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Abstract—Frölich (2004) compares the finite sample properties of reweight-
ing and matching estimators of average treatment effects and concludes that
reweighting performs far worse than even the simplest matching estimator.
We argue that this conclusion is unjustified. Neither approach dominates
the other uniformly across data-generating processes (DGPs). Expanding
on Frölich’s analysis, this paper analyzes empirical as well as hypotheti-
cal DGPs and also examines the effect of misspecification. We conclude
that reweighting is competitive with the most effective matching estima-
tors when overlap is good, but that matching may be more effective when
overlap is sufficiently poor.

I. Introduction

Acommon goal of empirical work is to assess the impact
of a nonrandomized program on a subpopulation of

interest. Estimates of program impacts are often based on
reweighting or on matching on covariates or the propensity
score. The empirical literature, particularly in economics but
also in medicine, political science, sociology, and other disci-
plines, features an extraordinary number of program impact
estimates based on these estimators. Propensity score match-
ing is particularly popular and is described by Smith and Todd
(2005) as “the estimator du jour in the evaluation literature.”

Frölich (2004) uses simulation to examine the finite sample
properties of various propensity score matching estimators
and compares them to those of a particular reweighting
estimator. To the best of our knowledge, his is the first
paper to explicitly compare the finite sample performance of
propensity score matching and reweighting.1 The topic is an
important one because large sample theory is currently avail-
able only for some matching estimators and because there can
be meaningful discrepancies between large and small sample
performance.2

Summarizing his findings regarding the mean squared
error of the various estimators studied, Frölich (2004, p. 86)
states that the “the weighting estimator turned out to be the
worst of all [estimators considered]. . . . it is far worse than
pair matching in all of the designs.” This conclusion is at
odds with some of the conclusions from the large sample lit-
erature. For example, pair matching is well understood to
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1 More recently, Huber, Lechner, and Wunsch (2010, 2013) have investi-
gated these issues as well.

2 Large sample properties of these estimators are studied in Heckman,
Ichimura, and Todd (1998), Hirano et al. (2003), Lunceford and Davidian
(2004), and Abadie and Imbens (2006), among others.

have higher variance than other matching estimators, and
Hirano, Imbens, and Ridder (2003) show that reweight-
ing with a nonparametric estimate of the propensity score
can be semiparametrically efficient.3 The seeming juxtapo-
sition of these conclusions motivated us to reexamine the
evidence.

We build on the analysis in Frölich (2004) by presenting
evidence on the finite sample performance of a broad set of
matching and reweighting estimators over a broad set of data-
generating processes (DGPs). We consider nearest-neighbor
matching on covariates and on the propensity score with and
without bias correction, local linear matching on the propen-
sity score, and three types of reweighting estimators. The
DGPs we consider are based on hypothetical data, follow-
ing Frölich (2004), as well as more empirical DGPs based
on the National Supported Work (NSW) Demonstration pro-
gram data previously studied by Dehejia and Wahba (1999),
Smith and Todd (2005), and others.

We conclude that reweighting is a much more effective
approach to estimating average treatment effects than is sug-
gested by the analysis in Frölich (2004). In particular, in
finite samples, an appropriate reweighting estimator nearly
always outperforms pair matching and is often competitive
with the more sophisticated matching estimators in DGPs
where overlap is good.

In DGPs where overlap is poor, however, reweighting tends
not to perform as well as some of the more effective matching
estimators. One of the most effective of these is bias-corrected
matching with a fixed number of neighbors. Because the
relative performance of estimators hinges so powerfully on
features of the DGP, we suggest that researchers estimate
average treatment effects using a variety of approaches;
researchers may also want to conduct a small-scale simulation
study designed to mimic their empirical context.

The remainder of the paper is organized as follows. Section
II defines notation and estimators. In section III, we repli-
cate and extend the findings of Frölich (2004). We consider
matching and reweighting on the parametrically estimated
propensity score rather than the true propensity score, and
we further examine the performance of several estimators not
considered in that article, including normalized reweighting
and bias-corrected matching. A limitation of this analysis is
that the DGPs examined are rather stylized and involve only
a single covariate. In section IV, we use a more empirically
grounded DGP with multiple covariates to assess estimator

3 As we discuss below in greater detail, we study the properties of para-
metric reweighting, or reweighting with a parametric logit model, for the
propensity score, as in Wooldridge (2007). Hirano et al. (2003) focus on
semiparametric reweighting, or reweighting with a series logit model for
the propensity score where the series approximation is more complex in
larger samples.
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performance in a more realistic setting. Following the recent
literature on this topic, we focus on the context of the NSW
observational data. The analyses in sections III and IV are
based on well-specified estimators only and consequently do
not allow an examination of robustness to common forms of
misspecification. To examine the extent to which misspec-
ification affects relative estimator performance, we turn in
section V to an examination of DGPs in which linear and
interaction terms of multiple covariates may affect both the
treatment selection process and the regression functions of
the counterfactual outcomes. Section VI concludes.

II. Background and Estimators

In this section we provide a brief discussion of the context
in which the estimators we evaluate are applied and then
define the estimators considered. (For further detail regarding
context, see the excellent review by Imbens, 2004.)

The data observed by the researcher are (Yi, Ti, Xi)
n

i=1,
where Yi is an outcome, Ti is a treatment indicator, and Xi

is a vector of covariates. The outcome observed is either
Yi(0) if Ti = 0 or Yi(1) if Ti = 1, where Yi(0) and Yi(1) are
counterfactual outcomes or outcomes that would be observed
under the control and treatment regimes, respectively (Rubin,
1974).

The estimators we evaluate are consistent under the
assumptions of conditional independence and overlap. Con-
ditional independence asserts that counterfactual outcomes
are independent of the treatment indicator conditional on the
covariates. Overlap asserts that the propensity score, p(x), or
the conditional probability of treatment given the covariates,
is strictly between 0 and 1 for all x.4 Khan and Tamer (2010)
establish that the overlap assumption is not sufficient for

√
n-

consistency but that strict overlap is. Strict overlap requires
that p(x) be strictly between c and 1−c for all x and for some
c > 0.

There are many possible parameters of interest associated
with this model. The literature focuses primarily, although
not exclusively, on two parameters: the effect of treatment on
the treated (TOT), defined as E[Yi(1) − Yi(0)|Ti = 1] ≡ θ,
and the average treatment effect (ATE), defined as E[Yi(1)−
Yi(0)]. We focus on TOT in the interest of space.

