal-
ized deviation 3 — Py, where B is the true parameter, while S is the hypothesized
Value We then compute the rejection probabilities with respect to this quan-
tity for different scenarios according to the combination of nuisance parameters,

p and fp. Any combination of p and f could be investigated: we illustrate these

20For example, the approach of |[Kocherlakotal (2020) requires the researcher to assume a lower
bound for fj for inference and thus is not among the approaches we consider.
E[72u?]

2ISpecifically, the normalized B — fBy is the unnormalized 8 — By divided by 2]
E|Z~v
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traditional power curves for the nine combinations given by the three values of
p =0,0.5,1 and the three values of fy = 1,3,9@

Figure 3| plots the power curve under the scenario p = 0.5, fo = 3 (which cor-
responds to E [F] = 10). It shows that rF and AR have roughly similar power, but
neither uniformly dominates the otherPEI In particular, when the alternative value
of B is sufficiently larger than f, then 7F becomes slightly more powerful, while
the opposite is true when f is smaller than 8y. An example of what this means for
practitioners is that if the null is By = 0, and p > 0 (which would imply that the OLS
estimand is upward biased when errors are homoskedastic), then the probability of
rejecting that null will be slightly higher for ¢F than for AR if the true effect is suffi-
ciently positive@ Both tF and AR have a substantial power advantage over the step
rule ¢* = 1.96%, F* = 104.7. This latter observation should not be surprising since,
in the scenario that E [F] = 10, the probability that F would exceed F* = 104.7 is
extremely low.

Appendix Figure|A2|in Appendix includes power curves for the other eight
scenarios for p, fo. The pattern of results mirror those described above, with the
additional observations that 1) the power curves for AR are consistently higher for
p =0, and 2) the differences between tF and AR (for any p) are negligible with
fo =9, but 3) the dependence of the relative power between ¢F and AR on the
sign of B — By remains apparent with high endogeneity (p = 1). The threshold
rule continues to have low power in the nine scenarios we consider, which is not
surprising since, even with E [F] = 9% 4+ 1 = 82, the probability that F exceeds
104.7 continues to be relatively low. As fj increases so that the instrument is much

stronger, the power curves for the step rule, F, and AR all become closer to one

22To provide additional assurance in our theoretical derivations and implementation of numerical
integration was carried out correctly, we overlay (as the diamonds in each graph) the results from
Monte Carlo simulations, where we generate the underlying data according to each scenario and
selected values of B — By and compute the fraction of the time, over 250,000 Monte Carlo draws
of sample sizes of 1,000 each, that each of the tests reject the null hypothesis. All of the results
line up well with the theoretical values as computed from our analytical expressions for rejection
probabilities.

23 Note that while AR has known power optimality among unbiased tests, ¢F is not unbiased. The
degree of bias can be seen in the power graphs.

2#Note that the power curves are symmetric with respect to p; that is, when p = —0.5 then the
power curve looks identical except the x-axis would be labeled Sy — 5.
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another.

Given that neither AR nor ¢F uniformly dominates the other across all values of
B — By for fixed values of the nuisance parameters, we turn to a different and intu-
itive summary measure of power: the expected length of the confidence intervals
for AR and ¢F conditional on F > g;_. The reason why we focus on the condition
F > q1_q 1s that it is a necessary and sufficient condition for both the tF and AR
confidence sets to be bounded intervals; when F' < g_, both the AR and tF con-
fidence sets are unbounded (i.e. have infinite length). The nonzero probability that
F < q1_¢ implies that the tF and AR confidence sets will have infinite uncondi-
tional expected length. Conditional on the event F > 1.962, it is immediately clear
that the step rule of ¢* = 1.96%, F* = 104.7 will also have infinite expectation since
104.7 > 1.962 5]

For any realization of the data, the tF and AR confidence sets behave simi-
larly in the following sense: either both are bounded intervals (this happens when
F > q1_¢) or both are unbounded (this happens when F < g;_). Thus, to com-
pare expected lengths, we compare only the realizations of data that yield bounded
intervals for both methods. That is, we compute expected conditional lengths con-
ditional on F > qj_¢. Surprisingly, our theoretical investigation reveals that the
conditional expected length of the AR confidence interval is infinite. We show, by
contrast, the conditional expected length for the #F interval is finite. We show be-
low that this is true uniformly across all possible values of the nuisance parameters.
This has a very straightforward implication for practitioners. Conditional on the
event that they produce bounded intervals (which occurs with identical probabili-
ties), the expected length of the #F confidence interval will always be shorter than
the expected length of AR confidence intervals.

