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 ABSTRACT 

This paper presents the results of a Monte Carlo study that compares the small sample 

performance of various unit root tests in short panels using simulated data that mimic the time 

series and cross sectional properties of commonly used firm level variables. Our conclusion is 

that in the presence of firm-level heteroskedasticity two methods are preferred, depending on the 

nature of the preferred alternative: the simplest method based on the ordinary least squares 

regression of the variable under consideration on its own lag and a version with a more complex 

alternative hypothesis suggested by Im, Pesaran, and Shin. The paper also reports the results of 

using these tests for sales, employment, investment, R&D and cash-flow in three panels of large 

French, Japanese and US manufacturing firms. In most cases our data reject the presence of a 

unit root in favor of a first order autoregressive model with a very high autoregressive 

coefficient, so high that fixed effects are of negligible additional importance in the model. 

We are grateful to Karim Abadir, Stephen Bond, Andrew Chesher, Hugo Kruiniger and 

Neil Shepard for helpful comments on earlier versions of this paper. The paper has also 

benefited greatly from remarks and useful suggestions from James Stock and two referees. 

Keywords: panel data, unit roots, investment, R&D, firm data, international comparisons 
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 Testing for Unit Roots in Panel Data: 

 An Exploration Using Real and Simulated Data 

Bronwyn H. Hall and Jacques Mairesse 

1 Introduction 

In this paper, we investigate the properties of several unit root tests in short panel data 

models using simulated data that look like the data typically encountered in studies on firm 

behavior. This investigation arose from a previous exploration of a simple question: could we 

find a simple parsimonious model that accounts for the time series properties of key observable 

variables characterizing the behavior of individual firms: sales, employment, investment, R&D, 

and cash flow or profits in France, Japan and the United states.1 We started from a fairly general 

autoregressive model in the spirit of Holtz-Eakin, Newey, and Rosen (1988) where the 

heterogeneity across firms is accounted by an individual-specific intercept or firm fixed effect 

and a firm-specific variance of the random disturbance. We proceeded in estimation by using the 

GMM methodology. Our estimates, however, were both imprecise and suggestive of the 

presence of finite sample bias.2 We therefore investigated the properties of our estimator using 

two very simple but quite different data generating processes that approximated our data fairly 

well (random walk vs. fixed effect with no autoregression) and concluded that the first step in 

                                                 

1 This exploration (see Hall and Mairesse, 2001) was itself a follow up on Hall, Mairesse, Branstetter and 

Crepon (1999). 

2 These estimates are documented in Hall and Mairesse (2001). 
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constructing a parsimonious univariate model for such data should probably be a test for 

stationarity, because the presence of a unit root will invalidate the commonly used GMM 

specification.3 

Testing for stationarity in panel data models is also per se a matter of interest and it can 

be more directly motivated. It seems fairly intuitive that, within the general class of models 

where heterogeneity is restricted to an individual fixed effect, the times series behavior of an 

individual variable should often be well approximated either as an autoregressive process with a 

small positive coefficient and large fixed effects or as an autoregressive process with a near-unit 

root and negligible individual fixed effects. Both alternatives can be nested in a single model, in 

which the test of the former against the latter is a panel data unit root test. One expects, however, 

that such test might not perform well in a short panel, owing in particular to the problem of 

unobserved initial conditions and incidental parameter estimation. Trying to assess the properties 

of the available tests in a realistic setting is therefore of practical importance. 

In recent years the econometrics literature has proposed a number of tests for unit roots in 

panel data. We confine our attention to the six of them that are valid when the number T of time 

periods (years in our case) is small and the number N of individuals (firms in our case) is large, 

that is that are consistent when T is fixed and N→∞.4 We describe these six tests in detail in 

section 2 of the paper. They vary in several dimensions: 1) the degree of heterogeneity across 

                                                 

3 For a more complete discussion of the problems with GMM estimation when the data are nearly 

nonstationary, see Blundell and Bond (1998). 

4 We have omitted all the tests that rely on the T→∞ assumption for validity, because such tests are 

inappropriate for the usual data on firms. See Quah (1994) and Levin and Lin (1993) for examples of these kinds of 

tests. The six tests we consider are those that are appropriate for the fixed T, large N case, and were known to us as 

of the time of writing (2001). 
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individuals that is allowed for; 2) serial correlation, heteroskedasticity, and robustness to non-

normality; and 3) whether they follow the Wald, likelihood ratio, or Lagrange Multiplier (LM) 

testing principles (see Table 1). All of them treat the presence of a unit root, implying 

nonstationarity, as the null hypothesis, and the absence of unit root, or stationarity, as the 

alternative hypothesis. 

The first test we will consider is based on CMLE (conditional maximum likelihood 

estimation) and is the most restrictive in terms of the assumptions necessary for validity. Then 

comes the HT (Harris-Tzavalis) test, which is based on bias-adjusted least squares dummy 

variable (LSDV) or within estimation and therefore allows non-normality but not 

heteroskedasticity.5 We also consider a version of CMLE suggested by Kruiniger (1999b) which 

allows for heteroskedasticity across units and time separately and is slightly more general than 

H-T. The next test, which we will label OLS, allows for heteroskedasticity and non-normality, 

and takes a very different approach by viewing the panel data regression as a system of T year 

regressions. It is based on the fact that ordinary least squares is a consistent estimator for the 

model with a lagged dependent variable and no fixed effects.6 The IPS (Im-Pesaran-Shin) test is 

the last one we consider. It also takes a different approach from the foregoing, in that it views the 

panel data regression as a system of N individual regressions and is based on the combination of 

independent Dickey-Fuller tests for these N regressions. Besides allowing heteroskedasticity, 

                                                 

5 In fact, if we interpret the CMLE as a quasi-likelihood method, using it to construct a test is no more or 

less restrictive than the HT test. Both require homoskedasticity but not normality, and in principle, either one could 

be modified to yield a test robust to heteroskedasticity, as we do in the case of CML estimation. 

6 This test is implicit in early work by Macurdy (1985). It was suggested to us by Steve Bond (see Bond, 

Nauges, and Windmeijer, 2002). 
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serial correlation, and non-normality, this test also allows for heterogeneity of trends and of the 

lag coefficient under the alternative hypothesis of no unit root. 

In the paper, we present the results of a Monte Carlo study that compares the small 

sample performance of these tests using simulated data mimicking the time series and cross 

sectional properties of the firm sales, employment, investment, R&D, and cash flow variables in 

three panel data samples for French, Japanese and US manufacturing firms. The design and 

calibration of the simulations, which are based on the most persistent of these series, the R&D in 

the US, is explained in section 3. The results of the eight different Monte Carlo experiments are 

presented in section 4. Our tentative conclusion is that the simplest method, the OLS test based 

on the ordinary least squares regression of the variable considered on its own lag, may actually 

be the best for micro-data panels similar to ours. The OLS estimator is unbiased under the null of 

a unit root (when the fixed effect vanishes) and its estimated standard error can easily be 

corrected for both serial correlation and heteroskedasticity of the disturbances. 

In section 5, we also report the results of using all six tests for the five variables in our 

three samples. In most cases our data reject nonstationarity in favor of stationarity, but with a 

very high autoregressive coefficient, so high that it is not necessary to include fixed effects in the 

model. We very briefly conclude in section 6. 
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2 Testing for Unit Roots in Panel Data: an Overview 

The most general form of the model considered in this paper can be written as follows:  
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That is, we consider the possibility of either an autoregressive model with a fixed effect or a 

random walk with drift. In both cases, we allow for individual and time-varying 

heteroskedasticity of a proportional form in addition. In some cases, the various tests described 

below are valid only for more restrictive versions of the model in equation (1). 

