Of Mice and Academics: Examining the Effect of Openness on Innovation Fiona Murray Philippe Aghion Mathias Dewatripont Julian Koley Scott Stern

Discussion: Bronwyn H. Hall

University of California at Berkeley and University of Maastricht

Context

- Concern that upstream IPR may be counterproductive for research progress
 - E.g., EPFL materials transfer agreements (Aebischer)
- David conflict between norms of open science and IP
 - OS: rewards are reputational, etc., encourage citations
 - IP: rewards are due to right to exclude, which reduces citation activity

 "Optimal" incentives for cumulative innovation

- Give first innovator IP rights
- After costs are sunk, take them away
- That's what happened here not an experiment that can be repeated very often
- But OS incentives (with public funding) deliver the first innovation regardless

Research question

How does openness affect innovation?

- Well-known tradeoff between incentives for first and second generation researchers
- How does this operate in the case of academic biotechnology research?
- Two parts to paper:
 - Use a simple model to derive predictions
 - Test them using a large panel of sci papers and D in D methodology
 - confirmation rather than rejection

Model predictions

- Lowering cost of access to research inputs is expected to
 - Increase quantity of follow-on research
 - At a point in time
 - Over time
 - Increase diversity of follow-on research
 - More researchers
 - Different types of research
 - Increase basic research relative to applied
- Did we need the model to make these predictions? (I am not convinced)

Empirical evidence

- Well-executed and very compelling
 - Relates annual citations received by papers that cite or do not cite mice which have been made open access in 1998.
 - Breaks it down:
 - Cites from new v prior researchers
 - Cites from new v prior institutions
 - Cites with new v prior keywords
 - Cites in new v prior journals
 - Fairly large impacts, all in the right direction

Sample plot

November 2008

Comments and suggestions

- Paper needs more explanation of exactly what was estimated and why
- Discussion of any effects due to avoidance of "visibility"
- Separate trends for the two groups plot?
- To what extent are there false "new" cites due to spelling errors?
 - probably does not affect the D in D
- Identification problem for age, year, fixed paper effects (next slides)

The identification problem

- Want to measure citations as a function of age of the article, publication date (or fixed effect), and time period (current year)
- Well-known that the identity
 - age = year (period)-year of birth(pub. date) implies all 3 cannot be identified in a linear model
- Less well-known that identification can be achieved in a dummy variable model by dropping a small number of variables
 - Berndt and Griliches (*J of Econometrics 1991*)
 - Hall, Mairesse, Turner (*EINT 2007*)

Models

saturated: $\rho_{it} = a_{ct} + \varepsilon_{it}$ threeway: $\rho_{it} = \alpha_c + \beta_t + \gamma_a + \varepsilon_{it}$ twoway: $\rho_{it} = \alpha_c + \beta_t + \varepsilon_{it}$ and so forth....

Saturated model

Pub. Date: Year ↓	1	2	3
10	a _{10,1}	a _{10,2}	a _{10,3}
11	a _{11,1}	a _{11,2}	a _{11,3}
12	a _{12,1}	a _{12,2}	a _{12,3}
13	a _{13,1}	a _{13,2}	a _{13,3}
14	a _{14,1}	a _{14,2}	a _{14,3}

November 2008

REER Atlanta

Identification

- Oneway all dummies are identified (but no intercept)
- Twoway drop one dummy
- Threeway drop two dummies
- Threeway where a = t c:
 - Drop one additional dummy! (Berndt and Griliches 1991)
- How robust are the results to the choice of dummy to drop?

Suggestion for further work

- Belenzon finds positive feedback effects to firm *j* from:
 - pat (firm j) \rightarrow pat (firm i) \rightarrow pat (firm j)
 - In this context, how are second generation cites by original researcher affected?
 - Does he/she benefit more from reverse spillovers?

Wider applicability?

- Publicly funded science
 - Downstream sources of revenue for funding unlikely or remote or highly risky
 - Benefits of diversity high, incentive effects not greatly harmed (since they are mostly reputational)
- Private R&D?
 - IBM's 500 patents