These findings are more fully described in Section |[IIj and proven in the Ap-
pendices [C.2]and [C.3] Here, we provide a simple visual of this result via a Monte

Carlo exercise, shown in Figure Using the same data generating process from

Bndeed, Gleser and Hwang|(1987) and Dufour| (1997)) show that in models which allow for non-
(or nearly non-) identification, such as the IV model, any inference procedure with correct coverage
must have infinite unconditional expected length.

26We use the Monte Carlo design from the discussion on single-variable IV in |Angrist and Pis-
chke|(2009a), and discussed in|Angrist and Pischke| (2009b).
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Figure 3] we run repeated Monte Carlo simulations of sample size 1,000 each. For
each draw, we keep only those draws such that F > 1.962, and when this occurs
we compute the length of the AR and the ¢F confidence interval. For each speci-
fied number of Monte Carlo draws, we compute this conditional average using all
accumulated draws up to that point. We do this four times, using an independent
set of draws each time. The figure exhibits the patterns that one would expect to
see if the conditional expected length were infinite for AR and finite for ¢F inter-
vals: even after 500,000 draws, the conditional averages for AR do not appear to
be converging. Furthermore, there are occasional sharp discontinuities, which is
expected from a distribution of lengths with thick tails that are associated with the
infinite conditional mean Meanwhile, the tF conditional averages for the four
replications are essentially on top of one another and converge relatively quickly to

the conditional mean of approximately 3.55.

ILD The ¢F procedure: Impact on Applications

We now turn to gauging how the tF adjustments to the standard errors would impact
practice, using our sample of recent AER papers as a guide. We take the computed

or reported F-statistics from the specifications in Figure [I] and assign the corre-

sponding adjustment factor %. Figure [5alis the (weighted) histogram for the
reciprocal of the 0.05 #F adjustment factor, which represents the degree to which
the reported standard errors are understated@ It shows significant mass at values
close to 1 (no understatement); the median reciprocal is 0.902 (understated by about
10 percent) while the 25th percentile reciprocal is 0.672 (understated by about 33
percent). The weighted mean value is 0.801, implying that the typical study is
understated by about 20 percent.

Turning to the question of the magnitude of the implied inflation factors, our

Z7Recall that the Strong Law of Large Numbers states that the sample average converges to the
expected value with probability one if it is finite. Furthermore, an application of the second Borel-
Cantelli lemma also shows that the sample average does not converge with probability one if the
population expectation is not finite.

28We focus on the reciprocal because the adjustment factor itself has some very large numbers.
For any given study, we know that its true average will be infinite because there will always be some
positive probability that F < q1_q.
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Figure 4: Monte Carlo Simulated Expected Length of tF and AR intervals, Condi-
tional on F>1.96%, p = 0.5, fo =3
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Note: Points on each curve represent the conditional expected length, using the specified number of
accumulated Monte Carlo draws, for tF (lower four lines) and AR (upper four lines). Each of the
four lines corresponds to an independent set of Monte Carlo draws.

sample of studies suggests that for one-quarter of specifications, the #F adjustment
would increase confidence intervals, at a minimum, by a factor of 1/0.672 ~ 1.49,
i.e., tF confidence intervals would be at least about 50 percent wider. To under-
stand this magnitude, it is helpful to recall that conventional 99 percent confidence
intervals are about 57 percent longer than 90 percent confidence intervals. Another
basis of comparison comes from our examination of a small subset of the studies
for which we could obtain the microdata. For those studies that used clustered stan-
dard errors, we computed non-clustered standard errors and found that the clustered
standard errors were about 25 percent larger. We conclude from these comparisons
that, in practice, ignoring the F' adjustment would be an error roughly equivalent