Aside from bias-corrected matching, the matching estima-
tors we examine can be written as

θ̃ =
∑

i Ti
{
Yi − Ŷi(0)

}
∑

i Ti
, (1)

where the sums are over all of the data, Ŷi(0) =∑
j (1 − Tj)W(i, j)Yj

/∑
j (1 − Tj)W(i, j) is the out-of-sample

forecast for treated unit i based only on control units j, and
the function W(i, j) gives the distance between observations
i and j in terms of either covariates or propensity scores,

4 The dual assumptions of conditional independence and overlap are
referred to as strongly ignorable by Rosenbaum and Rubin (1983).

depending on the context.5 For propensity score-based esti-
mators, we use an estimate of the propensity score rather than
the true propensity score, since it is unusual to find empirical
applications in which the true propensity score is known.6 We
use a parametric approach where the propensity score model
is fixed across samples and the complexity of the model is
modest relative to the number of observations.

The other matching estimator we study is bias-corrected
matching (Abadie & Imbens, 2011). Motivated by the finding
that nearest-neighbor matching is no longer

√
n-consistent

when matching more than one continuous variable (Abadie
& Imbens, 2006), this approach subtracts an estimate of
the asymptotic bias of nearest-neighbor matching from the
nearest-neighbor matching estimator itself. We follow the
suggestions of Abadie & Imbens (2011, sections 4 and 5)
and regression-adjust using a linear regression on the relevant
covariates among the matched control units.

Matching estimators require the researcher to choose
one or more tuning parameters. Nearest-neighbor match-
ing requires choosing a number of neighbors, and local
linear matching requires choosing a bandwidth. For nearest-
neighbor matching, we focus on a fixed number of matches.
In empirical applications, the number is chosen in order to
successfully balance features of the covariate distribution
between treatment and control units. Although many of our
simulation experiments are based on quite small samples
(e.g., n = 100), four matches performs quite well in terms of
covariate balance and mean-squared error. Consequently, we
report results for one and four matches.

Choosing the bandwidth for local linear matching is more
challenging. Whereas for nearest-neighbor matching there
is always the conservative option of a single match (pair
matching), there is no such conservative option for choos-
ing a bandwidth. We follow the suggestion in Frölich (2004)
of cross-validation for choosing the bandwidth, a common
choice in empirical applications (e.g., Black & Smith, 2004).7

5 For example, for nearest-neighbor matching with m matches, W(i, j) is
1/m̃ for the control observations j that are as close to a treated observation i
as the mth closest control observation, where m̃ ≥ m is the number of such
controls. For details, see Abadie et al. (2004). For local linear matching,
W(i, j) = Kij/

∑
�(1 − T�)Ki� + KijΔjΔi/((

∑
�(1 − T�)Ki�Δ

2
�) + rh|Δi|),

where Kij = K(( pj − pi)/h) for K(·) a kernel function and h a bandwidth,
Δi = pi − pi, Δj = pj − pi for j �= i, pi = ∑

j(1 − Tj)Kijpj/
∑

j(1 − Tj)Kij ,
and r = 0.3125 is an adjustment factor suggested by Seifert and Gasser
(2000).

6 This point is noted in Abadie and Imbens (2012) and Lunceford and
Davidian (2004), among many others. Note that while it is relatively efficient
to use the estimated propensity score rather than the true propensity score
when estimating the ATE, this does not carry through for estimating the
TOT. On this point, see Hirano et al. (2003, section 4.3) for the case of
semiparametric reweighting and Abadie and Imbens (2012, section III) for
the case of matching.

7 This procedure chooses a bandwidth, h, to minimize Q(h) =∑
j (1 − Tj)(Yj − Ỹ−j,h)

2 where Ỹ−j,h is the out-of-sample forecast for con-
trol unit j based only on control units � �= j. We evaluate Q(h) for
h = 0.01 × 1.2g−1 for g ∈ {1, 2, . . . , 28, 29, ∞}. An emerging litera-
ture (Flossmann, 2007; 2008; Galdo, Smith, & Black, 2008) considers
cross-validation routines specialized to this context, but we leave a full
consideration of competing cross-validation proposals to future research.
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We are unaware of any theoretical support for cross-
validation of matching estimators, but consider the perfor-
mance of local linear matching, as it exhibited the lowest
mean squared error (MSE) of the estimators considered in
Frölich (2004).

In summary, we report results for nine matching estima-
tors: nearest-neighbor matching on the propensity score and
on covariates with one and four matches, with and without
bias correction, and local linear matching on the propensity
score with the bandwidth chosen by cross-validation.8

In addition to matching estimators, we study unnormalized
reweighting, normalized reweighting, and a specific variety
of normalized reweighting due to Graham, Pinto, and Egel
(2012), which we term GPE reweighting. Unnormalized and
normalized reweighting estimators are given by

θ̂U =
∑

i TiYi∑
i Ti

−
∑

j(1 − Tj)WjYj∑
j Tj

, (2)

θ̂N =
∑

i TiYi∑
i Ti

−
∑

j(1 − Tj)WjYj∑
j(1 − Tj)Wj

, (3)

respectively, where Wj = p̂(Xj)
/
(1 − p̂(Xj)) and p̂(Xj) =

Λ(Z ′
j β̂) is the estimated propensity score for unit j based on

a logit model, where Λ(v) = 1/(1 + exp(−v)) and Zi is
a vector of functions of Xi, including a constant term. We
choose a small number of functions of Xi where that num-
ber is fixed as the sample size grows, as noted above. By
focusing on parametric reweighting rather than the semi-
parametric reweighting that was the focus of Hirano et al.
(2003), we hope to approximate the standard practice of
applied researchers, most of whom estimate a parsimonious
propensity score model based on prior considerations rather
than estimating the propensity score nonparametrically. How-
ever, this brings up the issue of specifying the propensity
score model, which in a sense is analogous to selecting
tuning parameters in covariate matching. In sections III
and IV, we consider well-specified propensity score mod-
els, and in section V, we investigate the consequences of
misspecification of the propensity score model.

GPE reweighting is given by equation (3), but p̂(Xj) is not
based on a logit model. To explain the approach, note that
if the true propensity score is of the form Λ(Z ′

iβ0) for some
parameter β0, then 0 = E[(Ti −Λ(Z ′

iβ0))g(Zi)] for any func-
tion g(·). This suggests by the analogy principle a class of
moment-based estimators for the propensity score indexed by
g(·). The logit model uses g(Zi) = Zi. GPE reweighting with
logit functional form uses g(Zi) = Zi/(1 − Λ(Z ′

iβ0)). This
leads to exact finite-sample balance, or

∑
i TiZi/

∑
i Ti =∑

j(1 − Tj)WjZj/
∑

j(1 − Tj)Wj, and thus regression adjust-
ment for Zi is redundant in the reweighted sample.9 This

8 For matching on covariates, we use the normalized Euclidean metric in
light of the sample size.

9 This is easy to see from

E[(Ti − p(Xi)) g(Zi)] = E[(1/(1 − p(Xi)))(Ti − Tip(Xi)

+ Tip(Xi) − p(Xi))Zi]
= E[(Ti − (1 − Ti)Wi) Zi].

redundancy makes GPE reweighting double-robust in the
sense of Robins, Rotnitzky, and Zhao (1994): the estimator
is consistent if either the propensity score model is correctly
specified or if E[Yi(0)|Xi] is linear in Zi.

