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We develop a forward-looking profit model to estimate the depreciation rates of business R&D capital. 
By using U.S. government data between 1987 and 2007, and the newly developed model, we estimate 
both constant and time-varying industry-specific R&D depreciation rates. The results comprise a set of 
R&D depreciation rates for major U.S. high-tech industries. They align with the main conclusions from 
recent studies that the rates are in general higher than the traditionally assumed 15 percent and vary 
across industries. The relative ranking of the constant R&D depreciation rates among industries is 
consistent with industry observations and the industry-specific time-varying rates are informative about 
the dynamics of technological change and the levels of competition across industries. Lastly, we also 
present a cross-country comparison of the R&D depreciation rates between the U.S. and Japan, and 
find that the results reflect the relative technological competitiveness in key industries.
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1. introduCtion

In an increasingly knowledge-based U.S. economy, measuring intangible 
assets, including research and development (R&D) assets, is critical to obtaining a 
complete picture of the economy and explaining its sources of growth. Corrado et 
al. (2007) pointed out that after 1995 intangible assets reached parity with tangible 
assets as a source of growth. Despite the increasing impact of intangible assets 
on economic growth, it is difficult to capitalize intangible assets in the national 
income and product accounts (NIPAs) and therefore to measure their impacts on 
economic growth. The difficulties arise because the capitalization involves several 
critical but difficult measurement issues. One of these is the measurement of the 
depreciation rate of intangible assets, including R&D assets.

The depreciation rate of R&D assets is required for capitalizing R&D invest-
ments in the NIPAs for two reasons. First, the depreciation rate is needed to construct 
knowledge stocks—it is the only asset-specific element in the commonly adopted 
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user cost formula. This user cost formula is used to calculate the flow of capital ser-
vices (Jorgenson, 1963; Hall and Jorgenson, 1967; Corrado et al., 2007; Aizcorbe et 
al., 2009), which is important for examining how R&D capital affects the productiv-
ity growth of the U.S. economy (Okubo et al., 2006). Second, the depreciation rate 
is required in order to measure the rate of return to R&D (Hall, 2005).

As Griliches (1996) concludes, the measurement of R&D depreciation is the 
central unresolved problem in the measurement of the rate of return to R&D. 
The problem arises from the fact that both the price and output of R&D capital 
are generally unobservable. Additionally, there is no arms-length market for most 
R&D assets and the majority of R&D capital is developed for own use by the firms. 
Therefore it is difficult to independently compute the depreciation rate of R&D 
capital (Corrado et al., 2007; Hall, 2005). Moreover, unlike tangible capital which 
depreciates partly due to physical decay or wear and tear, R&D capital depreciates 
mainly because its contribution to a firm’s profit declines over time. The driving 
forces are obsolescence and competition (Hall, 2005), both of which reflect individ-
ual industry technological and competitive environments. Given that these environ-
ments can vary immensely across industries and over time, the resulting (private) 
R&D depreciation rates should also vary across industries and over time.

In response to these measurement difficulties, previous research has adopted 
four major approaches to calculate R&D depreciation rates: patent renewal, pro-
duction function, amortization, and market valuation (Mead, 2007). As noted 
by Hall et al. (1986) and summarized by Mead (2007), all approaches encounter 
the problem of insufficient variation in R&D spending over time and thus cannot 
separately identify R&D depreciation rates without imposing strong identifying 
assumptions. As discussed in Mead (2007), estimates from amortization models 
(Lev and Sougiannis, 1996; Ballister et al., 2003) are derived from a more general 
set of models that attempt to explain the returns on R&D investment. However, the 
estimates are subject to concerns related to strong assumptions such as an assumed 
relationship between the amortization rate of R&D capital and its earnings, and 
operating income serving as a proxy for R&D benefits (Lev and Sougiannis, 1996).

Given the fact that firms’ propensities to patent vary across industries and 
technology areas, the patent renewal approach cannot capture all innovation activ-
ities (Hall et al., 2014). Moreover, innovations may remain valuable even if  their 
patents have expired, given the other ways in which firms capture returns to R&D 
(Levin et al., 1987). The patent renewal approach also suffers from the failure to 
observe the right hand tail of a very skewed value distribution due to the relatively 
low level of renewal fees. The identification problem can be mitigated by using 
citation-weighted patent data, but there is a truncation bias problem arising due to 
an incomplete observed citation life of patents (Hall et al., 2000).

Using the production function and market value approaches has the advan-
tage of incorporating all R&D rather than just that which is patented. However, 
these approaches generally rely on the assumption that the average realized rate 
of return is the same as the expected rate of return (Hall, 2005). This assumption 
allows one to back out the depreciation rate which makes the two consistent. We 
use a similar approach here, in that we assume a normal rate of return to R&D 
when computing the profit function, although we do not explicitly require it to be 
equal to the realized rate.
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An additional complication is the question of a gestation lag for the output 
of R&D. Most earlier research has failed to deal with the issue of gestation lags 
by treating them as zero or one year to calculate the R&D capital stock (Corrado 
et al., 2007, but see Hall and Hayashi, 1989 for an exception). Because the product 
development life cycle varies across industries, this treatment is questionable for 
R&D assets so we explore the use of a gestation lag here.