Table 1 provides a schematic view of the various unit root tests we consider and the 

assumptions under which they are valid. All the tests assume conditional independence across 

the units, and all except the OLS test allow for individual-specific means in estimation. The 

CMLE, IPS, and OLS tests can potentially accommodate a flexible correlation structure among 

the disturbances, as long as it is the same for all units. However, in this paper we have assumed 

throughout that the disturbances are serially uncorrelated (in the presence of the lagged 

dependent variable) and constructed our tests accordingly. With the possible exception of the 

investment and cash flow series, this assumption is satisfied by our real data series.12 In the text 

that follows, we indicate how to modify the tests to accommodate serial correlation.  

                                                 

12 The autocorrelograms of the level and first-differenced series are shown in Figures 1 and 2 of Appendix 

B. The autocorrelation of the first differences at lag one is less than 0.25 for most of the series. For our “model” 

series, U.S. log R&D, the autocorrelation is -0.04. 
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The estimators associated with these tests allow for various degrees of heterogeneity in 

addition to the individual-specific means. In particular, all of them except the Harris-Tzavalis 

test and the homoskedastic version of the CMLE test allow the variance of the disturbances to be 

different for each unit.13 The IPS tests, which are based on N individual regressions, allow both 

the trend and the serial correlation coefficient to vary across the units under the alternative, in 

addition to the mean and variance. We now describe the tests in somewhat more detail.  

2.1 Maximum Likelihood Methods with Homoskedastic Errors 

Lancaster and Lindenhovius (1996), Kruiniger (1999b), and Binder, Hsiao, and Pesaran 

(2000) have independently pointed out that the conditional maximum likelihood estimate of the 

linear model with individual effects and a lagged dependent variable is well-identified and 

consistent even when there is a unit root, that is, even when the coefficient is one, although this 

value is on the boundary of the parameter space. This fact can be used to construct a likelihood 

ratio test of ρ =1 versus ρ <1.14 

The model to be estimated is the one given in equation (1), but with homoskedastic 

disturbances and without the time trend:15   

                                                 

13 The H-T test could probably be modified to accommodate heteroskedasticity also, but the version we use 

here does not.  

14 The consistency result is of considerable interest in its own right because the corresponding least squares 

(LSDV) estimator is neither consistent (as N→∞ ,T fixed) nor unbiased when ρ = 1. Appendix C contains a table of 

results for the OLS-levels, LSDV, and first-differenced OLS and IV for our simulated data. Except for level 

estimates of the models with no effects, the estimates are very far away from the true values.  

15 For simplicity of presentation, we omit the overall time trend in the presentation that follows. In practice, 

we removed year-specific means from the data before estimation.  
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The null hypothesis is ρ = 1 and therefore no fixed effects. If we denote the vector of T 

observations for an individual as yi = (yi1, yi2, …, yiT) and similarly for ui and yi,-1, we can write 

this model in vector form as   
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or, in differenced form,   

 i iDy Du=  (4) 

Given normal disturbances, Dyi has the joint normal distribution with mean zero and 

variance-covariance matrix Σ = σε2DVρD’ = σε2Φ and the joint log likelihood for this model is 

the following:16   
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16 Higher order serial correlation of the disturbances can be allowed for by assuming that uit follows an 

autoregressive model with a unit root and an order p<T and deriving the appropriate Vρ matrix that corresponds to 

this model.  
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Kruiniger (1999b) gives conditions under which maximizing this likelihood over the 

parameter space (ρ, σε2) ∈ (-1, 1] × (0, ∞) will yield consistent estimates.17 Under those 

conditions, a conventional t-test for ρ = 1 is a test for a unit root. Alternatively, one could 

construct a likelihood ratio test by comparing the likelihood evaluated at its unconstrained 

maximum with the likelihood evaluated at ρ = 1.18 

2.2 Maximum Likelihood Methods with Heteroskedastic Errors 

A common feature of data on firms, even in logarithms, is that the variances of the errors 

vary across firms, which implies that estimation using methods assuming homoskedasticity is 

likely to produce wrong standard errors, at the least.19 Consider the following variation of (2), 

which omits the trend:    

                                                 

17 Basically, he requires stationarity if ρ < 1 and boundedness of the initial condition if ρ = 1. Also note that 

one cannot evaluate this likelihood as written if ρ = 1. See Kruiniger for details of the form of the likelihood when 

there is a unit root; that version collapses to the random walk model under that condition. 

18 Lancaster and Lindenhovius (1996) took a slightly different approach, using the same model and 

likelihood, but considering the Bayesian estimator with a flat prior on the effects (which drops out due to the 

differencing) and a prior of 1/σ for σ. This yields the joint marginal posterior density  

 2 1

1
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2 2 2
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it i i
i

N T Np y Dy Dyρ σ π σ −

=

−
= − − − Σ − Σ∑   

The mode of this density is consistent for ρ and σ as N→∞. They do not consider the case ρ = 1. In practice, we 

found that evaluating the mode of this posterior gave essentially the same answer as the CMLE for samples of our 

size, so we do not report simulation results for this test. 

19 In fact, this is one of the several reasons why researchers often prefer methods based on the GMM 

methodology. 
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At first glance, it might appear that estimation of such a model using maximum likelihood 

methods would lead to an incidental parameter problem due to the fact that the number of firm 

level parameters σi
2 grows with the sample size N. However, Kruiniger (1999b) shows that 

maximum likelihood estimation of the structural parameters (ρ, σt
2, t=1,.., T) of this model is 

consistent. The likelihood function for this model is given by   
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where   

 '        and        ( )tDPV PD P diagρ σΦ = =  (8) 

Thus Φ depends only on the structural parameters ρ and {σt
2}. Given values for these parameters, 

it is clear that the maximum likelihood estimate of the individual-specific variances has the usual 

form:   

 2 11 ( )       where       ( ) '
1i i i i itr Z Z Dy Dy

T
σ −= Φ =

−
 (9) 

We use this fact to concentrate the 2
iσ , i=1,…,N out of the likelihood function, which greatly 

simplifies estimation. See Appendix A for details of the estimation procedure. 

2.3 Harris-Tzavalis Test 

The test for unit roots in panel data proposed by Harris and Tzavalis (1999) begins with 

the observation that the “Nickell” bias in the estimated coefficient of the lagged endogenous 

variable using LSDV (within) estimation is of known magnitude under some simple assumptions 

about the data generating process. Using this fact, one can compute bias adjustments to both the 
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estimated coefficient and its standard error analytically and use the corrected estimates to 

construct a test of known size for a unit root. 

H-T consider the model in equation (2) and show that under the null hypothesis that ρ = 

1, the least squares dummy variable estimator has a limiting normal distribution of the following 

form:   

 2 2( 1 ) (0, )N B N Cρ − − →  (10) 

where B2 = -3/(T+1) and C2 = 3(17T 2- 20T + 17)/[5(T-1)(T+1)3]. Using this fact, it is 

straightforward to base a t-test on the estimated ρ, standardized by its mean and variance. Like 

the CMLE test, this test requires homoskedasticity and no serial correlation in the disturbances, 

although because it is based on a least squares estimator, it does not require normality.20 

2.4 OLS - pooled estimation under the null 

Bond, Nauges, and Windmeijer (2001) suggest that a test based on the model estimated 

under the null of a unit root (that is, where OLS can be used because there are no “fixed effects”) 

may have more power when the true ρ is near unity. The advantage of such a test is that it does 

not require bias adjustment and it is easy to allow for heteroskedasticity by using a seemingly 

unrelated regression framework with each year being an equation.21 Because there are no 

                                                 

20 Neither normality nor homoskedasticity are required for the test based on the CMLE to be consistent 

either, although if these assumptions fail the conventional standard error estimates will be inconsistent and a 

''sandwich'' estimator should be used. 