These three variations of reweighting differ in their promi-
nence in the literature. Asymptotically, GPE has the smallest
bias to second order in a class of double robust reweighting
estimators for estimating the ATE (Graham et al. 2012), but
it has been proposed only recently and so has not been exten-
sively studied or used in empirical work. However double-
robust estimators more broadly have been studied extensively
in the recent theoretical statistics literature (see Tan, 2010, for
a recent review). The unnormalized reweighting estimator
dates at least to Horvitz and Thompson (1952) and features
prominently in the theoretical statistics and econometrics lit-
eratures. The normalized reweighting estimator receives less
attention in the theoretical literature but features prominently
in empirical work.10 In our context, normalized reweighting
is of particular interest because nearest-neighbor and local
linear matching estimators can be interpreted as normal-
ized reweighting estimators.11 Consequently, a meaningful
comparison of matching and reweighting requires that the
normalized reweighting estimator be considered. In Frölich
(2004), the only reweighting estimator considered is the
unnormalized version based on the true propensity score.

III. Previous Results

We turn now to a reexamination of the performance of
propensity score reweighting and matching estimators in the
context of the DGPs that Frölich (2004) used. Those DGPs
can be expressed as

Yi(0) = m(Zi) + σεi, (4)

T∗
i = α + βZi − Ui, (5)

where Zi = Λ(
√

2Xi) is a function of the single standard
normal covariate Xi, the error term εi is independent and
identically distributed (i.i.d.) uniform with a mean of 0 and a
variance of 1 and is independent of Xi, the regression function
m(·) is one of a list of functions specified in Frolich (2004,
table A1), Yi(0) is the counterfactual outcome under control,
Yi(1) = Yi(0) is the counterfactual outcome under treatment,
the error term Ui is i.i.d. standard uniform and is independent
of εi and Xi, T∗

i is the latent variable corresponding to treat-
ment (Ti ≡ 1[T∗

i > 0] is the treatment indicator), and α and β

are parameters given in table 1 of Frölich (2004).12 Given this

10 A brief list of studies discussing the unnormalized estimator, but not the
normalized estimator, includes Rosenbaum (1987, equation [3.1]), Dehejia
& Wahba (1997, proposition 4), Wooldridge (2002, Equation [18.22]), and
Hirano et al. (2003). The normalized reweighting estimator is discussed in
Lunceford and Davidian (2004), Imbens (2004), and Robins et al. (2007),
for example.

11 See, for example, equations (3) and (4) of Abadie and Imbens (2006).
12 Strictly speaking, Frölich (2004) does not use a model for Yi(1) at all.

This omission is motivated by the recognition that the DGP for Yi(1) does
not affect the relative performance of estimators for TOT. We prefer to
be able to discuss the results in terms of traditional notation and models,
however, and so we let Yi(1) = Yi(0).
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Table 1.—Simulation Results

DGP 1 (Frölich): Linear Models with One Covariate Correctly Specified

Covariate Matching Propensity Score Matching Reweighting

NN NN BCM BCM NN NN BCM BCM LL Not
Design (k = 1) (k = 4) (k = 1) (k = 4) (k = 1) (k = 4) (k = 1) (k = 4) (CV) Normalized Normalized GPE

σ2 = 0.01
Average 1 9.43 22.61 0.27 0.40 8.43 21.02 0.29 0.41 7.87 4.61 5.39 14.27
|Bias × 1000| 2 3.62 7.75 0.14 0.03 2.82 6.55 0.17 0.02 2.23 0.25 0.58 1.90

3 1.06 3.81 0.42 0.02 0.68 2.35 0.40 0.05 1.30 0.08 0.09 0.22
4 0.28 0.95 0.15 0.04 0.19 0.60 0.13 0.05 2.16 1.33 0.67 0.55
5 8.72 17.07 0.40 0.23 8.25 16.22 0.35 0.24 9.69 18.05 7.64 10.44

Average 4.62 10.44 0.28 0.14 4.07 9.35 0.27 0.15 4.65 4.87 2.87 5.47
Average rank 8.03 10.77 4.63 2.00 7.00 9.30 4.33 2.87 8.80 7.20 6.00 7.07
Average 1 0.17 0.14 0.17 0.11 0.17 0.14 0.16 0.11 0.14 1.70 0.25 0.29
(Var × n) 2 0.10 0.08 0.09 0.06 0.10 0.08 0.09 0.06 0.07 0.23 0.12 0.11

3 0.08 0.06 0.08 0.05 0.08 0.06 0.08 0.05 0.05 0.10 0.08 0.07
4 0.13 0.09 0.13 0.09 0.13 0.09 0.13 0.08 0.08 0.08 0.08 0.07
5 0.16 0.12 0.17 0.12 0.16 0.12 0.17 0.12 0.13 1.76 0.16 0.21

Average 0.13 0.10 0.13 0.09 0.13 0.10 0.13 0.09 0.09 0.77 0.14 0.15
Average rank 8.83 4.70 9.20 4.20 8.70 4.17 8.80 3.20 3.67 9.97 6.90 5.67
σ2 = 0.1
Average 1 9.63 22.88 0.48 0.92 8.65 21.31 0.50 0.95 15.53 4.13 5.47 14.15
|Bias × 1000| 2 3.66 7.80 0.75 0.17 2.86 6.61 0.84 0.14 6.58 0.35 0.69 1.73

3 1.16 3.76 0.79 0.07 0.89 2.36 0.72 0.07 4.32 0.21 0.25 0.37
4 0.31 0.94 0.26 0.07 0.27 0.60 0.26 0.07 6.07 1.17 0.56 0.46
5 9.04 16.93 1.21 0.52 8.53 16.04 1.13 0.57 15.66 18.32 7.94 10.48

Average 4.76 10.46 0.70 0.35 4.24 9.39 0.69 0.36 9.63 4.83 2.98 5.44
Average rank 7.30 10.10 5.33 2.47 7.10 9.00 5.03 2.47 10.03 6.83 5.43 6.90
Average 1 1.39 0.88 1.64 1.05 1.40 0.89 1.64 1.05 1.01 3.02 1.10 1.30
(Var × n) 2 0.90 0.63 0.93 0.65 0.90 0.63 0.92 0.65 0.65 0.75 0.63 0.63

3 0.77 0.54 0.78 0.55 0.77 0.53 0.77 0.54 0.51 0.52 0.50 0.49
4 1.33 0.86 1.33 0.86 1.33 0.85 1.33 0.85 0.75 0.72 0.72 0.72
5 1.50 0.97 1.74 1.16 1.51 0.97 1.74 1.15 1.04 2.93 1.12 1.69