This paper introduces a new approach by developing a forward-looking profit 
model that can be used to calculate both constant and time-varying industry-spe-
cific R&D depreciation rates. The model is built on the familiar concept that R&D 
capital depreciates because its contribution to a firm’s profit declines over time. 
Our forward-looking profit model rests on some relatively simple assumptions that 
are plausible given the nature of the data and allows us to estimate R&D depreci-
ation rates by using only data on R&D investment and sales or industry output, 
which is often the only data available to statistical agencies for this purpose.

The model is applied to the Bureau of Economic Analysis (BEA)—the 
National Science Foundation (NSF) industry-level dataset to calculate constant 
R&D depreciation rates for all ten R&D intensive industries identified in BEA’s 
R&D Satellite Account (R&DSA). This dataset contains BEA-NSF NAICS-based 
establishment-level industry output and R&D investments in ten R&D intensive 
industries. The estimates show that the derived R&D depreciation rates are consis-
tent with the conclusion from recent studies that the rates should be higher than 
the traditional assumption (15 percent) and vary across industries. We also apply 
the model to estimate the industry-specific time-varying R&D deprecation rates 
for the ten R&D-intensive industries. The results are in general consistent with 
industry observations on the pace of technological change or reflect the appropri-
ability condition of its intellectual property, although in some cases they are quite 
noisy due to the limited number of observations available.

The remainder of this paper is organized as follows. Section 2 sets out our new 
R&D investment model. Section 3 presents a firm and industry-level data analysis 
that assumes constant depreciation rates over time. Section 4 presents time-varying 
depreciation rates for five selected BEA’s R&D intensive industries. Section 5 pres-
ents the first cross-country comparison of R&D depreciation rates between the 
U.S. and Japan for several key R&D intensive industries, and concluding remarks 
are given in Section 6.

2. ModeL

Our model assumes that business R&D capital depreciates because its con-
tribution to a firm’s profit declines over time. R&D capital generates privately 
appropriable returns; thus, it depreciates when its appropriable return declines 
over time. This assumption ignores any spillover benefits that may continue past 
the life of the R&D assets in generating profits, but is an appropriate assumption 
when measuring the private rate of return to R&D investments. The expected 
R&D depreciation rate is a necessary and important component of a firm’s R&D 
investment model. A profit-maximizing firm will invest in R&D such that the 
expected marginal benefit equals the marginal cost. That is, in each period t, a 
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firm will choose an R&D investment amount to maximize the net present value 
of the expected returns to R&D investment:

where Rt is the R&D investment amount in period t, qt is the sales in period t, I(Rt) 
is the profit rate due to R&D investment, δ is the R&D depreciation rate, and r is 
the cost of capital. The parameter d is the gestation lag and is assumed to be an 
integer which is no less than 0.1 R&D investment in period t will contribute to the 
profits in later periods but at a geometrically declining rate. We assume that the 
sales q for periods later than t grows at a constant growth rate, g. That is, 
qt+j =qt (1+g)

j. This assumption is consistent with the fact that the output of most 
R&D intensive industries grows fairly smoothly over time (See Figure A.1  in 
Supporting Information).

To resolve the issue that the prices of most R&D assets are generally unob-
servable, we define I(R) as a concave function:

with I″(R) < 0, I � (R)=
IΩ

𝜃
exp(

−R

𝜃
)>0, I � (0)=

IΩ

�
, and lim

R→∞I (R)= IΩ. Figure 1 

depicts how the function I gradually increases asymptotically to IΩ with R, the 
current-period R&D investment. This functional form has few parameters but nev-
ertheless shows the desired concavity with respect to R. In this, our approach is 
similar to that adopted by Cohen and Klepper (1996), who show that when there 
are fixed costs to an R&D program and firms have multiple projects, the result-
ing R&D productivity will be heterogeneous across firms and self-selection will 
ensure that the observed productivity of R&D will vary negatively with firm size. 

(1) max
Rt

Et[�t]=−Rt+Et

[
∞∑
j=0

qt+j+d I (Rt)(1−�)j

(1+r)j+d

]

1The paper has defined the gestation lag, d, as how long before the R&D investment starts contrib-
uting the firm’s profit. This definition follows what is defined in the NSF 2010 Business R&D and 
Innovation Survey (BRDIS).

(2) I (R)= IΩ

(
1−exp

[
−R

�

])

Figure 1. The Concavity of I (R)
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Our model incorporates the assumption of diminishing marginal returns to R&D 
investment implied by their assumptions, which is more realistic than the tradi-
tional assumption of constant returns to scale (Griliches, 1996). In addition, the 
model implicitly assumes that innovation is incremental, which is appropriate for 
industry aggregate R&D, most of which is performed by large established firms.