21 As in the well-known Dickey-Fuller test, if the disturbances are serially correlated, it will be necessary to 

include enough lagged values of the differenced y in the regression to render the disturbances uncorrelated in order 

to achieve consistency of the estimator.   
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incidental parameters under the null, asymptotics in the N dimension are straightforward and the 

test relies on those. 

We base our OLS test on the following model:      

 , 1        1,..., ; 1,...,
[ ']
it t i t it

i i

y y i N t T
E

δ ρ ε

ε ε
−= + + = =

= Ω
 (11) 

where εi = (εi1 εi2, …, εiT ). The method of estimation is seemingly unrelated regression with a 

weighting matrix based on the first stage estimate of Ω.22 Although the estimation method 

assumes homoskedasticity, we report standard errors that are robust to heteroskedasticity across 

the firms. 

2.5 The IPS Method 

Recent work by Im, Pesaran, and Shin (1997, hereafter IPS) suggests another approach 

for testing for unit roots, one that allows for more heterogeneity of behavior than that allowed for 

by the conditional maximum likelihood or least squares dummy variable approach. They assume 

a heterogeneous version of the model in equation (1):   

 , 1(1 )           1,..., ; 1,...,it i i i i t ity y i N t Tρ α ρ ε−= − + + = =  (12) 

where initial values yi0 are given, and they test for the null hypothesis that ρi is unity for all 

observations versus an alternative that some of the ρis are less than one. Under the null, there is 

no fixed effect, while under the alternative, each fixed effect is equal to (1-ρi) αi. They propose 

tests based on the average over the individual units of a Lagrange-multiplier test of the 

                                                 

22 As discussed earlier, we have assumed a diagonal form for Ω. If the εs are serially correlated within 

individuals, lagged values of the differenced y’s should be added to the model until the residuals are approximately 

uncorrelated, as in the augmented Dickey-Fuller test.  
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hypothesis that ρi = 1 as well as tests based on the average of the augmented Dickey-Fuller 

statistics, which they find to have somewhat better finite sample properties than the L-M test. 

As in Dickey and Fuller's original work, IPS also propose tests based on a model with a 

deterministic trend:   

 , 1(1 ) (1 )           1,..., ; 1,...,it i i i i i i t ity t y i N t Tρ α ρ δ ρ ε−= − + − + + = =  (13) 

We will use both these tests for our data, since there is reason to believe that trends do exist in 

the real series. Note that an important difference between these models and the models 

considered in the previous sections is that both the lag coefficient and the trend coefficient are 

allowed to differ across firms under the alternative hypothesis of stationarity. 

When we applied these tests to our simulated data, we found that allowing the data to 

choose the length of augmenting lag p invariably yielded a p of either 2 or 3, even though the 

data were in all cases generated from models where p = 0 was appropriate.23 Because of this fact 

and the fact that the table of critical values supplied by IPS breaks down for the case where the 

number of observations is around 10 and the length of the augmenting lag is greater than zero, 

we chose to focus on the tests where p = 0 is imposed. This makes our IPS test comparable to the 

others reported in this paper, which do not allow for serial correlation in the disturbances. 

                                                 

23 Previous versions of this paper reported the results of tests using p = 2 and/or p = 3 on our simulated 

data and concluded that they had low power and were inaccurate even when we increased the number of time series 

observations per firm to 20, especially when p = 3 was the ''optimal'' choice of augmenting lag. 
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3 Design and Calibration of Simulations 

In Section 5 of the paper we apply the panel data unit root tests to five firm-level 

variables drawn from three countries: employment, sales, cash flow, investment and R&D in the 

France, Japan and the United States. In our previous explorations using these data, we found that 

the process which describes each of the variables is more similar across countries than across 

variables, and that the variables can be clearly ranked by their long run “persistence”: sales, 

employment, and R&D on the one hand versus cash flow and investment on the other. The 

behavior of the latter variables most resembled that of a stationary process.  

Figures 1 and 2 in Appendix B display the autocorrelograms of the levels and first 

differences of our series for the 3 countries. These confirm the high autocorrelation in levels and 

the low autocorrelation in differences that characterize these data. They also show that the series 

most likely to exhibit the properties of a random walk is the log R&D series for all three 

countries, which has essentially zero autocorrelation at all lags in first differences. Therefore, we 

chose to investigate the performance of these tests on simulated data calibrated to match the time 

series and cross-sectional characteristics of the log R&D series for the United States.24 

The general form of model or data generation process (DGP) that we use in our 

simulations is the model in equation (1) with and without heteroskedasticity across individuals 

and no heteroskedasticity over time.25 We considered eight cases: the two extreme cases of a 

                                                 

24 The details of the construction of our datasets and the results of GMM estimation using these data are 

given in Hall et al (1999) and Hall and Mairesse (2001).  

25 In estimation, we removed year means before performing any of the tests. For fixed T, this makes no 

difference to the asymptotic properties of the tests. As shown by Binder et al. (2000), when T is fixed, allowing for 
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random walk with drift ( 1it it it itity y yδ ε δ ε−= + + ⇒ ∆ = + ) and a pure fixed effects process 

( it i it it ity t yα δ ε δ ε= + + ⇒ ∆ = + ∆ ), and the six intermediate cases of a dynamic panel with or 

without fixed effects, taking ρ = 0.3, 0.9, and 0.99 and allowing αi to vary across all individual 

units or imposing it to be the same for all of them. For each of these eight DGPs, we also 

consider both a homoskedastic version with 2 ( )  iεσ constant across the units, and a 

heteroskedastic one with 2 ( )  iεσ varying across the units. 

Except for the random walk case, when constructing the DGPs we ensured that the 

resulting process satisfied covariance stationarity, in order to guarantee the consistency of the 

maximum likelihood estimators.26 The exact calibration of the DGPs we used was derived from 

the first and second moments of the log R&D series and its first differences, as described below. 

The values of these moments were the following: 

 
[ ] 2.50        [ ] .085
[ ] 4.599      [ ] .0672

E y E y
V y V y

= ∆ =
= ∆ =

 (14) 

The necessary parameters are δ, ρ, µα, σε2, and σα2. Conditional on αi (or unconditional, 

because it is differenced out), we have the following two equations: 
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time-specific effects in estimation has no effect on the estimates of the other parameters so that these effects may be 

removed from the observed series before estimation.  

26  This stationary version of the dynamic panel model with fixed effects is denoted as Model I by Nickell 

(1981) and Lancaster (1997). 
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Given a value for ρ and the moments of our data, these equations give values of δ and σε2. Once 

we have values for δ, ρ, and σε2, to obtain the mean and variance of the distribution of the αis, we 

use the moments of the series in levels: 

 2
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Values of the parameters derived from the moment estimators specified by equations (15) 

and (16) are used to generate the simulated data as follows: 
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 (17) 

where N(µ,σ2) denotes the normal distribution with mean µ and variance σ2. It is straightforward 

to show that the processes generated according to these DGPs are mean and covariance 

stationary as long as |ρ|<1.27 The AR(1) models without individual-specific effects are  

generated simply by assuming that σα2 = 0.28  

For the non-stationary random walk case, we used the following four equations to 

determine the parameters δ, σε2, µ0, and σ0
2: 

                                                 

27 For the “fixed effect” model, covariance stationarity is ensured by requiring the covariance of the initial 

condition yi0 and the individual-specific effect αi to be σα2. 