Average 1.18 0.78 1.28 0.85 1.18 0.78 1.28 0.85 0.79 1.59 0.82 0.97
Average rank 9.30 4.17 10.27 5.90 9.70 3.53 10.27 4.83 4.20 7.67 3.67 4.50

Each entry shows the average bias/variance for each design estimator. The data-generating process follows Frölich (2004) with a sample size of n=100. The variance of the error term of the outcome equation (σ2)

is assumed to be 0.01 and 0.1. See section III for datails. NN = nearest-neighbor matching, BCM = bias-corrected matching, LL = local linear matching. For matching estimators, tuning parameter choices specified
in parentheses. CV = cross-validation. The propensity score model and the bias adjustment models are correctly specified. Simulation estimates based on 10,000 replications. Estimand is the TOT. Last two lines in
each panel show the average of absolute value of bias and the average rank of |bias|.

setup, p(Xi) = α + βΛ(
√

2Xi) is the true propensity score.
Frölich (2004) sets σ = √

0.01, but we additionally consider
larger values of σ. There are five combinations of α and β

(selection equation “designs”) and six functional forms for
m(·) (outcome “curves”), for a total of thirty DGPs.

An issue with these DGPs is that, as originally posed in
Frölich (2004), the five designs accord with a standard logit
model for treatment only for the special case of design 1,
which sets α = 0 and β = 1.13 In empirical work, logit
models are the most common approach used for estimat-
ing the propensity score. While we consider misspecification
below, we want to begin our analysis by placing all esti-
mators on equal footing in the sense of allowing standard
implementations to be well specified. Consequently, in equa-
tion (5), we change the distribution of Ui to be standard
logistic and replace α + βZi with the Fourier approximation
k (Xi) ≡ β0 +∑L

�=1

{
βS

� sin(�xi,n) + βC
� cos(�xi,n)

}
where xi,n

is a rescaled version of Xi that ranges from −π to π in each

13 We note that one could estimate the propensity score by maximum
likelihood under the assumption of a uniform error. However, since logit
and probit models dominate empirical research, we prefer not to pursue that
approach.

sample.14 With this specification, the true propensity score is
given by p(Xi) = Λ(k(Xi)).15

Turning to the implementation of estimators, note that we
have several options for estimating a well-specified propen-
sity score model. For example, both a low-dimensional

14 The approximation varies by design. In particular, we take
L = 5 for design 3 and L = 3 for other designs, and we
set (βS

1, βS
2, βS

3, βS
4, βS

5, βC
1 , βC

2 , βC
3 , βC

4 , βC
5 , β0) to 3.804583, −1.0764500,

0.2052452, 0, 0, 0.0357783, −0.020493, 0.0052849, 0, 0, −0.0208564
(design 1); 1.6826, −0.159906, 0.07393, 0, 0, 0.0077514, −0.0056401,
0.0016085, 0, 0, −0.0036519 (design 2); 0.8935404, −0.1201665,
0.107236, −0.0283796, 0.0066526, 0.0561901, −0.0460486, 0.0295689,
−.0151546, 0.0053763, −0.0291041 (design 3); 2.107084, −0.4891177,
0.0894879, 0, 0, 0.6159659, 0.2563425, −0.0641854, 0, 0, −2.195924
(design 4); and 2.081543, −0.4648486, 0.081096, 0, 0, −0.5374329,
−0.2979904, 0.0745325, 0, 0, 2.152262 (design 5).

15 The coefficients in the k (Xi) are chosen to match the distribution of the
original propensity score α+βΛ(

√
2Xi) in Frölich’s (2004) original imple-

mentation. This approximation is highly accurate. To substantiate this point,
we drew 10,000 samples of various sample sizes (n = 100, n = 1, 000,
n = 10, 000, and n = 20, 000). For each sample size, we computed the
rate at which the Kolmogorov-Smirnov test rejects at the 95% level the null
hypothesis of equal distributions for α + βΛ(

√
2Xi) and our approxima-

tion to it. The rejection rate exceeded the nominal size of the test only for
the largest sample size. Consequently, in the sample sizes under discussion
here, our approximation is observationally equivalent to Frölich’s (2004)
original DGP.
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Figure 1.—Frolich Propensity Score Conditional Densities
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B. Designs 3, 4 and 5

Note: Each selection equation design is made following Frölich (2004) designs. Equation (5) in section III is specified as follows: Design 1 (α = 0, β = 1), design 2 (α = 0.15, β = 0.7), design 3 (α = 0.3, β = 0.4),
design 4 (α = 0, β = 0.4), design 5 (α = 0.6, β = 0.4).

logit model with the single covariate k(Xi) and a medium-
dimensional logit model with the 2L covariates that com-
prise k(Xi) are properly specified parametric models for the
propensity score. Relatedly, for the bias adjustment pro-
posed in Abadie and Imbens (2011) to be well specified,
we could either regression-adjust using the single covariate
m(Λ(k(Xi))) or, since m(Λ(k(Xi))) is a linear combination of
several underlying functions of Xi, we could regression-adjust
using those functions.16 We conducted the simulations using
low and medium dimensionality for estimating the propensity
score and bias adjusting and found generally similar results.
We mention below when the results seem to depend on the
dimension of the covariates, but in the interest of space, we
present the results that use the single covariate of k(Xi) for
estimating the propensity score and m(Λ(k(Xi))) for bias
adjusting.17

Figures 1 and 2 provide a visual assessment of these DGPs.
Figure 1 presents population overlap plots for the five differ-
ent designs, and figure 2 presents the curves used for m(·).
Figure 1 shows that designs 1 and 5 violate strict overlap but
not overlap and that designs 2, 3, and 4 satisfy the more strin-
gent strict overlap condition.18 Figure 2 shows the range of
shapes taken on by the curves used, from approximately low-
order polynomial (e.g., curves 1 and 4) to highly nonlinear
(e.g., curves 2 and 6).

Below, we discuss the somewhat surprising result that the
variance of εi affects the relative performance of matching

16 For ease of exposition, let pi = p(Xi). Then these functions are pi (curve
1), pi and exp(−200( pi − 0.7)2) (curve 2), ( pi − 0.9)2, ( pi − 0.7)3, and
( pi − 0.6)10 (curve 3), ( pi − 0.9)2 and

√
1 − pi (curve 4), ( pi − 0.9)2,√

1 − pi, and pi cos(30pi) (curve 5), and sin(8pi − 5) and exp(−16(4pi −
2.5)2) (curve 6).