The function I includes a parameter θ that defines the investment scale for 
increases in R&D and acts as a deflator to capture the increasing time trend of 
R&D investment as a component of investment in many industries. The value of 
θ can vary from industry to industry, allowing different R&D investment scales 
for different industries. In Figure A.2, the BEA-NSF industry data show that the 
average R&D investment in most industries increases greatly over a period of two 
decades, and therefore we expect that the investment scale, θ, needed to achieve the 
same increase in profit rate should grow accordingly.

Using this function for the profitability of R&D, the R&D investment model 
becomes the following:

Note that we have assumed that d, r, and δ are known to the firm at time 
t. Because θ varies over time, we model the time-dependent feature of θ by 
�t≡�0 (1+G)

t, where G is the growth rate of θt. To estimate G, we assume that 
the growth pattern of industry’s R&D investment and its R&D investment scale 
are similar and we estimate G by fitting the data for R&D investment to the equa-
tion, Rt=R0 (1+G)

t. This approach is justified by the fact that BEA data on most 
industry R&D grows somewhat smoothly over time (See Figure A.2). Using this 
assumption, Equation (3) becomes:

Assuming profit maximization, the optimal choice of Rt implies the following 
first order condition:

For estimation, we add a disturbance to this equation (reflecting the fact that 
it will not hold identically for all industries in all years) and then estimate θ0 and 
the depreciation rate δ.

(3)

Et[�t]=−Rt+Et

[
∞∑
j=0

qt+j+d I (Rt) (1−�)
j

(1+r)j+d

]

=−Rt+IΩ

[
1−exp

(
−
Rt

�t

)] ∞∑
j=0

Et[qt+j+d ] (1−�)
j

(1+r)j+d

(4) �t=−Rt+IΩ

[
1−exp

(
−

Rt

�0(1+G)t

)]
qt (1+g)

d

(1+r)d−1 (r+�−g+g�)

(5)
��t

�Rt

=−1+exp

[
−Rt

�
0
(1+G)

t

]
⋅

IΩ

�
0
(1+G)

t
⋅

qt(1+g)
d

(1+r)d−1(r+�−g+g�)
=0
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3. estiMation WitH Constant r&d depreCiation rates

As a first step in our empirical analysis, we estimate the time-constant R&D 
depreciation rates based on the industry-level BEA-NSF dataset from 1987 to 
2007. The BEA-NSF data that we use are designed to measure true industry 
aggregates (correcting for such things as firm presence in multiple industries and 
multiple countries, something we are unable to do with Compustat data).2 In 
addition, unlike the Compustat dataset which contains only the data of large 
publicly traded firms, the BEA-NSF data better represent the industry by includ-
ing firms with 5 or more employees.3

The model used for estimation, based on equation (5), is shown below:

where ĝ and Ĝ are estimated using the entire time period. In order to estimate, 
we need to make assumptions about IΩ, r, and d. The value of IΩ can be inferred 
from the BEA annual return rates of all assets for non-financial corporations. As 
Jorgenson and Griliches (1967) argue, in equilibrium the rates of return for all 
assets should be equal to ensure no arbitrage, and so we can use a common rate 
of return for both tangibles and intangibles (such as R&D assets). For simplicity, 
IΩ is set to be the average return rates of all assets for non-financial corporations 
during 1987–2007, which is 8.9 percent. In addition, in equilibrium the rate of 
return should be equal to the cost of capital. Therefore, we use the same value for 
r. Later in the paper we perform a sensitivity analysis using time-varying rates of 
return, based both on the 3 month T-bill rate plus a risk adjustment of 4 per cent 
and on the BEA’s own time-varying rate of return to assets.

We use a 2-year gestation lag d, which is consistent with the finding in Pakes 
and Schankerman (1984) who examined 49 manufacturing firms across industries 
and reported that gestation lags between 1.2 and 2.5 years were appropriate values 
to use (see also Hall and Hayashi, 1989). In addition, according to the recent U.S. 
R&D survey conducted by BEA, Census Bureau and NSF in 2010, the average 
gestation lag is 1.94 years for all industries. 4 We also report estimates using a ges-
tation lag of zero years.

Rt and qt are taken from the data and also used to compute the average growth 
rates of output (G) and of R&D (g), so the only unknown parameters in the equa-
tion are δ and θ0. Given these assumptions, δ and θ0 are estimated by nonlinear 

2See Hall and Long (1999) for a full discussion of the differences between NSF and Compustat 
data.

3The R&D data come from the NSF’s BRDIS. BRDIS is a nationally representative sample of all 
companies with five or more employees in all industries.

(6) �t≡

�
1+ Ĝ

�t

IΩ
�0exp

⎡
⎢⎢⎢⎣

Rt

�0

�
1+ Ĝ

�t
⎤
⎥⎥⎥⎦
−

qt
�
1+ ĝ

�d
(1+r)d−1

�
r+�− ĝ+ ĝ�

�

4The average gestation lag is based on the responses from 6,381 firms across 38 industries in the 
NSF 2010 BRDIS. Based on the NSF survey in 2010, the average gestation lag is 1.94 years for 6,381 
firms across industries. Only 1.35 percent of firms have gestation lags larger than 3 years. The pharma-
ceutical industry, 0.9 percent of the population, has the longest gestation lag, which is 4 years. The 
majority of firms have gestation lags around or less than 2 years.
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least squares (NLLS) and nonlinear generalized method of moments (GMM), 
using equation (6).