28 In this case it was not possible to reproduce the first two moments of the level and differenced series 

exactly, due to the fact that we were simulating a process that did not match our real data series that well. In all the 

other cases, the first two moments exactly identified the parameters needed. 
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and generated the process using this model: 
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In the heteroskedastic case, we allowed the variance of the shock ε to vary across firms. 

Inspection of the data revealed that a lognormal distribution of this variance was appropriate and 

the DGP we used was the following: 
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4 Results of Simulations 

Table 2a reports the results of simulations designed to explore the behavior of the t-test 

and likelihood ratio test based on CML estimates.29 The likelihood function used is given in 

equation (5) and the null hypothesis is that ρ = 1. As described earlier, the data used for the 

simulation were generated by processes whose first and second moments were chosen to match 

                                                 

29 Estimating this model by maximum likelihood requires computation using the T-1 by T-1 variance-

covariance matrix, which is perhaps why the CMLE method has not been used much in the literature. We 

implemented the estimator as an MLPROC in TSP 4.5 and found it to be fairly well-behaved, converging in 5 or 6 

iterations if a good estimate of  σ2 (one based on the actual data) was used as a starting value along with a positive ρ. 

The TSP code is available as an example at http://www.tspintl.com. 
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those of the log of real R&D for the United States. The table has two panels, one for data 

generated with homoskedastic disturbances and one for data generated with firm-specific 

variances as described in equation (20). 

The first column of each panel gives the average value of ρ and its standard deviation that 

was estimated by CMLE. In both cases (homoskedastic and heteroskedastic), these are fairly 

close to the true value, with a hint of downward bias for very large values of ρ. The next two 

columns give the average t-statistic for the hypothesis that ρ = 1, its standard deviation, and the 

size or power of the test as measured by the number of rejections at the 5% level of significance. 

The two columns following give the average likelihood ratio statistic for the same hypothesis and 

its size or power. It is clear from the table that both tests have approximately the correct size and 

considerable power when applied to homoskedastic data, except when the autoregressive 

coefficient is near unity (equal to 0.99). Note that when the true ρ is at or near unity, occasionally 

estimation using the simulated data will converge to the boundary of the parameter space, that is, 

ρ =1. In this case, we consider the hypothesis to be accepted, but we record the probability that 

this happens in the table (about 25 per cent of the time for the random walk, and about 10 per 

cent of the time for ρ = 0.99). 

The final 4 columns of the table repeat the same exercise, but this time using data that 

were simulated to have the heteroskedasticity visible in our empirical series. The results are 

similar, with the following two exceptions: The sizes of the tests are slightly too large and the 

power against the alternative with fixed effects and ρ = 0.99 is actually slightly greater (note that 

this test is not size-adjusted). Both results are presumably due to the same fact: introducing some 

heterogeneity into the process reduces the probability of accepting the very restrictive null model 

if we impose homoskedasticity where it does not exist.  
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Table 2b reports the results of testing the hypothesis that ρ =1 using the CML estimator 

that allows for heteroskedasticity on data generated by the same homoskedastic and 

heteroskedastic processes as were used for Table 2a. The results are similar, except that the size 

of the test is now much too large and its corresponding power against large ρ alternatives much 

greater. Also, the t-test on ρ now gives a result that is quite different from the likelihood ratio test 

in the large ρ case. It appears that estimating the individual variances leads to results that bias the 

estimated ρ downwards in samples of our size, in spite of the consistency result of Kruiniger.  

 The first panel of Table 3 shows the results of applying the H-T test for a unit root to our 

simulated data. Not surprisingly, the results are very similar to those for the homoskedastic 

CMLE, with good power except when ρ is near unity, and too large a size when applied to 

heteroskedastic data. Thus when N is large and T small, it makes little difference to the result 

whether we use the inconsistent LSDV estimator and bias-adjust the answer, or the consistent 

CMLE estimator, which does not require bias adjusting. The underlying model was the same in 

both cases, and both require homogeneity of the coefficients and variances under the null and the 

alternative.  

The next test considered is the pooled OLS test, which relaxes the assumptions of 

constant variance across time and individuals. The results of this test conducted on our simulated 

data are shown in the final columns of Table 3. The size of the test is approximately correct for 

both homoskedastic and heteroskedastic data, and the power is considerably better than for the 

Harris-Tzavalis or CMLE tests when ρ is near one. In spite of this fact, but not surprisingly, the 

estimates of ρ are severely biased towards one when the data are generated under an alternative 

with a fixed firm effect. This test does almost as well on heteroskedastic data as on 
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homoskedastic, reflecting the fact that both the estimator and the standard error estimates are 

consistent under the null in both cases.  

The results of conducting the IPS test with and without individual-specific trends, but 

with a zero augmenting lag imposed are shown in Table 4. The statistic shown is the average of 

an augmented Dickey-Fuller statistic for the N unit root tests on the individual series, together 

with empirical size or power of the test, based on critical values given in the tables of the IPS 

paper. We present results for a model both with and without a firm-specific time trend; all results 

are for data with a single cross-sectional mean removed in each year (that is, a full set of time 

dummies), as suggested by IPS and as was done for the other tests considered in this paper. 

Because our simulated data have no time trend, we expect that removal of these means will make 

the two tests (with and without allowing for a time trend) equivalent. However, due to the small 

sample of time periods available, requiring estimation of another parameter (the trend) could be 

somewhat costly in terms of degrees of freedom and may reduce the power of the test for 

samples of our size. 

The results using the simulated data confirm this: the test without a trend has more power 

to discriminate between a random walk and a fixed effect plus AR(1) model than that with a 

trend. In the latter case, the size is too large, and the power against an alternative with ρ = 0.9 

considerably weaker, whether or not there are also fixed effects in the model. Not surprisingly, 

the results are similar for the simulated heteroskedastic data. Because the IPS test is based on 

individual-level Dickey-Fuller tests, it allows for firm-level heterogeneity in variances, so adding 

this feature to the data generating process has only a limited effect on the results of the tests. 

In Table 5 we present a summary of our results from these various tests. The first three 

columns contain results from the tests that are invalid when there is firm-level heteroskedasticity 
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and last five columns results from those tests that remain valid in that case. We note first that the 

size of the former group of tests is larger than the theoretical value in the presence of the kind of 

heteroskedasticity displayed by our data, implying that these tests for a unit root will reject the 

null too often. In addition, all the tests have very low power against a near-unit root 

autoregressive model with fixed effects; recall that in this case, the fixed effect itself is 

multiplied by (1-ρ) and therefore very small, so this result is not that surprising.      

Most of the other tests have good size properties, with the exception of the conditional 

maximum likelihood estimates that allow for firm-specific heteroskedasticity. The most likely 

reason for the problems with the t-test based on the CML-HS estimates is that our standard error 

estimates are conventional and it is necessary to use a “sandwich” estimator here; see Kruiniger 

(1999b). The empirical standard error for the results in Table 2b was approximately 25-50% 

greater than the estimated standard error.  However, we note also that our estimate of ρ does 

seem to be slightly downward biased in this case (see Table 2b), in spite of the fact that it is 

consistent, which implies that the rate of asymptotic convergence may be slow.     