17 Full results are available from the authors on request.
18 It can be shown that for these DGPs, the asymptotic variance for all

estimators (adopting either a parametric or semiparametric perspective)
is finite, with the exception of local linear matching, where to date the
asymptotic variance has not been computed. Consequently the analysis of
Khan and Tamer (2010) does not imply a lack of

√
n-consistency for the

estimators we study in these DGPs, although it may continue to shed light
on some of the differences in results across designs.

and reweighting estimators. We show this in a simple way by
presenting results based on the exact DGP used in Frölich
(2004), which sets σ = √

0.01, and then conducting the
same analysis with σ = √

0.1. The tendency of matching
to outperform reweighting for very small values of the out-
come equation variance is more extreme if the true propensity
score is used, as in Frölich (2004), rather than the estimated
propensity score.

Our primary aim in this section of the paper is to demon-
strate that reweighting is an estimator worth considering in
the context of the designs studied in Frölich (2004). This
is the opposite of the conclusion in that paper, as we noted
in section I. Because of this focus, we do not seek to justify
these DGPs. We tend to agree with the position emphasized in
Huber et al. (2013) that it is preferable to study DGPs that are
empirically relevant, and we do so in the subsequent section.
For now, however, our focus is simply assessing whether
in the context of these DGPs, it is correct that reweight-
ing performs worse than pair matching and worst among all
estimators.

For each of the thirty DGPs outlined, we construct 10,000
samples of size n = 100 taken randomly with replacement
from the population model described above.19 Schematically,
each sample is constructed in six steps: (a) draw i.i.d. stan-
dard normals Xi; (b) draw iid standard logistic errors Ui; (c)
construct T∗

i = k (Xi) − Ui; (d) assign Ti = 1(T∗
i > 0); (e)

draw i.i.d. uniform errors εi with mean 0 and variance 1, and
(f) construct Yi(0) = Yi(1) = m(Λ(k(Xi)))+σεi. With a sam-
ple size this small, many of the estimators we consider may
not perform well, particularly in terms of bias. For example,
all of the reweighting estimators are consistent but are pre-
sumably finite sample biased, even when the propensity score
is correctly specified. Similarly, nearest-neighbor matching
on covariates or on the propensity score is presumably finite
sample biased.

19 Programming of estimators and construction of hypothetical data sets
was performed in Stata, version 11.0.



890 THE REVIEW OF ECONOMICS AND STATISTICS

Figure 2.—Frolich Outcome Curves
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Note: Each panel displays the conditional expectation of Y (0) given the propensity score p for the curve in question. See the text for details and Frölich (2004, table A1).

Using these samples, we construct simulation estimates of
the absolute value of the bias (“absolute bias”) and variance.20

The results are summarized in table 1, which presents esti-
mates of the average absolute bias and average variance for
each design across curves for σ = √

0.01 (top two panels) as
well as σ = √

0.1 (bottom two panels). This economized pre-
sentation of averages is preferred to a presentation of results
for all thirty DGPs, as the results are largely similar across
curves.21 For readability, we scale all estimates of the absolute
bias by 1,000 and all estimates of the variance by n = 100.

We turn first to the results on the absolute bias for the σ =√
0.01 case. Several features stand out. First, bias-corrected

matching performs extremely well in terms of bias. Standard
errors for the bias estimates are suppressed to economize the
presentation, but for entries in the table corresponding to the
σ = √

0.01 case, the standard error of the average absolute
bias is roughly 0.2 to 0.3 when scaled by 1,000. Consequently,
none of the average absolute bias estimates are statistically
distinct from 0. Indeed, in unreported results, none of the
30 absolute bias estimates are statistically distinct from 0, as
expected, since the regression function is here well specified.

Second, of the remaining estimators, normalized reweight-
ing has the smallest bias, particularly when overlap is good,
as in designs 2, 3, and 4. For designs 1 and 5, where overlap is

20 We assume finite first and second moments of these estimators. Exam-
ination of QQ-plots for these estimators shows that only unnormalized
reweighting, which has rather fat tails, has a distribution that departs from
normal.

21 For example, taking the results for the σ = √
0.01 case and regressing

the thirty absolute biases on four dummies for design and five dummies
for curves, the between R2 for designs ranges from 45% to 95% for the
case of bias and from 70% to 99% for the case of variance. Curves play no
role in the bias of bias-corrected matching in this context, but nonlinearity
does lead to greater variance for that estimator. A different pattern holds
for nearest-neighbor matching, with curves playing a somewhat important
role for bias for designs 1 and 5, where strict overlap is violated, but curves
play essentially no role for the variance. For local linear matching, curves
play something of a role for bias for all designs but affect variance to a
much lesser extent. For reweighting, curves play a role only for designs 1
and 5, but for those designs, curves affect both the bias and the variance.
The dominant role of designs relative to curves is somewhat stronger for the
σ = √

0.1 case. Full results for all thirty DGPs available from the authors
on request.

more problematic, normalized reweighting has a larger bias,
but it still outperforms pair matching on covariates and on the
propensity score. Normalized reweighting performs best in
regard to bias among all reweighting estimators. Both unnor-
malized and GPE reweighting seem to deteriorate faster than
normalized reweighting as overlap worsens.22

Third, and turning to the variance results for the σ =√
0.01 case, bias-corrected matching on the propensity score

performs best, followed by local linear matching and bias-
corrected matching on covariates. Normalized reweighting
does not perform as well regarding variance in this context,
although it outperforms unnormalized reweighting and is at
least competitive with GPE reweighting. Consistent with the
conclusions in Frölich (2004), unnormalized reweighting per-
forms worst in terms of variance; this result is all the more
extreme when reweighting is done using the true propensity
score rather than a parametric estimate of the propensity score
(results not shown).

Turning to the σ = √
0.1 case, we continue to see good

performance from bias-corrected matching and normalized
reweighting in regard to the absolute bias. However, perhaps
surprisingly in light of the conclusions in Frölich (2004),
normalized reweighting now emerges as among the best
estimators in terms of variance, particularly when overlap
is good. For example, in designs 2, 3, and 4, normalized
reweighting (and GPE reweighting) have the smallest aver-
age variance. In designs 1 and 5, the variance of normalized
reweighting is somewhat higher than that of nearest-neighbor
matching with k = 4 matches.23

Why does normalized reweighting seem to perform rel-
atively better for the σ = √

0.1 case than it does for the
σ = √

0.01 case? A simple explanation can be found in

22 We note that GPE reweighting is sometimes not computable when nor-
malized reweighting is. In the DGPs being described here, GPE reweighting
was computable for 9,664 of the 10,000 simulation runs. GPE reweighting
is computable less frequently as the dimensionality of Zi increases and com-
putation becomes problematic when we use three powers of Xi as elements
of Zi.