3.1. Nonlinear Least Squares Estimates

This section of the paper reports the results of NLLS estimation using our 
dataset. Table 2 shows the estimated industry-specific constant R&D deprecia-
tion rates based on the BEA-NSF establishment-based data. The depreciation 
rates are consistent with most industry observations. For example, the pharma-
ceutical industry has the lowest R&D depreciation rates in both sets of estimates, 
which reflects the long-term nature of pharmaceutical research and the fact that 
R&D resources in pharmaceuticals are more appropriable by the firms that fund 
the R&D than those in other industries due to effective patent protection and 
other entry barriers. Because a higher entry barrier works similarly as patent 
protection, we expect the R&D depreciation rate will be lower (De Rassenfosse 
and Jaffe, 2017). In addition, as mentioned earlier in the paper, two of the main 
drivers of R&D depreciation rates are the industry’s pace of technological prog-
ress and its degree of market competition. Therefore, a higher entry barrier, in 
general, implies a lower degree of market competition, which may drive down 
the industry-level R&D depreciation rate. Compared with the pharmaceutical 
industry, the various ICT sectors have higher R&D depreciation rates, which 
is consistent with industry observations that the ICT industry has adopted 
a higher degree of global outsourcing to source from few global suppliers (Li, 
2008). Module design and efficient global supply chain management has made 
the products introduced in the ICT industry more like commodities, which have 
shorter product life cycles.

Table 1 showed the time-constant R&D depreciation rates estimated by other 
recent studies. Comparing Table 2 with Table 1, we can see several key results from 
this study. First, the estimated industry-specific R&D depreciation rates are consis-
tent with those of recent studies, which indicate that depreciation rates for business 
R&D are likely to vary across industries due to the different competition environ-
ments and paces of technology change. Second, most industries have R&D depre-
ciation rates higher than the traditionally assumed 15 percent that has been the 
benchmark for much of the empirical work (Griliches and Mairesse, 1984; Bernstein 
and Mamuneas, 2006; Corrado et al., 2007; Hall, 2005; Huang and Diewert, 2007; 
Warusawitharana, 2010). Third, the R&D depreciation rate in the scientific 
research and development industry is much higher than that in the pharmaceutical 
industry.5 This is consistent with industry observations that in the past two decades, 
there has been little innovation in the traditional pharmaceutical industry and bio-
pharmaceuticals has faster growth rate of innovation. For example, in 1988, only 5 
proteins from genetically engineered cells had been approved as drugs by the U.S. 
FDA, but the number has skyrocketed to over 125 by the end of 1990s (Colwell, 
2002).

5According to NSF’s BRDIS in 2009, biotech firms account for over 65 percent of R&D invest-
ments in the scientific research and development industry. Other firms related to physical, engineering, 
and life sciences account for around 34.5 percent of R&D investments.
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Among the R&D depreciation rates in the ten analyzed R&D intensive indus-
tries, the values for the aerospace and auto industries are usually large compared to 
those for other industries. For example, the estimated R&D depreciation rate for 
the auto industry is 73.3 percent. This result is not inconsistent with the result of 
the UK’s Office of National Statistics (ONS) survey of the R&D service lives 
(Haltiwanger et al., 2010). The average R&D service life for the auto industry in 
the UK’s ONS survey is 4.3 years, which implies R&D depreciation at a geometric 
declining rate of 40 percent. Note that the response rate of the UK’s ONS survey, 
however, is reported to be low.6

In our formulation of the R&D investment model, there is an implicit tradeoff 
between the assumed ex ante rate of return and the computed depreciation rate. 
Essentially the depreciation rate for private business R&D is determined by the 
competitive environment of the firms that do it, and if  the rate of return turns out 
to be lower than expected, the implication is that the value of the R&D has depre-
ciated. We illustrate this tradeoff by re-estimating our model for the aerospace and 
auto industries with an assumed rate of return to R&D of 1 percent. This is justi-
fied by two facts: First, the U.S. auto industry had negative return rates during the 
data period.7 Second, in its August 2011 report on the Aerospace and Defense 
industrial base assessments, the Office of Technology Evaluation at Department of 
Commerce reports that the industry’s profit margin is around 1 percent and may be 

6In 2011 and 2012, the UK’s ONS conducted two back-to-back surveys on 1701 firms and found a 
median R&D service life of 6 years for all industries. Compared with 2.1 percent in the U.S. similar 
survey in 2010, the two surveys have better response rates at around 43 percent. However, the survey 
result has a very high degree of uncertainty (Ker, 2014; Li, 2014). For example, the average answer dif-
ference from the same correspondent for the same company is 3.9 years and the average difference from 
different correspondents is 4.5 years. The UK’s survey result is consistent with the U.S.’s finding that 
most respondents could not answer questions related to the R&D service lives correctly (Li, 2012). In 
the end, the UK’s ONS adopts 16 percent as the R&D depreciation rate for all industries.