Restricting attention to the tests with the correct size that are robust to heteroskedasticity, 

we are left with the OLS test and the IPS test without a trend. The results of these tests differ 

significantly, in that the OLS test has by far the greater power against near-unit root alternatives, 

whether or not there is a fixed effect. The difference in power is doubtless due to the difference 

in alternative hypotheses, in that the OLS test considers ρ = 1 versus a single value of ρ < 1 for 

all individuals, whereas the IPS test considers ρ = 1 for all individuals versus ρ < 1 for at least 

one individual. Our simulated alternatives were all closer to the former model than the latter, so 

it is not surprising that the test does better in this case.  
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5 Results of Unit Root Tests for Observed Data 

We now turn to our results for the observed data; details on the construction of these 

datasets and their characteristics are given in Hall et al (1999).30 Table 6 reports the results of the 

tests for unit roots on the real data, highlighting the tests which reject nonstationarity at the 5 

percent level in bold. The H-T test, which assumes homogenous time series processes that have 

no residual serial correlation beyond the first lag give essentially the same result as the IPS test 

without a trend: sales and employment are nonstationary and the remaining series are stationary, 

except for R&D in the United States. The IPS test with a trend is somewhat more likely to find a 

unit root, but as we have seen, the power of this test is low when the first order serial correlation 

is high.  

The final two columns show one of our preferred tests for these data, the OLS test. 

Unlike the others, this test, which we saw to have more power against the alternative of 

stationarity with a very high autocorrelation coefficient, rejects nonstationarity in all cases except 

sales and employment in Japan. The estimated AR(1) coefficients are very high, so it is not 

surprising that we encountered difficulties with the tests that allow for the presence of fixed 

effects. Using the estimated values of  ρ-1, we conducted a small analysis of variance on these 15 

numbers which showed that the coefficients for U. S. and Japan could not be distinguished, while 

those for France were slightly more negative (implying lower serial correlation). The most 

significant differences were between investment and cash flow on the one hand and sales, 

                                                 

30 A description may also be found in an unpublished appendix to this paper, available at 

http://emlab.berkeley.edu/users/bhhall/index.html. 
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employment, and R&D on the other, with the latter having a differenced coefficient of almost 

zero, as we saw in Figures 1 and 2. 

Table 7 shows the results for the tests based on the two different CML estimates. Those 

based on the homoskedastic estimator give results very similar to the H-T test, as they should, 

since they rely on the same set of assumptions about the DGP. As in the earlier table, these 

results clearly reject non-stationarity for investment and cash flow, and for R&D in France and 

Japan. However, almost all of the real series reject the presence of a unit root when the 

heteroskedastic version of the CMLE is used. We suspect that some of the rejection may be due 

to the fact that both the coefficient and the standard error estimates seem to be systematically 

biased downward for samples of our size. Finally we note that a likelihood ratio test for 

constancy of variances clearly rejects in all cases.31 

6 Conclusions 

We began this investigation with the question of whether it was possible to distinguish 

between a model with a unit root or a model with a fixed effect and low order serial correlation 

when describing univariate time series data. Our principal conclusion is that the preferred model 

for our data is neither; rather it is a model with an extremely high serial correlation coefficient, 

but one that is less than one.  

                                                 

31 Strictly speaking, this test is not valid asymptotically, since it is a test based on a number of parameters 

that grows at the same rate as the sample. We report it mainly as a heuristic indicator of the large difference 

allowing for heteroskedasticity makes to the likelihood. 
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With respect to the menu of unit root tests for fixed T samples, we have learned several 

things: The first conclusion from our simulation study of unit root tests is that the pooled OLS 

test and the IPS test have good power against most alternatives, although results from these tests 

differ when the alternative includes a coefficient near unity, primarily because they consider two 

quite different alternatives. Second, CML estimation is surprisingly easy to perform, even in the 

presence of heteroskedasticity, and may be a useful addition to the panel data arsenal, even if it is 

not as robust as simple OLS for the very particular problem of unit root testing. Further 

investigation should explore the reasons for finite sample bias in the heteroskedastic version of 

the CML estimator.  

Substantively, we concluded that a very simple autoregressive model with a coefficient 

on the lag dependent variable that is near unity is a more parsimonious description of our data 

than a model with fixed effects. In Table 5, we observed that the only test with power against the 

ρ = 0.99 alternative was the OLS test, and in Table 6, this is the only test that rejects non-

stationarity in favor of stationarity with a very large auto-regressive coefficient for almost all the 

real series. An alternative interpretation of this result is possible: the OLS test may be 

inappropriate because the proper alternative is heterogeneous serial correlation across the firms, 

implying that the IPS test is more appropriate. We have favored the former conclusion, not 

because we do not believe in heterogeneity of this kind, but because the more parsimonious 

model seems to describe the data fairly well, and because when serial correlation is this high, 

whether homogeneous or heterogeneous, the presence or absence of fixed effects is of little 

import, since they are necessarily quite small. 

This fact leads us to a somewhat more controversial view that short panels of firm data 

are better described as having highly varied and persistent initial conditions rather than 
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permanent unobserved firm effects. This feature of the data has been described by some as “not-

so-fixed” firm effects. We would prefer to shift the emphasis in our modeling towards the idea 

that firm level differences are better captured by the initial condition, with the apparent 

“permanence” of differences being ascribed to very high serial correlation rather than to some 

left-out unobserved and permanent difference. We believe that this view of the firm is closer to 

the reality of firm evolution.  

With our results in mind, some future research questions suggest themselves. First is the 

possibility of testing for the presence of firm-specific drifts or trends. It is certainly feasible to 

construct a CMLE of the doubly-differenced model in order to test for these, although the data 

may not have enough power for estimation. Second, given the near unit root behavior of the 

series, it may be of interest to examine their cointegrating properties. Mairesse, Hall, and Mulkay 

(1999) have already shown that a well-behaved error-correcting version of an investment 

equation can be constructed using data to ours, which implies that sales and capital stock are co-

integrated and move together in the “long run”. The possible interpretive significance of such a 

result is to unify the commonly observed differences between cross sectional and time series 

estimates based on panel data into a single model.  
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Testing
Test principle Description Assumptions** across i across t**

CMLE Wald, LR
Conditional Maximum 
Likelihood (t and LR tests) 

independence across i, 
homoskedasticity, normality* means variances

CMLE-HS Wald, LR
Conditional Maximum 
Likelihhod (t and LR tests) independence across i, normality* means; variances variances

H-T Wald 
Bias and variance-corrected 
LSDV test

independence across i, 
homoskedasticity, no serial correlation means none

OLS LM
Pooled OLS (SUR) regression 
with T equations independence across i variances variances

IPS Wald
Average of individual Dickey-
Fuller tests without trend independence across i

means, rho, 
variances none

IPS-trend Wald
Average of individual Dickey-
Fuller tests with trend independence across i

means, rho, trend, 
variances none

**The CMLE, SUR, and IPS tests can all be modified to allow for autocorrelation of the disturbances, as long as it is constant across individuals. However, the 
implementation in this paper assumes no serial correlation.

Heterogeneity  

*Could be interpreted as a quasi-maximum-likelihood estimator. 

TABLE 1
Panel Data Unit Root Tests - Summary

Page 30
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TABLE 2a

Testing for Nonstationarity using CML Estimator - Simulated Data

T=12; N=200
Estimation Method
DGP

Time series process 
for DGP

Estimated 
rho (s.d.)

Average 
t-statistic on 

rho (s.d.)

Empirical 
probability of 

rejection 
(#=1.0)**

Average
Likelihood 
Ratio Test

Empirical 
probability of 

rejection 
(#=1.0)**

Estimated rho 
(s.d.)

Average 
t-statistic on 

rho (s.d.)