23 On the other hand, nearest-neighbor matching with k = 4 matches is
notably biased for designs 1 and 5.
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asymptotic approximations. In the context of these DGPs, the
asymptotic variance of matching estimators is proportional
to σ2 (Abadie & Imbens, 2006, 2011), implying that a small
value of σ leads to a small value of the variance of matching
estimators. Parametric reweighting estimators, on the other
hand, have a constant term that does not involve σ and goes
away only as the propensity score model is estimated and
indeed overfit (Wooldridge, 2007).

Overall, a researcher with a strong distaste for bias would
prefer bias-corrected matching, at least if the regression func-
tion were properly specified, as it is here. All of the other
estimators have nonnegligible biases. Among the estimators
built around a properly specified parametric model for the
propensity score, normalized reweighting exhibits the small-
est bias and one of the smaller variances, particularly when
overlap is good. In the next two sections, we investigate a
more empirically relevant DGP with greater dimensionality
of the covariates, and we examine the consequences of mis-
specification of the propensity score model and the regression
function.

IV. Results from the National Supported Work
Demonstration

In this section, we focus on DGPs based on the data from
the National Supported Work (NSW) Demonstration. These
data are described in some detail in Dehejia and Wahba (1999)
and have been further studied by Smith and Todd (2005),
among others. These data have also been the basis for some
previous simulation studies (Abadie & Imbens, 2011).

We focus on the African American subsample of those
in the experimental group and those in a comparison group
taken from the PSID. African Americans comprise roughly
85% of the NSW experimental data. Our study sample con-
sists of 780 individuals (156 experimental, 624 comparison).
The covariates we condition on are age, years of education,
an indicator for being a high school dropout, an indicator for
being married, an indicator for 1974 unemployment, an indi-
cator for 1975 unemployment, 1974 earnings in thousands
of dollars and its square, 1975 earnings in thousands of dol-
lars and its square, and interactions between the 1974 and
1975 unemployment indicators and between 1974 and 1975
earnings. Define Xi to be the unique list of variables (i.e., the
covariates excluding interactions and square terms), and let
Zi denote the full set of covariates including the interactions
and square terms described above. Following the literature,
the outcome of interest Yi is 1978 earnings, again measured
in thousands of dollars.

As before, we draw 10,000 hypothetical samples. This
time, however, to mimic the original NSW data, we draw
n = 780 observations for each such sample rather than 100.
Schematically, each sample is constructed in eight steps: (a)
draw covariates Xi from a population model specified below;
(b) draw i.i.d. logistic errors Ui; (c) construct T∗

i according
to equation (5), using the full set of covariates Zi and using

in place of α and β the coefficients from a logit model esti-
mated on the original NSW data; (d) assign Ti = 1(T∗

i > 0);
(e) draw i.i.d. normal errors ε0i with mean zero and variance
σ2

0 defined below; (f) construct Yi(0) = δ′
0Zi + ε0i, using

in place of δ0 the coefficients from a regression model esti-
mated using the control observations in the original NSW
data, where the root mean squared error of the regression is
assigned to σ2

0; (g) construct Yi(1) analogously, but using the
treated units from the original NSW data; and (h) construct
Yi = TiYi(1) + (1 − Ti)Yi(0).

In order to generate the covariates Xi in each simulation
sample, we construct a population model by proceeding in
three steps: (a) draw indicators for married, unemployed in
1974, and unemployed in 1975 (a “group”) from the empir-
ical distribution of the observed measures in the original
study sample; (b) draw age, education, earnings in 1974, and
earnings in 1975 from a group-specific multivariate normal
distribution; and (c) take the integer part of age and educa-
tion and impose group-specific minima and maxima on 1974
and 1975 earnings consistent with those in the original study
sample. For each group, the parameters of the multivariate
normal distribution are taken to be the empirical means of and
covariances among age, education, and 1974 and 1975 earn-
ings estimated from the original study sample. The population
treatment effect on the treated is $2,334.

Figure 3A presents a sample overlap plot from this DGP.24

There is very little overlap in the NSW data and therefore in
our DGP. Most of the mass for the treatment group is above
p(Xi) = 0.8, whereas the control group has only five obser-
vations in this range. In order to produce data with better
overlap, we divide the coefficients in equation (5) by a con-
stant c. The benchmark case is c = 1 (“bad overlap”), and we
also consider c = 5 (“good overlap”). The sample overlap
plot for the latter DGP is shown in Figure 3B.

In this section, we are focusing on estimator performance
in the context of a more empirically relevant DGP than
in those from section III. We consider estimators that are
properly specified here and defer consideration of misspec-
ification to section V, below. Consequently, we estimate the
propensity score using a logit model and covariates Zi, and we
bias-adjust using a linear regression on the full set of covari-
ates Zi, estimated using only the matched control units.25

Simulation estimates of the absolute bias and variance are
presented in table 2. Since earnings are measured in thou-
sands of dollars, the scaled bias estimates are in units of
dollars.26 Estimators are given in rows. We first focus on the

24 A graphical display of the population overlap plot is uninformative here
because of the nature of the design. For example, ignoring ties, the distribu-
tion of the population propensity score based on the empirical distribution
of the covariates is uniform over the sample values for Xi in the NSW study
sample, as transformed by p(·).

25 Bias adjustment could also be done using only the covariates Xi. We
prefer in this section to keep all estimators on equal footing in regard to
specification.

26 For each estimator, the standard error on the bias (variance) estimate is
about 25 (75).
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Figure 3.—NSW Propensity Score Conditional Densities
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Note: (A) An overlap plot for the original NSW (bad overlap). (B) An overlap plot for the NSW DGP in which the selection equation coefficients were divided by 5 (good overlap). In each case, the solid line is a
kernel density estimate of the conditional density of the propensity score among treated units for a representative data set. The dashed line is for the conditional density among control units. Solid triangles at top of
figure give propensity score values for treated units, and open circles at the bottom of the figure give propensity score values for control units. See text for details.

Table 2.—Simulation Results

DGP 2 (NSW): Linear Models with Many Covariates Correctly Specified

Baseline Good Overlap

|Bias| × 1000 Variance ×n |Bias| × 1000 Variance ×n
(1) (2) (3) (4)

Covariate matching NN k = 1 28.6 4, 040.2 60.5 829.3
NN k = 2 73.7 3, 183.8 52.2 716.0
NN k = 3 120.6 2, 771.2 43.0 677.3
NN k = 4 168.6 2, 507.9 33.9 663.0
BCM k = 1 40.2 5, 549.9 7.7 839.0
BCM k = 2 27.1 4, 596.4 12.1 717.2
BCM k = 3 20.4 4, 179.9 14.0 676.5
BCM k = 4 19.6 3, 949.4 12.9 661.3

