Marx, Strumsky, and Fleming: Mobility, skills and the Michigan non-compete experiment

Discussion: Bronwyn H. Hall UC Berkeley and U of Maastricht

Overview

- Interesting and carefully-done paper, deserving of the prize
- Main result: non-compete agreements reduce the probability that a knowledge worker will move from one firm to another
- Topic is important, and the subsequent paper makes it clear that it matters, in the sense of causing brain drain to states that do not enforce non-competes
- Comments
 - K-sharing equilibria example
 - Using patents to track inventors

Knowledge-sharing equilibria

- Paper cites Rabaut (2006) employers become wary of non-competes – they are both a "hiring shield" and a "hiring sword"
- That is, all may benefit from not having enforceable non-competes, but each individual firm will be tempted to use one if available
- Gambardella and Hall (2006), Research Policy – model of knowledge-sharing equilibria, showing that cooperative equilibrium is not stable in the absence of some kind of enforcement

Gambardella-Hall (2006)

- A model of the interaction between public domain and privatized provision of research outputs (e.g., software, knowledege, etc.)
- Find an equilibrium where there is a fraction of researchers in a field whose discrete contribution to the public good exceeds their private profits
 - They therefore participate in PD
- However, as public domain grows and returns to privatizing increase, incentive for a public domain researcher to switch to private provision increase

Coordination required to preserve the public domain

 Same idea applies here – firms may be better off if all agree not to use non-competes – legislatively enforced

Patents as a measure More than half of inventions/innovations not patented (see Hall et al. 2013 on UK data, Fontana et al. 2013 on R&D 100, many others) Very skewed value distribution, suggesting skewed input cost also Differences pre and post-1985?

- For many inventors, a relatively rare event
 - For some, we observe no patents
 - For others, we observe very few
- Moves identified via patents will therefore be undercounted
- Next 2 slides:
 - Aggregate patent grants by date of application
 - The probability of seeing at least one patent for inventors with different frequencies of discovery

Aggregate US Patent Grants by Year of Application 1965-2000

Simulating the patenting probability

- Model developed for discussion of *Breschi et al* (in forthcoming WIPO volume edited by Fisk and Miguelez)
 - Probability inventor *i* applies for a patent is Posson with parameter λ_i
 - Inventors are heterogeneous, so λ_i is drawn from some suitable distribution (log-normal or Pareto)
 - Probability that inventor moves is a small number, assumed to be the same for all inventors (0.09 pre-1985 and 0.06 post-1985)
 - Inventors are observed over the 1963-2006 period (abstracting from entry and exit)
 - Latham et al. (2006) US inventors average 0.05 patents per year; inventors here average 0.09 patents per year (=3.79/43)
 - Calibrate distribution of λ_i using distribution of inventors in Latham, but use the mean patenting rate from this paper
 - Next slide: a table that compares a simple model of actual moves with those that are observed, in an attempt to assess possible bias

Bias from non-observed data

	Logit coefficient for change in prob(move) after 1985					
	using +/-22 years		using +/-11 years		using +/-5 years	
	Actual (all data)	Observed data	Actual (all data)	Observed data	Actual (all data)	Observed data
D(post-85)	-0.45 (0.01)	-0.68 (0.02)	-0.44 (0.02)	-0.47 (0.03)	-0.44 (0.03)	-0.41 (0.04)
Observations	372,896		182,112		78,048	
Moves	28,212	12,206	13,706	6,542	5,950	2,950

Sample is all inventors with at least one patent.

Conclusions:

- I) Fewer than one half of actual moves are observed
- 2) Estimated effect is biased away from zero only for the longest sample, possibly because there are edge effects
- 3) Results in Marx et al. are probably not much affected by this problem, because they are based on comparisons (DOD)