7Private communication with Brian Sliker at BEA, an expert in the return rate of industry assets, 
confirmed this negative trend in the auto industry.

TABLE 2  
nonLinear Least squares estiMates of tHe r&d depreCiation rate

Time period Industry

BEA-NSF Data 1987-2007

Estimate s.e.
Computers and peripheral equipment 36.3% 3.8%
Software 30.8% 0.5%
Pharmaceutical 11.2% 4.8%
Semiconductor 22.6% 3.7%
Aerospace products and parts 33.9% 6.5%
Aerospace products and parts with ROR = 1% 6.3% 0.6%
Communication equipment 19.2% 3.3%
Computer system design 48.9% 7.9%
Motor vehicles, bodies and trailers, and parts 73.3% 2.9%
Motor vehicles, bodies and trailers, and parts, with 

ROR = 1%
11.9% 0.4%

Navigational, measuring, electromedical, and control 
instruments

32.9% 7.4%

Scientific research and development 29.5% 2.6%

Note: Gestation lag is 2 years; assumed interest rate = ex ante rate of return = 8.9%.
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only 10 percent of the performance of high-tech industries in Silicon Valley (United 
States Department of Commerce, 2011).8

Table 2 reports estimates for these two industries that use the lower rates of 
return in italics and they are much lower, around 7–15 percent, confirming our 
intuition about the tradeoff between rates of return and depreciation. It is also 
worth noting that the data quality of R&D expenses in the auto and the aerospace 
industries are poor and the R&D data based on 10-K & 10-Q reports do not cover 
the industry well. For example, in the aerospace industry, some firms clearly report 
their own investment in R&D, but others report R&D expenses that combine fed-
erally funded and company-funded R&D (Hall and Long, 1999).

Table 3 presents the results of a sensitivity analysis for the gestation lag and ex 
ante rate of return. The first two sets of columns compare gestation lags of two 
and zero years.9 In general, the estimated depreciation rates do not differ a great 
deal, and those for the zero lag are slightly higher, except in the software, computer 
system design, and scientific research and development. Interestingly, these three 
sectors are the only service sectors. A possible interpretation of the general result is 
the following: if  the gestation lag is zero rather than two, effectively there is a 
greater stock of R&D over which to spread the same profits, so it must depreciate 
more rapidly to explain the same rate of return. The fact that the service sectors do 
not follow this pattern is somewhat puzzling but is doubtless due to the specific 
trends in R&D and output in those sectors.

The estimates are not sensitive to allowing a variable cost of capital (although 
as we saw earlier, they are sensitive to a change in the overall level. The last two 
sets of columns in Table 3 show results when the cost of capital/rate of return 
is set to (1) the risk free 3-month treasury bill rate plus a risk premium of 4  
percent or (2) BEA’s own measured average rate of return to assets during the year.  
Figure A.3 displays these time series. There is little difference in the estimates across 
these columns. Figure 2 graphs the sensitivity of the estimated depreciation rate of 
R&D assets to the assumed cost of capital for each industry separately. There are 
clear differences across the industries, with autos, computer hardware and services, 
aerospace, and instruments the most sensitive to the assumption, and the other 
sectors much less sensitive.

3.2. Nonlinear GMM

We may be concerned that simultaneity between current output and R&D 
(due to cash flow or demand shocks) could bias estimates of the relation in equa-
tion (6). To check this possibility we estimated the equation using nonlinear 
GMM, choosing lagged values of R&D, output, and the 3-month Treasury bill 
rate as instruments. The choice of instrument variables is based on the assump-
tion that (given a forward-looking profit model) previous R&D investments and 
output are not related to any shocks (ε) to the optimal R&D plan described by 

8After using the new modified model, our new estimate is 29 percent, higher than the rate in Huang 
and Diewert (2007). However, in the later section of cross-country comparison, the estimates between 
the U.S. and Japan in this industry are reasonable. Diewert reports in private communication that they 
found computing the optimal rate in this sector difficult.

9BEA adopts a zero gestation lag, on the grounds that when a firm invests in R&D, the R&D in-
vestment should contribute immediately to the firm’s knowledge stock.
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equation (6). The T-bill rate is included as a proxy for the lagged cost of capital, 
which is similarly unrelated to the shocks.

Table 4 compares the estimates based on nonlinear least squares and nonlin-
ear GMM, both computed with a two-year gestation lag and an expected rate of 
return equal to 8.9 percent. In general, the nonlinear GMM estimates have higher 
standard errors than those associated with the nonlinear least squares estimates, 
although not always. With the exception of the motor vehicle sector, where the esti-
mated depreciation rate is much lower, the estimates are somewhat similar to those 
obtained using nonlinear least squares. The main difference is a much lower vari-
ance in the estimates across the sectors. We also report the results of a test of the 
over-identifying restriction (degrees of freedom equal to two), which passes for all 
the sectors except software, computer system design, and motor vehicles. If  future 
datasets are larger in size and we are able to find better instruments, the nonlinear 
GMM approach might provide a more robust estimation, but for the current data 
these results suggest that the nonlinear least squares estimates are adequate.