Empirical 
probability of 

rejection 
(#=1.0)**

Average
Likelihood 
Ratio Test

Empirical 
probability of 

rejection 
(#=1.0)**

Random walk 0.992 (.012) -0.53 (0.65) 0.060 (0.23) 0.53 (1.17) 0.028 (0.23) 0.984 (.023) -0.81 (1.05) 0.14 (0.24) 1.29 (2.95) 0.10

AR(1) with r=0.3 0.298 (.025) -29.2 (1.0) 1.000 563.3 (33.5) 1.000 0.264 (.043) -29.1 (1.0) 1.00 560.7 (24.2) 1.00

AR(1) with r=0.9 0.899 (.021) -4.82 (0.95) 0.999 22.3 (8.1) 1.000 0.900 (.022) -4.83 (1.00) 1.00 22.5 (34.9) 1.00

AR(1) with r=0.99 0.986 (.016) -0.83 (0.78) 0.145 (0.12) 1.13 (1.88) 0.090 (0.12) 0.984 (.017) -0.82 (0.86) 0.16 (0.07) 1.39 (2.50) 0.10

Fixed effect -0.002 (.024) -42.6 (1.2) 1.000 1031.6 (45.1) 1.000 -0.002 (.039) -42.6 (2.0) 1.00 1031.5 (72.1) 1.00

AR(1) FE, r=0.3 0.300 (.024) -29.1 (1.0) 1.000 560.8 (32.5) 1.000 0.305 (.046) -28.9 (2.0) 1.00 554.0 (63.4) 1.00

AR(1) FE, r=0.9 0.900 (.021) -4.79 (0.94) 1.000 22.6 (8.2) 1.000 0.890 (.039) -5.24 (1.69) 0.96 27.0 (14.8) 0.96

AR(1) FE, r=0.99 0.986 (.014) -0.78 (0.72) 0.123 (0.11) 1.00 (1.57) 0.063 (0.11) 0.979 (.025) -1.29 (1.26) 0.28 (0.18) 2.57 (4.38) 0.23

In the first row, the column labeled size or power is the size of a one-tailed t-test for rho<1 with nominal size 0.05.

   In the other rows, it is the empirical probability of rejection by such a test. 

The model estimated is   y(i,t) = a(i) + a(t) + rho y(i,t-1) + e(i,t).

    The method of estimation is Conditional Maximum Likelihood (fixed effects conditioned out).

**The fraction that converged to exactly rho=1.00 is given in parentheses, when it is nonzero.

Conditional ML with homoskedastic variance
Homoskedastic variance (1000 draws)

Conditional ML with homoskedastic variance
Heteroskedastic variance (100 draws)

Page 31
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TABLE 2b

Testing for Nonstationarity using CML-HS Estimator - Simulated Data

T=12; N=200

Estimation Method Conditional ML with Heteroskedasticity Conditional ML with Heteroskedasticity
DGP Homoskedastic variance (100 draws) Heteroskedastic variance (25 draws)

Time series process 
for DGP

Estimated 
rho (s.d.)

Average 
t-statistic on 

rho (s.d.)

Empirical 
probability of 

rejection 
(#=1.0)**

Average
Likelihood 
Ratio Test

Empirical 
probability of 

rejection 
(#=1.0)**

Estimated rho 
(s.d.)

Average 
t-statistic on 

rho (s.d.)

Empirical 
probability of 

rejection 
(#=1.0)**

Average
Likelihood 
Ratio Test

Empirical 
probability of 

rejection 
(#=1.0)**

Random walk 0.987 (.016) -1.15 (0.73) 0.120 6.65 (5.28) 0.720 0.989 (.009) -0.97 (0.55) 0.16 7.76 (3.93) 0.88

AR(1) with r=0.3 0.299 (.025) -26.4 (1.0) 1.000 515.4 (30.3) 1.000 0.290 (.023) -26.8 (1.0) 1.00 525.8 (29.9) 1.00

AR(1) with r=0.9 0.925 (.031) -2.94 (1.05) 0.960 20.6 (9.5) 0.960 0.921 (.031) -3.33 (1.24) 0.88 21.1 (8.0) 1.00

AR(1) with r=0.99 0.982 (.016) -1.33 (1.74) 0.320 6.33 (3.87) 0.720 0.986 (.011) -1.03 (0.54) 0.12 5.21 (5.09) 0.52

Fixed effect -0.006 (.025) -39.3 (1.2) 1.000 954.1 (46.3) 1.000 -0.003 (.028) -39.1 (1.4) 1.00 950.2 (49.8) 1.00

AR(1) FE, r=0.3 0.307 (.032) -26.2 (1.3) 1.000 508.2 (39.6) 1.000 0.399 (.027) -26.5 (1.2) 1.00 517.3 (33.0) 1.00

AR(1) FE, r=0.9 0.908 (.030) -3.75 (1.25) 0.960 19.2 (8.9) 0.960 0.912 (.036) -3.54 (1.39) 0.88 20.7 (8.0) 0.96

AR(1) FE, r=0.99 0.984 (.013) -1.07 (0.56) 0.200 4.59 (6.00) 0.560 0.985 (.018) -1.12 (0.67) 0.16 7.62 (5.14) 0.84

In the first row, the column labeled size or power is the size of a one-tailed t-test for rho<1 with nominal size 0.05.

   In the other rows, it is the empirical probability of rejection by such a test. 

The model estimated is   y(i,t) = a(i) + a(t) + rho y(i,t-1) + e(i,t).

    The method of estimation is Conditional Maximum Likelihood (fixed effects and variances conditioned out).

**The fraction that converged to exactly rho=1.00 is given in parentheses, when it is nonzero.
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TABLE 3

Testing for Nonstationarity - Simulated Data

T=12; N=200; 1000 Draws per Simulation
Harris-Tzavalis Method** Harris-Tzavalis Method**

DGP Homoskedastic errors Heteroskedastic errors

Time series 
process for DGP

Average 
t-statistic on rho 

(s.d.)

Empirical 
probability 
of rejection

Average 
t-statistic on rho 

(s.d.)

Empirical 
probability 
of rejection

Estimate of rho 
(s.d.)

Average 
t-statistic on rho 

(s.d.)

Empirical 
probability 
of rejection

Estimate of rho 
(s.d.)

Average 
t-statistic on rho 

(s.d.)

Empirical 
probability 
of rejection

Random walk -0.004 (1.03) 0.055 -0.16 (1.87) 0.210 1.000 (.003) 0.002 (1.09) 0.060 1.000 (.005) -0.01 (1.04) 0.056

AR(1) with r=0.3 -32.0 (1.3) 1.000 -31.98 (2.18) 1.000 0.298 (.022) -35.9 (2.3) 1.000 0.298 (.022) -35.8 (2.3) 1.000

AR(1) with r=0.9 -4.00 (1.07) 0.987 -4.00 (1.04) 0.990 0.900 (.010) -11.2 (1.2) 1.000 0.899 (.010) -11.3 (1.3) 1.000

AR(1) with r=0.99 -0.45 (1.02) 0.113 -0.43 (1.00) 0.111 0.990 (.003) -3.41 (1.08) 0.963 0.990 (.003) -3.49 (1.13) 0.953

Fixed effect -47.0 (1.2) 1.000 -46.87 (2.21) 1.000 0.999 (.001) 1.82 (1.11) 0.558 0.982 (.006) -6.63 (0.71) 1.000

AR(1) FE, r=0.3 -31.9 (1.2) 1.000 -31.949 (2.29) 1.000 0.999 (.001) -1.69 (1.11) 0.516 0.989 (.003) -5.21 (0.90) 0.999

AR(1) FE, r=0.9 -3.97  (1.07) 0.990 -4.12 (1.88) 0.909 0.995 (.002) -2.41 (1.09) 0.771 0.997 (.002) -1.94 (1.04) 0.610

AR(1) FE, r=0.99 -0.40 (1.01) 0.106 -0.46 (1.79) 0.240 0.993 (.0003) -2.93 (1.07) 0.891 1.000 (.001) -0.77 (1.06) 0.207

In the first row, the column labeled size or power is the size of a one-tailed t-test for rho<1 with nominal size 0.05.