Propensity score matching NN k = 1 35.8 5, 840.5 24.2 966.5
NN k = 2 22.0 4, 580.6 11.3 781.8
NN k = 3 1.1 4, 055.6 7.5 716.1
NN k = 4 12.0 3, 720.4 2.5 682.5
BCM k = 1 8.9 6, 029.8 9.1 862.3
BCM k = 2 2.8 5, 048.2 14.3 720.3
BCM k = 3 0.4 4, 655.6 12.1 670.6
BCM k = 4 12.1 4, 430.9 13.7 648.9
Local linear CV 213.6 4, 519.2 123.1 663.5

Reweighting Unnormalized – 57.6 4, 907.1 8.3 585.0
Normalized – 31.5 4, 061.6 9.8 588.7
GPE – 2.4 5, 819.8 10.6 580.0

The data-generating process is based on the National Supported Work (NSW) and the PSID data sets. Sample size is n = 780. See Section IV for details. CV = cross-validation. k specifies the number of neighbors.
The propensity score model and the bias adjustment models are correctly specified parametric model on age, years of education, dropout, married, unemployed in 1974, unemployed in 1975, earnings in 1974 linear
and square, earnings in 1975 linear and square, unemployed-in-1974 × unemployed-in-1975, earnings-in-1974 × earnings-in-1975. Simulations based on 10,000 replications. Estimand is the TOT.

case of bad overlap presented in the first two columns of the
table.

Two patterns stand out regarding bias. First, despite the
difficulties with overlap in this DGP, nearly all estimators
show absolute bias of less than $60 (2.5% of the real treat-
ment effect). The estimators that perform badly in terms of
bias are nearest-neighbor matching on covariates with many
matches and local linear matching. The defects of nearest-
neighbor matching on covariates with a large number of
matches seem to be cured by either matching on the correctly
specified propensity score or bias adjustment. Second, nor-
malized reweighting performs well in terms of bias, but GPE
reweighting performs particularly well, closely matching the
performance of bias-corrected matching on the propensity
score.

In terms of variance, we have a number of interesting
results. We focus on estimators with bias smaller than $60.
First, nearest-neighbor matching on the propensity score with
k = 4 matches exhibits the lowest variance. Close com-
petitors are nearest-neighbor matching on covariates with
k = 1 matches and normalized reweighting. Second, GPE
reweighting has a very large variance, among the worst
of all estimators considered. This is consistent with the
results in section III, where GPE reweighting was notably
variable in settings of poor overlap. Third, bias-corrected
matching improves on the bias properties of nearest-neighbor
matching, but this comes at the expense of added variance.
Nearest-neighbor matching declines in variance with addi-
tional matches, but this contributes greatly to its bias due
to lower match quality. Bias adjustment involves a greater
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variance than nearest-neighbor matching, but additional
matches lead to lower variance for bias-corrected matching
without increasing bias.

Turning next to the case of good overlap (columns 3 and 4),
nearly all estimators show biases lower than 60, the excep-
tion being local linear matching. In this context, it is not
as difficult to find good matches, and consequently nearest-
neighbor matching on covariates does not suffer as much from
increasing the number of matches. Bias-corrected matching
on covariates continues to improve on the bias of nearest-
neighbor matching on covariates. Matching on the propensity
score involves small bias for both nearest-neighbor matching
and bias-corrected matching. Reweighting also performs well
in terms of bias in the context of good overlap.

In terms of variance, an interesting pattern is that in the
context of matching on the propensity score, bias-corrected
matching exhibits smaller variance than nearest-neighbor
matching. In the context of matching on covariates, bias-
corrected matching has somewhat higher variance than
nearest-neighbor matching. Reweighting estimators perform
best in terms of variance in this DGP, with a variance that
is 12% smaller than the other leading estimators. Finally, it
is interesting to compare the relative performance of GPE
reweighting in the case of good and bad overlap. GPE
reweighting is among the most variable estimators when over-
lap is bad, but its relative performance improves significantly
in the case of good overlap.

Overall, the results for the NSW DGP agree with the con-
clusions reached using Frölich’s (2004) DGP. In terms of
bias, bias-corrected matching and reweighting tend to per-
form well when overlap is good, with the latter displaying a
smaller variance than the former. When overlap is bad, both
bias-corrected matching and reweighting show a relatively
small bias, with the former having smaller bias and larger
variance than the latter. In the NSW DGPs generally, local
linear matching and nearest-neighbor matching on covariates
tend to perform worse in terms of bias and variance. To some
extent, this is expected since reweighting and bias-corrected
matching are implemented here using properly specified
parametric models, whereas nearest-neighbor on covariates
is fully nonparametric and local linear matching requires the
selection of a tuning parameter by cross-validation.

V. Misspecification

The results presented so far have considered only
cases in which models of the propensity score and bias
adjustment were correctly specified. In this section, we
investigate the effects of misspecification on the bias
and variance of matching and reweighting estimators.27

27 Kang and Schafer (2007) study the effects of misspecification on
reweighting, stratification, and regression estimators of average treatment
effects. They find that unnormalized reweighting is severely biased and
imprecise when models are misspecified. Drake (1993) finds that treatment
effect estimators that misspecify the regression functions have much larger
biases than those for estimators that misspecify the propensity score.

To focus on these issues, we introduce a third set of
DGPs.28

We draw n = 400 observations on four covariates Xi,
where Xi is distributed i.i.d. and jointly uniform with mean
zero and a block diagonal variance matrix Σ.29 The block
diagonal structure means that X1i and X2i are correlated (as
are X3i and X4i) but that X1i is uncorrelated with X3i and X4i (as
is X2i). We then generate a latent treatment variable following
equation (5), taking Zi to be a function (specified below) of the
covariates Xi and Ui to be distributed i.i.d. standard logistic
and independent of Xi. We draw observations on counterfac-
tual outcomes using equation (4) with m(Zi) a linear function
of Zi and with the new equation, Yi(1) = Ti +Yi(0), implying
a constant treatment effect of 1. We take εi in equation (4) to
be iid standard normal and independent of Xi and Ui and set
σ in equation (4) to 1.

We draw samples from four DGPs by varying the selec-
tion equation and the regression function. The first DGP sets
the true selection index and regression function to be a linear
combination of the four individual elements of the Xi vector.
The second DGP sets the true selection index and regression
function to be a linear combination of the six interaction terms
of the Xi vector (X1iX2i, X1iX3i, and so on). The third DGP sets
the true selection index and regression function to be a linear
combination of the ten individual and interaction terms. The
fourth DGP sets the true selection index to be a linear combi-
nation of the four individual terms and the regression function
to be a linear combination of the six interaction terms.30 For
all four DGPs, all the coefficients in the selection index and
the regression function are 1. 31

The results of these investigations are presented in table 3.
The first two columns describe the estimators, and the next
two report on aspects of estimator implementation. In the
case of matching, we mainly report matching on k = 4 neigh-
bors, except in the case of nearest-neighbor matching without
bias correction, which we continue to use as a benchmark.32

For each estimator, we report results obtained by estimating
the propensity score in four different ways: using the true
index as a single covariate (“True,” column 3), using the four
individual elements of Xi (“Linear”), using the six interac-
tion terms (“Interactions”), and using all ten individual and

28 We elect not to adapt the DGPs described in previous sections to study
misspecification. The DGP used in Frölich (2004) is a function of only one
linear covariate. Studying misspecification in the context of the NSW DGP
from the previous section has the potential to conflate the issues of mis-
specification and overlap. We prefer to use a setting where we can focus on
the important issue of misspecification in isolation of other considerations.