to using a 90 percent confidence interval while calling it a 99 percent confidence
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Figure 5a: Distribution of —2%— for AER sample
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N = 847 specifications. The x-axis is the ratio of ®~!(0.975) to the F-dependent value +/cq s (F).
All specifications use the derived F statistic and when not possible, the reported F statistic from
the paper. The 6 specifications that report (rounded) first-stage standard errors of zero are excluded.
Proportions are weighted; see notes to Table |1, Dashed lines correspond to the (weighted) 25%
(0.672), 501" (0.902), and 75™ (1.00) percentiles of the distribution.

interval, or substantially more severe than using non-clustered standard errors when
clustered standard errors are appropriate.

Figure[Sb|repeats the exercise for the 0.01 7F adjustments and finds more signif-
icant degrees of adjustment: in one-quarter of the specifications, the F adjustment
would be expected to increase confidence intervals by at least a factor of 2.36, and
the median adjustment factor would be 1.38.

Finally, to gauge how assessments of statistical significance are likely to be im-

pacted by the use of the ¢F critical value function, Figure [6] plots all of the specifi-
12/1.962

. . 2 . .
cations from Tableln 1%, F space (using the one-to-one transformations 57— 1962
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Figure 5b: Distribution of —235_ for AER sample

v/ ¢co01(F)

25th 50th 75th

Proportion

T T
0 2 4 .6 .8 1

2.576/c(F)

N = 847 specifications. The x-axis is the ratio of 2.576 to the F-dependent value +/coo1(F). See
notes to Figure [Sal Dashed lines correspond to the (weighted) 25" (0.424), 50" (0.727), and 75
(0.936) percentiles of the distribution.

F/10
1+F/10
range of those statistics). It also plots the ¢F critical value functions for the 5 per-

and for the vertical and horizontal scales to allow visualization of the full
cent (black) and 1 percent (gray) levels of signiﬁcance The size of each circle
is proportional to the share of total specifications from the same study. The black
dots represent the specifications that have a relatively low F'-statistic (<10) or that

have ¢2 less than 1.96%. Arguably, under current practice, researchers would have

2For this exercise, we further restricted the sample of specifications to those where the reported
sample size for the first-stage was identical to the reported sample size for the 2SLS estimate. We
have observed that it is quite common for researchers to report first-stage regressions and F statistics
on samples that do not match (typically they are larger) the samples used for the 2SLS regression.
The graph and the numbers reported below are quite similar if we do not make this additional
restriction.
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generally viewed the black circles as statistically insignificant estimates by virtue
of either the observed -ratio or the F-statistic % While most of these black circles
would remain insignificant using the ¢F adjustment, at the 5% level, some, by being

above the ¢F critical value function would become significant.

Figure 6: Statistical Significance in AER sample, using ¢y os(F) and ¢ o1 (F)
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° Significant at 5%; Insignificant at 1% o Significant at 1%
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_ . . . . 12/1.962 . . F/10 . .
N = 4309 specifications. Vertical scale is TH2/196 and horizontal scale is THF/T0" Size of each circle

is proportional to the weight described in Table[T} The solid black and gray lines are critical value
functions ¢g.os(F) and co o (F), respectively. The black circles denote cases where 1> < 1.96% or
F < 10. The blue circles represent those that are not significant using cg os(F). The purple circles
represent those that are significant at the 5 percent level using co o5 (F) but are not significant at the
1 percent level using co o1 (F). The red circles represent those that are significant at the 1 percent
level using co.01 (F).

The remaining specifications (blue, purple, and red circles), under current norms,

would most likely have been viewed as statistically significant. Of these, 24 percent

30We use the threshold 10 here not because it is a special threshold with respect to the theory
regarding size distortions. Instead, we use it because 10 appears to be the most commonly referenced
threshold in applied work.
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(the blue circles) are in fact statistically insignificant at the 5 percent level, when
the tF critical values are applied; the remaining 76 percent (purple and red circles)
remain significant at the 5 percent level.