   In the other rows, it is the empirical probability of rejection by such a test. 

**The model estimated is   y(i,t) = a(i) + a(t) + rho y(i,t-1) + e(i,t).

    The method of estimation is ordinary least squares (within or LSDV). 

***The model estimated is   y(i,t) = a(t) + rho y(i,t-1) + e(i,t).

    The method of estimation is seemingly unrelated regression, allowing for correlation across time.

Pooled OLS without Fixed Effects***

Homoskedastic errors

Pooled OLS w/o Fixed Effects***

Heteroskedastic errors
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DGP disturbances

Data Generating 
Process

Average 
t-statistic 

on rho

Std. dev. 
of 

t-statistic

Empirical 
probability 
of rejection

Average 
t-statistic 

on rho

Std. dev. 
of 

t-statistic

Empirical 
probability 
of rejection

Average 
t-statistic 

on rho

Std. dev. 
of 

t-statistic

Empirical 
probability 
of rejection

Average 
t-statistic 

on rho

Std. dev. 
of 

t-statistic

Empirical 
probability 
of rejection

Random walk -0.09 1.05 0.05 -0.22 1.06 0.07 -0.10 1.12 0.11 -0.12 1.15 0.09

AR(1) with r=0.3 -41.15 1.13 1.00 -41.15 1.17 1.00 -23.97 1.21 1.00 -23.96 1.24 1.00

AR(1) with r=0.9 -4.90 1.10 1.00 -4.86 1.22 0.99 -0.77 1.06 0.21 -0.92 1.11 0.23

AR(1) with r=0.99 -0.68 1.14 0.19 -0.73 1.17 0.19 -0.39 1.30 0.18 -0.22 1.23 0.12

Fixed effect -67.84 1.40 1.00 -67.74 1.26 1.00 -46.46 1.47 1.00 -46.35 -1.38 1.00

AR(1) FE, r=0.3 -41.00 1.06 1.00 -41.03 1.16 1.00 -23.88 1.20 1.00 -23.77 1.19 1.00

AR(1) FE, r=0.9 -4.74 1.02 1.00 -4.97 1.12 1.00 -1.04 1.20 0.27 -0.88 0.99 0.24

AR(1) FE, r=0.99 -0.49 1.07 0.14 -0.62 1.05 0.19 -0.36 1.10 0.10 -0.31 1.13 0.10

In the first row, the column labeled size or power is the size of a one-tailed t-test for rho<1 with nominal size 0.05.

   In the other rows, it is the empirical probability of rejection by such a test. 

Homoskedastic Heteroskedastic Homoskedastic Heteroskedastic 

TABLE 4
Testing for Nonstationarity - Simulated Data

T=12; N=200; 100 Draws per Simulation

IPS Test (no trend, augmenting lags=0) IPS Test (trend, augmenting lags=0)
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Time series 
process for DGP CMLE t-test

CMLE 
LR-test H-T Test

CML-HS 
t-test

CML-HS 
LR-test

Pooled 
OLS Test

IPS Test 
(no trend)

IPS Test 
(trend)

Random walk 0.06 0.04 0.06 0.12 0.72 0.06 0.05 0.11

AR(1) with r=0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AR(1) with r=0.9 0.99 1.00 0.99 0.96 0.96 1.00 1.00 0.21

AR(1) with r=0.99 0.15 0.09 0.11 0.32 0.72 0.96 0.19 0.18

Fixed effect 1.00 1.00 1.00 1.00 1.00 0.56 1.00 1.00

AR(1) FE, r=0.3 1.00 1.00 1.00 1.00 1.00 0.52 1.00 1.00

AR(1) FE, r=0.9 1.00 1.00 0.99 0.96 0.96 0.77 1.00 0.27

AR(1) FE, r=0.99 0.12 0.07 0.11 0.32 0.56 0.89 0.14 0.10

Random walk 0.14 0.10 0.21 0.16 0.88 0.06 0.07 0.09

AR(1) with r=0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AR(1) with r=0.9 1.00 1.00 0.99 0.88 1.00 1.00 0.99 0.23

AR(1) with r=0.99 0.16 0.10 0.11 0.12 0.52 0.95 0.19 0.12

Fixed effect 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AR(1) FE, r=0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AR(1) FE, r=0.9 0.96 0.96 0.91 0.88 0.96 0.61 1.00 0.24

AR(1) FE, r=0.99 0.28 0.23 0.24 0.16 0.84 0.21 0.19 0.10

Figures in bold deviate from the correct size by 0.05 or more, or have power less than 0.50.

Empirical Probability of Rejection - Panel Data Unit Root Tests
TABLE 5

Heteroskedastic Data

Homoskedastic Data

Invalid under Heteroskedasticity Allows for Heteroskedasticity
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TABLE 6
Estimation and Testing with Normality and Homoskedasticity

Scientific Sector Firms
Harris-Tzavalis Test IPS Tests Pooled OLS Estimates

Column (1) (2) (3) (4) (5) (6)

AR (1) Coeff. Normal Test
No trend 
(p-value)

With trend 
(p-value) AR (1) Coeff

T-test 
(p-value)

Sales   

    U.S. .819 (.012) .069 (.018) 1.31 (.904) 2.73 (.997) .9925 (.0020) -3.69 (.000)**

    France .758 (.017) .008 (.020) -.10 (.460) 2.10 (.982) .9923 (.0024) -3.19 (.001)**

    Japan .811 (.013) .061 (.012) 2.17 (.985) 3.13 (.999) .9956 (.0025) -1.76 (.040)

R&D     

    U.S. .749 (.014) -.001 (.018) 5.27 (.999) 6.68 (.999) .9916 (.0028) -2.98 (.002)**

    France .648 (.019) -.102 (.020)** -1.93 (.027)** 0.33 (.629) .9903 (.0031) -3.13 (.001)**

    Japan .644 (.015) -.106 (.012)** -1.72 (.043)** 2.25 (.988) .9869 (.0029) -4.49 (.000)**

Investment

    U.S. .454 (.020) -.296 (.018)** -5.96 (.000)*** -2.81 (.002)*** .9877 (.0029) -4.22 (.000)**

    France .405 (.023) -.245 (.020)** -5.24 (.000)*** -3.99 (.000)*** .9519 (.0055) -8.79 (.000)**

    Japan .344 (.020) -.406 (.012)** -9.13 (.000)*** -4.49 (.000)*** .9682 (.0049) -6.55 (.000)**

Employment

    U.S. .828 (.012) .078 (.018) 4.16 (.999) 2.25 (.988) .9903 (.0023) -4.15 (.000)**

    France .890 (.014) .140 (.020) 6.89 (.999) 1.81 (.965) .9849 (.0024) -6.32 (.000)**

    Japan .863 (.010) .113 (.012) 4.59 (.999) 7.94 (.999) .9983 (.0015) -1.09 (.138)

Cash flow

    U.S. .576 (.020) -.174 (.018)** -.86 (.194) -.18 (.427) .9874 (.0028) -4.39 (.000)**

    France .235 (.024) -.515 (.020)** -9.92 (.000)*** -8.41 (.000)*** .9480 (.0088) -5.89 (.000)**

    Japan .468 (.018) -.282 (.012)** -2.57 (.005)*** 3.12 (.999) .9896 (.0030) -3.43 (.000)**

(1) the estimated coefficient of the lag dependent variable in a regression with fixed effects. These estimates contain "Nickell" bias.