4. estiMation WitH tiMe-varying r&d depreCiation rates

Since the technological and competition environments change over time, the 
R&D depreciation rates are expected to vary through the 21 years of data stud-
ied. Therefore, there is a need to calculate industry-specific and time-dependent 
R&D depreciation rates. We use the same industry output and R&D investment 
data from the BEA-NSF dataset. The time-dependent feature of δ was obtained 
by minimizing Equation (6) with subsets of data. Instead of using all years of 

Figure 2. Sensitivity of the depreciation rate of R&D Assets to the Cost of Capital
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data, we performed least squares fitting over a five-year interval each time, with 
a step of 2 years in progression. As a result, the data-model fit is carried out nine 
times for 21 years of data, and each estimated depreciation rate is assigned to the 
center of a time window. The values of d, IΩ, and r are defined in the same manner 
as before. Although there are only 5 data points to estimate the two parameters, 
the estimates generally converged well and the standard error estimates are not 
that large, except in a few cases.

Figure 3 shows the best-fit time-varying R&D depreciation rates for all ten 
industries together with their ± 1 standard errors; the figures are plotted on the 
same scale to facilitate comparison. Based on ± 3 standard errors, we can still see 
that the industries differ in their volatility considerably, with software, pharma-
ceuticals, semiconductors, and scientific R&D being relatively stable, whereas the 
industries strongly affected by hardware-related technical change during this time 
period are much more volatile (e.g. communication equipment and computer sys-
tem design). One concern with these results may be the underlying data: industries 
like semiconductors whose R&D is dominated by very large firms may be some-
what better measured than the communication equipment sector.

Figure 3 also reveals some other facts about the industries we studied. First, 
the pharmaceutical industry has a somewhat declining depreciation pattern. The 
declining deprecation pattern could be either due to a slower pace of technolog-
ical change or a reduced degree of market competition. However, the history of 
technology development in this industry suggests that the driving force is a slower 
pace of technological change. For example, stricter FDA approval guidelines have 
negatively affected the industry’s productivity growth in R&D in recent years. As a 
result, the industry has been experiencing a negative productivity growth in R&D 

TABLE 4  
CoMparing estiMation MetHods

Industry

NLLS NL GMM

Estimate s.e. Estimate s.e. Test#
Computers and peripheral 

equipment
36.3% 3.8% 27.8% 5.5% 0.988

Software 30.8% 0.5% 33.5% 4.8% 0.045*
Pharmaceutical 11.2% 4.8% 14.5% 11.7% 0.908
Semiconductors 22.6% 3.7% 31.3% 6.4% 0.039*
Aerospace products and parts 33.9% 6.5% 26.3% 5.0% 0.260
Communication equipment 19.2% 3.3% 23.9% 18.3% 0.514
Computer system design 48.9% 7.9% 25.1% 12.4% 0.290
Motor vehicles, bodies and trailers, 

and parts
73.3% 2.9% 33.1% 5.0% 0.018**

Navigational, measuring, electro-
medical, & control instruments

32.9% 7.4% 23.2% 11.1% 0.115

Scientific research and 
development

29.5% 2.6% 32.0% 2.0% 0.400

Notes: Assumed gestation lag is two years; interest rate is 8.9%.
Estimates shown are for the depreciation rate and its standard error.
Instruments are R&D and the T-bill rate, lagged once and twice.
#The p-value of a test for overidentifying restrictions is reported in these columns. *, **, *** 
denote significance at 10%, 5%, 1% respectively.
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in recent years. For example, during the period of 1990 to 1999, the FDA approved 
an average of 31 drugs per year, but this number dropped to 24 during the period 
of 2000 to 2009 (Rockoff and Winslow, 2011) and further went down to 21 in 2010 
(Lamattina, 2011). In addition, Bloom et al. (2017) use data from the U.S. Food 
and Drug Administration, and Pharmaceutical Research and Manufacturers of 
America and find that the research productivity in this industry has fallen by a fac-
tor of 11 by 2007 and that the overall decline by 2014 is a factor of 5. However, the 
scientific R&D industry, which contains a large share of biotech firms, has a higher 
level of depreciation rates that has not declined since 1990. This echoes the fact 

Figure 3. Time-varying R&D Depreciation Rates

Es�mated Time-varying Deprecia�on Rate by Sector - BEA-NSF data
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mentioned previously that, in the past two decades, there has been little innovation 
in the traditional pharmaceutical industry and the biopharmaceuticals industry 
has faster growth rate of innovation.