29 The upper left and lower right blocks of Σ are given by 1
3

(
1 −1

−1 2

)
.

30 The obvious fifth DGP, which is analogous to the fourth, but with
reversed roles for the selection index and the regression function, shows
similar results to the fourth and is omitted in the interest of space.

31 For the first DGP, the constant in the selection index and the regression
function is 0. For the other DGPs, we set the constant in the selection index
to 0.65, as this maintains an equal ratio of treated to control units across
DGPs.

32 We also computed matching estimators using k = 1, 2, 3 neighbors. To
save space, we decided to report k = 4 (which minimizes the MSE among
most of these estimators). Results for k = 1, 2, 3 are available from the
authors on request.
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interaction terms (“Linear + Interact”). We proceed analo-
gously when specifying the bias adjustment model for the
bias-corrected matching estimator (column 4). All matching
estimators based on covariates are obtained by matching on
the individual elements of Xi.33 The other eight columns of
table 3 report absolute bias and variance estimates for each
of the four DGPs considered.

With this many possibilities for DGPs and for estimator
implementation, it is tedious to keep track of which estima-
tor is well specified. To aid the discussion, we display the
absolute bias and variance estimates in bold if the estimator
in question is well specified in the given DGP and in black
if the estimator is overspecified. We underline the numbers
when the model is misspecified.

Turning to the results, we see several interesting patterns.
First, as expected, whenever the models for the propensity
score or bias adjustment model are well specified, the bias
is small, and, conversely, when there is misspecification, the
bias can be quite large. Overspecification, on the other hand,
does not seem to significantly affect the bias.

Second, in the well-specified case, the most biased estima-
tors are nearest-neighbor matching on the propensity score
with four neighbors and local linear matching. Bias-corrected
matching and reweighting show the lowest biases. In terms
of variance, bias-corrected matching on the covariates and
normalized and GPE reweighting tend to perform best, with
a possible role for local linear matching, which is, however,
rather biased as noted.

Third, consistent with the findings from the NSW design,
the dimensionality of the covariates is not pivotal for the
relative bias of these estimators but does affect the relative
variances somewhat.

Fourth, nearest-neighbor matching on covariates, shown
in the first two rows of table 3, tends to be the most biased
and most variable. This is explained in part because while
reweighting, propensity-score matching estimators, and esti-
mators with a parametric bias adjustment are based on para-
metric estimation techniques, covariate matching estimators
are nonparametric.

Fifth, in the overspecified case, there seems to be little cost
in terms of bias of including additional covariates. Depend-
ing on the DGP, however, including extraneous covariates
can either increase or decrease the variance of the estimators
considered here. Typically, including extraneous covariates
increases the variance, but the opposite is true for the third
DGP considered for several estimators.

Sixth, misspecified estimators have very bad bias, as
expected. Bias-corrected matching is more robust to misspec-
ification than the other estimators we consider, in that correct
specification of either the list of covariates to be matched
on or the regression function suffices for relatively good
performance. Consider, for instance, column (5). All three

33 In all cases, we condition on the four covariates. Conditioning only on
one, two, or three out of the four covariates increases the bias significantly
for all estimators.

reweighting estimators, local linear matching, and nearest-
neighbor matching exhibit bias of about 590, double that
of nearest-neighbor matching on covariates with k = 4
matches. Bias-corrected matching of covariates performs
equal to nearest-neighbor matching on covariates in the case
of a misspecified regression function, but it plainly dom-
inates nearest-neighbor matching on covariates for proper
specification or overspecification of the regression function.
A similar pattern holds for columns 7 and 9. GPE reweight-
ing exhibits the same robustness in the sense that it shows
very small bias if the covariates included in the propen-
sity score model are either those that comprise the selection
index or those that comprise the regression function. Interest-
ingly, however, when GPE is misspecified, it exhibits a bias
roughly twice as large as that of bias-corrected matching on
covariates.

Finally, the last two columns of the table display an inter-
esting property of many of these estimators. If the propensity
score model is misspecified but includes the covariates of
the regression function, then estimators built around the
propensity score tend to perform well in terms of bias. This
pattern is expected for GPE reweighting, as noted, but may
be surprising for the other estimators.

VI. Conclusion

We have presented simulation evidence on the finite sample
properties of a variety of matching and reweighting estima-
tors across several DGPs. We considered three DGPs: those
studied in Frölich (2004) that have a single covariate, a more
empirical DGP based on the NSW data that involves many
covariates, and a third DGP that allows us to address the
effects of misspecification on these estimators.

In broad strokes, nearest-neighbor matching tends to have
small bias, especially with a small number of neighbors, but
it can be rather variable, particularly for data sets where
the outcome is hard to predict. One approach to variance
reduction is to include additional matches. This can lead to
problems with worse covariate balance, especially in the pres-
ence of many covariates. A possible solution to this problem
is bias correction. Bias-corrected matching appears to pro-
vide the researcher with insurance in the sense that even in
the case of a misspecified regression function, the bias is no
worse than with nearest-neighbor matching, but the bias is
dramatically reduced when the regression function is prop-
erly specified. A researcher with a strong distaste for bias is
likely to be interested in bias-corrected matching for these
reasons.

Normalized reweighting also exhibits small bias when the
propensity score model is correctly specified. Moreover while
the bias is usually larger than that of bias-corrected matching,
the variance is usually smaller. As a way of guarding against
the consequences of misspecification, researchers using esti-
mators built around the propensity score should include in the
propensity score model covariates believed to influence the
treatment selection process as well as any covariates believed
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to influence the outcome variable. Doing so provides a type of
insurance against bad bias, but this may come at the expense
of added variance.

In addition to implementation details, the relative perfor-
mance of estimators also depends on specific features of the
DGP in question. Normalized and GPE reweighting perform
well in terms of both bias and variance when strict overlap
is satisfied, but they deteriorate as overlap worsens. Bias-
corrected matching on covariates often has a higher variance
than reweighting when strict overlap is satisfied, but it is less
affected by the degree of overlap. In terms of recommenda-
tions for empirical practice, our results suggest the wisdom
of conducting a small-scale simulation study tailored to the
features of the data at hand. At a minimum, we recommend
that researchers estimating average treatment effects present
results from a variety of approaches, particularly when there
is evidence that overlap is poor.
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