The proportional impact of the adjustments is larger for a higher standard for
statistical significance, the 1 percent level. That is, among the specifications such
that 72 > 2.73%,F > 10—which arguably would have commonly been interpreted
as statistically significant at the 1 percent level—about 34 percent of them are sta-
tistically insignificant after applying the #F' critical value function.

Although it is beyond the scope of our paper to suggest whether any of the
overall conclusions of the studies in our sample would be altered in light of these
adjustments, we do conclude that the #F adjustments could be expected to make
a nontrivial difference in inferences made in applied research—in some cases not
making much of a difference at all, but in other cases making a large difference.

Finally, we note that if the only hypothesis of interest is the null that the coef-
ficient of interest is equal to zero, then one can simply conduct a test of whether
the reduced form coefficient (in the regression of Y on Z) is zero. Indeed, this is
equivalent to the AR test. On the other hand, if there is an interest in computing
confidence intervals, then one requires information contained in the first-stage re-
gression (which is used by both AR and F).

ILE A Priori Restrictions on p

The conventional frequentist approach to statistical inference requires, by defini-
tion, that for a test at the 5 percent level of significance, the maximum rejection
probability under the null hypothesis over all possible values of nuisance parame-
ters is 0.05. We follow this conventional approach and ensure that the ¢F procedure
is valid for any possible value of E[F] and p@ While the particular values |p| =1
are useful in derivations to provide a worst case, valid inference applies to all val-

ues of p between -1 and 1. Thus, for the just-identified /V model, being agnostic

310ur setting allows for heteroskedastic, clustered, and/or autocorrelated errors. Nevertheless,
the parameter p simplifies to the usual endogeneity coefficient Corr (Y — X f3,X — nZ) which prac-
titioners have in mind if errors are (conditionally on Z) independent and homoskedastic.
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about E[F] and p is a requirement for practitioners who wish to rely solely on the
textbook IV assumptions that C (Z,u) = 0 and C(Z,X) # 0.

Adding restrictions beyond the textbook IV assumptions, for example, with a
priori information on the parameter p, is possible. As referenced in Subsection
I1I.A] one could ask, “What additional assumption about p could be imposed on
the data generating process to allow the +1.96 critical values to deliver a valid
S-percent test?”

Both Lee et al.|(2020) and |Angrist and Kolesar (2021) calculate that using 1.96
critical values delivers a valid 5 percent test as long as one additionally assumes that
p is less than 0.565 in absolute Value@ A researcher’s choice between adopting the
conventional frequentist approach (i.e., adjusting the standard errors via tF, or via
AR inference) or a priori assuming that |p| < 0.565 (i.e. leaving the 2SLS standard
errors unadjusted) ultimately does not follow from any econometric result; instead it
rests entirely on how comfortable one is with those additional a priori assumptions.

The plausibility of any restriction on p depends on the specific context. |Angrist
and Kolesar (2021) provide three examples in which they argue for making the |p| <
0.565 assumption. Using bounds on |p| larger than 0.565 is also possible, which
changes the interpretation: as Angrist and Kolesar (2021) point out, the £1.96
critical values, and assuming that |p| < 0.76 corresponds to a 10-percent level of
significance[)| In Appendix we provide the necessary inflation factors to the
£1.96 critical values to achieve 5-percent and 1-percent levels of significance for
bounds like 0.76 and other |p| bounds between 0.565 and 1.

A separate and open empirical question is what magnitudes of p one might ex-
pect to see in practice. It is of course impossible to make definitive quantitative
statements about the true magnitude of p or 3, since they are both unknown param-
eters; also a full meta-analysis is beyond the scope of this paper. Nevertheless, as
discussed in Appendix [A.8.3] it is possible to use data to obtain a valid confidence
set on p. The data from our sample of AER studies show that 1) the confidence

32Note that the necessary bound on |p| depends on the desired signifiance/confidence level. For
example, if 1/99 percent signifiance/confidence is intended using the nominal 2.576 critical value
for the ¢-ratio, then the necessary bound on |p| is 0.435, as reported in|Lee et al.| (2020).

3 A S-percent rejection rate with a precisely quantified over-