Second, the R&D depreciation rate of the semiconductor industry shows a 
clear declining trend after 2000. This depreciation pattern is consistent with several 
research results. For example, since 2000, the rate of technological change in the 
microprocessor industry has slowed (Flamm, 2007). By combining our depreci-
ation pattern with the evidence of a slower pace of productivity growth in the 
semiconductor industry after 2000 (Jorgenson et al., 2014), we find that our result 
supports Jorgenson’s hypothesis (2001) that the increase in the pace of technologi-
cal change in this sector is positively related to faster productivity growth.

Third, the communication equipment industry had a declining R&D depre-
ciation pattern after early 1990s. It is helpful to recall the result by Hall (2005) 
who shows a pattern of decreasing depreciation for the computers, communication 
equipment, and scientific instrument industries during the period of 1989 to 2003. 
Since Hall’s result is based on the data including two additional high-tech indus-
tries, it is not adequate to directly compare the depreciation patterns between the 
two studies.

Lastly, the R&D depreciation of the software industry also experienced a 
declining trend during the period from early 1990s to early 2000s. The declining 
trend reflects the fact that, compared with the variable technology environment 
during the period from 1980s to early 1990s, the Wintel system provided a more 
stable development environment starting from mid-1990s.10

5. Cross-Country CoMparison: u.s. vs. Japan

The R&D depreciation rate is one of the critical elements in computing 
R&D stock for the analysis of a country’s productivity and economic growth. At 
the present time, however, there is no consistent methodology to estimate indus-
try-specific R&D depreciation rates across countries. When no survey and/or 
research information is available, Eurostat recommends that a single average ser-
vice life of 10 years should be retained (Eurostat, 2012). As a result, many OECD 
countries adopted R&D depreciation rates close to either Eurostat’s recommen-
dation (a 10 year service life corresponds roughly to a geometric depreciation 
rate of 20 percent) or the traditional assumed 15 percent. The lack of variation 
in R&D depreciation rates across countries and across industries implies that 
countries, no matter in technology frontier or not, have a similar pace of techno-
logical progress and degree of market competition across countries. This result 
contradicts existing trade and growth theories.

Our method is an attempt to provide a consistent and reliable way to esti-
mate industry-specific R&D depreciation rates across countries and to enable 
cross-country comparisons. We applied our model to Japanese data on four R&D-
intensive industries: drugs and medicines, electrical machinery, equipment and 

10Wintel is a computer trade industry term for personal computers based on the Intel microproces-
sor and one of the Windows operating systems from Microsoft. The term "PC" has often been used for 
this purpose. https://searchwindowsserver.techtarget.com/definition/Wintel

https://searchwindowsserver.techtarget.com/definition/Wintel
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supplies, information and communication electronic equipment, and transporta-
tion equipment. The estimates were based on a 2-year gestation lag, and the values 
of IΩ and r are assumed to be 0.06, which is the value provided by Japan’s National 
Accounts Department for the rate of return. Table 5 shows the estimated R&D 
depreciation rates for the period 2002–12. The choice of period is dictated by data 
availability limitations.

In general, the estimates in Table 5 are consistent with those in Table 2. 
Unfortunately, the electrical machinery, equipment, and supplies, and information 
and communication electronic equipment industries in Japan are not exactly com-
parable to the U.S. industries, although the results do seem in the same range as 
those for computers and peripheral equipment, communication equipment, semi-
conductor, and navigational, measuring, electro-medical, and control instruments 
industries in the U.S. The arithmetic average depreciation rate for these four cat-
egories of IT hardware in the U.S. is 28 percent, and the average for Japan is 34 
percent. In the case of the U.S., the number is pulled down by the depreciation rate 
in the communication equipment sector, where a few U.S. firms are able to sustain 
relatively high profits.

The U.S. pharmaceutical industry has a lower R&D depreciation rate, imply-
ing that U.S. pharmaceutical firms have a slight technology edge in this field and 
can better appropriate the returns from their investments in R&D assets. This 
result is consistent with the U.S. International Trade Commission’s report on the 
global medical device industry, where it finds that, in terms of technological advan-
tage, the U.S. is ranked first in the world and Japan is a close second (United States 
International Trade Commission, 2007). Second, Japan’s lower R&D depreciation 
rate in the auto industry suggests that Japan has a clear technological edge and 
can better appropriate the return from its investments in R&D in this sector. Note, 
however, that we also show results for the transport equipment sector that use the 
1 percent rate of return we used for the U.S., and in this case the depreciation rate 
for Japan is only slightly lower.

6. ConCLusions

R&D depreciation rates are critical to calculating the rates of return to R&D 
investments and capital service costs, which are important for capitalizing R&D 
investments in the national income accounts. Although important, measuring 

TABLE 5  
estiMates for Japan

Industry Estimate s.e.
(1) Drugs and medicines 16.4% 5.4%
(2) Electrical machinery, equipment, and supplies
(3) Information and communication 38.8% 7.6%
electronic equipment 28.4% 1.3%
(4) Transportation equipment 50.0% 2.0%
(4) Transportation equipment (r = 3%) 26.9% 1.0%

Notes: 1. The estimates are based on a 2-year gestation lag, and an interest rate of 6%. 2. The 
data cover the period 2002 to 2012.
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R&D depreciation rates is extremely difficult because both the price and output 
of R&D capital are generally unobservable.

In this paper, we developed a forward-looking profit model to derive indus-
try-specific R&D depreciation rates. Our model uses only data on R&D and output 
together with some assumptions on the role of R&D in generating profits for the 
firm. This allows us to calculate not only industry-specific constant R&D depreci-
ation rates but also time-varying rates. We used both nonlinear least squares and 
nonlinear GMM to fit the model to the data. Both gave similar results, although 
GMM passed the over-identification test only part of the time and resulted in fairly 
large standard errors. Future work would be useful to find better instruments and 
to improve the quality of the underlying data.

Our research results highlight several promising features of the new for-
ward-looking profit model: First, the derived constant industry-specific R&D 
depreciation rates are consistent with the conclusions from recent studies that 
depreciation rates for business R&D are likely to be more variable due to differ-
ent competition environments across industries and higher than traditional 15 
percent assumption (Hall, 2005; Bernstein and Mamuneas, 2006; Corrado et al., 
2007; Huang and Diewert, 2007; Warusawitharana, 2010). Second, the time-vary-
ing results capture the heterogeneous nature of industry environments in technol-
ogy and competition. Third, our method provides a consistent way to perform 
cross-country comparisons of R&D depreciation rates, which can inform coun-
tries’ relative paces of technological progress and technological environments as 
exemplified in the U.S.-Japan comparison.

Note that when capitalizing R&D investments into the U.S. national accounts, 
BEA adopts the concept that failed research projects also generate useful knowl-
edge, so all R&D is included in R&D capital, not just successful R&D. Moreover, 
as mentioned earlier, the main drivers of R&D depreciation rates are the industry’s 
pace of technological progress and the degree of market competition. To under-
stand whether the failure of a research project affects the firm-level R&D depre-
ciation rate, Li (2015) studied U.S. high-tech industries and found that, in each 
industry, the R&D depreciation rates of market leaders were lower than those of 
market followers. This pattern is present in all U.S. high-tech industries, a result 
consistent with the resource based theory (Barney, 1991) in that market leaders can 
better maintain the value of their assets than their followers. The resource based 
theory tells us that, if  a firm has a better competitive advantage in any resources, 
such as R&D assets and organizational capital, the firm is more capable of main-
taining the value of its assets in those areas. That is, a leading firm in technology 
will enjoy a smaller (private) depreciation rate of its technology than its follower. 
The industry level data we use here aggregates over both leaders and followers.

While this study provides the first complete set of industry-specific business 
R&D depreciation rates for all ten R&D intensive industries identified in BEA’s 
R&D Satellite Account, future research can make improvements in several areas. 
First, current estimation uses nominal R&D and output data. When the indus-
try-specific price index of R&D assets becomes available, we can improve the esti-
mates by explicitly incorporating the price level change. Second, the current model 
assumes the decision maker has perfect foresight. Future research can relax this 
assumption by including uncertainty in the model. Third, the current model 
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assumes decreasing marginal returns to R&D investments and that innovations are 
incremental. This seems appropriate when dealing with National Income Account 
data. However, future research could explore these two assumptions and poten-
tially modify the model to be applicable to the industry with increasing marginal 
returns to R&D investments and drastic innovations. Fourth, the current model 
assumes that the growth rate of θ is equal to that of R&D investment, but this 
assumption could be relaxed if  better data are available for the proper estimation 
of the growth (or decline) of R&D productivity.11

Lastly, it has been argued that other intangible assets, such as organizational 
capital, can also contribute to a firm’s productivity growth (Lev and Radhakrishnan, 
2005; Corrado et al., 2009; Eisfeldt and Papanikolaou, 2013). It should be noted 
that intangibles other than R&D and software are not included in national 
accounts, and measuring intangible assets, including resolving the critical issue of 
data availability, is still a topic of active research. As to the investment timing of 
R&D assets and organizational capital, as reported in Lev and Radhakrishnan 
(2005), market leaders tend to invest more in R&D assets and organizational cap-
ital in a recession period. Following Lev and Radhakrishnan (2005) and Eisfeldt 
and Papanikolaou (2013), Li (2016) and Li et al. (2018) use the selling and general 
administrative (SG&A) expenditure as a proxy for the investment in organizational 
capital, and they applied the same methodology to estimating the depreciation of 
organizational capital across all high-tech industries. The estimated depreciation 
rates of organizational capital are very different from those of R&D assets not 
only at the firm level but also at the industry level. In general, the firm-level and 
industry-level depreciation rates of organizational capital are found to be much 
smaller than those of R&D assets, implying that changes in profitability due to 
competition in the market are not the main drivers. Future work can enrich the 
model to allow the flows of other types of tangible and intangible investments and 
the interactions between the investments, especially when the data is available.
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