(2) the same coefficient corrected for bias and standardized by the SEE under the null (see Harris and Tzavalis for details). 

    *,** denote lower tail significance at the 0.05, 0.01 level respectively.

(3) IPS tests are conducted with year means removed from the data, using a zero augmenting lag.

(5) the AR1 coefficient estimated using SUR; standard error robust to HS and serial correlation.

(6) the SUR t-statistic for rho=0, robust to heteroskedasticity and serial correlation. 

 ** denotes lower tail significance at the .01 level.

Bold cells are those that reject a unit root at the 5% level of significance (conventional, not adjusted for true size).
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TABLE 7
CML Estimation and Testing with Homoskedasticity and Heteroskedasticity

Scientific Sector Firms
CMLE Estimates
(Kruiniger 1999)

CMLE Estimates
with Heteroskedastic errors

Test for 
Heteroskedasticity

Column (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Variable         
(Country) AR (1) Coeff

LR Test 
(p-value)

Variance 
Estimate

Log 
Likelihood AR (1) Coeff

LR Test 
(p-value)

Mean of 
Variance Est.

Log 
Likelihood

Log 
Likelihood P-value (DF)

Sales  

    U.S. >=1.000 0.0 (1.000) .0272 (.0008) 861.7 0.9969 (.0007)** 50.4 (.000) 0.0316 1603.5 1483.5 0.000 (214)

    France .998 (.020) 0.01 (0.938) .0201 (.0007) 917.8 0.9700 (.0114)** --- 0.0235 1414.8 994.1 0.000 (166)

    Japan >=1.000 0.0 (1.000) .0152 (.0005) 1481.0 0.9984 (.0006)** 80.3 (.000) 0.0167 2199.8 1437.6 0.000 (231)

R&D   

    U.S. >=1.000 0.0 (1.000) .0668 (.0020) -148.3 0.9951 (.0023)** 74.7 (.000) 0.0777 866.9 2030.3 0.000 (214)

    France .903 (.025)** 14.2 (.000) .0658 (.0022) -92.9 0.9641 (.0152)** 9.9 (.002) 0.0697 498.2 1182.4 0.000 (166)

    Japan .901 (.021)** 21.5 (.000) .0152 (.0034) -720.7 0.9611 (.0081)** 41.93 (.000) 0.1291 237.3 1916.0 0.000 (231)

Investment

    U.S. .643 (.024)** 173.7 (.000) .313 (.009) -1794.1 0.720 (.028)** 94.2 (.000) 0.3239 -1294.9 998.6 0.000 (214)

    France .574 (.027)** 186.2 (.000) .362 (.012) -1470.1 0.581 (.031)** 157.8 (.000) 0.3417 -1197.0 546.1 0.000 (166)

    Japan .516 (.024)** 279.2 (.000) .287 (.009) -1608.7 0.506 (.028)** 251.0 (.000) 0.2549 -1224.4 768.6 0.000 (231)

Employment

    U.S. >=1.000 0.0 (1.000) .0265 (.0008) 888.6 0.9973 (.0025) 48.7 (.000) 0.0298 1696.3 1615.3 0.000 (214)

    France >=1.000 0.0 (1.000) .0113 (.0004) 1413.6 0.9982 (.0004)** 107.0 (.000) 0.0075 2281.6 1736.0 0.000 (166)

    Japan >=1.000 0.0 (1.000) .0031 (.0001) 3227.2 0.9990 (.0003)** 210.6 (.000) 0.0034 4222.5 1990.6 0.000 (231)

Cash flow

    U.S. .863 (.026)** 25.9 (.000) .1178 (.0038) -656.1 0.997 (.004) 8.3 (.004) 0.1003 112.0 1536.2 0.000 (184)

    France .453 (.034)** 180.7 (.000) .3055 (.0123) -927.4 0.517 (.037)** 104.5 (.000) 0.5441 -476.1 902.6 0.000 (114)

    Japan .784 (.023)** 73.2 (.000) .0769 (.0023) -262.6 0.995 (.004) 78.3 (.000) 0.0753 486.7 1498.5 0.000 (210)
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Notes to Table 7

(1) the AR1 coefficient estimated using ML conditioned on the effects (individual means removed).

(3) the estimated variance of the disturbance corresponding to the estimate in (1).

(5) the AR1 coefficient estimated using ML conditioned on the effects and with Var(e) = sig(I)sig(t).

(7) the average of the estimated variances across the firms, with sig(t=1) normalized at unity.

(9) the likelihood ratio test for the heteroskedastic variances with degrees of freedom = (N+T-2).

Bold cells are tests that reject a unit root at the 5% level of significance (conventional, not adjusted for true size).

   Note that the standard errors for the CML-HS estimates are conventional, and therefore incorrect.
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  Appendix A: CML Estimation with heteroskedasticity 

In this appendix we describe the computational implementation of the conditional 

maximum likelihood estimation with heteroskedasticity.32 The likelihood function we wish to 

maximize is the following: 

2 2 2 1
2

1 1

( 1) ( 1) 1log ( ,{ },{ };{ }) log(2 ) log( ) log | | ( ) '
2 2 2 2

N N

i t it i i i
i i i

T T NL y Dy Dyρ σ σ π σ
σ

−

= =

− −
= − − − Φ − Φ∑ ∑  

where Φ is a T-1 by T-1 matrix that contains powers of ρ and the parameters given by σt
2, 

t=2,…,T:33 

 '       and       ( )tDPV PD P diagρ σΦ = =  

Thus evaluating the likelihood involves manipulation of matrices of order of the number 

of time periods. To do this easily, we make use of the MLPROC procedure in TSP Version 4.5. 

MLPROC takes a procedure that defines a log likelihood function as the output of a sequence of 

commands and maximizes the value returned by the procedure with respect to the chosen 

parameters, via repeated calling of the procedure to evaluate the function and its derivatives 

(numerically). 

To simplify the computation of the likelihood as much as possible, we make use of the 

fact that estimators for σi
2, i = 1,...,N can be obtained from the first order condition given values 

for ρ and the σt
2 and concentrate these parameters out of the likelihood function:   

                                                 

32 The homoskedastic version is an obvious simplification of the algorithm described here. 

33 Note that the parameterization requires one normalization on the σi
2 or σt

2 in much the same way that 

including a second set of dummies in an equation requires an additional exclusion restriction. Our normalization is 

σt
2 = 1 for t = 1. 
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1

1 1( ) ' [ ]
( 1) ( 1

N

i i i i
i

Dy Dy trace Z
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σ − −

=

= Φ = Φ
− −∑  

where   

 
1

( ) '        and        ( ) '
N

i i i i
i

Z Dy Dy Z Z Dy Dy
=

= = =∑  

is the covariance matrix of the first differenced ys. As is well-known, when it is possible to 

concentrate the likelihood, the standard error estimates for the remaining parameters (ρ and σt
2, 

t=2,…,T  in this case) are not affected by this procedure. 

The algorithm is therefore the following:    

1. Given values for ρ and σt
2, t = 1,...,T, compute estimates of σi

2.    

2. Use these estimates to compute the value of the likelihood using the following 

expression:   

2 2 2 2

1

( 1) ( 1)log ( ,{ };{ }) log(2 1) log( [ ,{ }]) log | [ ,{ }] |
2 2 2

N

t it i t t
i

N T T NL yρ σ π σ ρ σ ρ σ
=

− −
= − + − − Φ∑

 

3. Iterate on 1 and 2 in the usual way, using a gradient method to maximize the likelihood 

with respect to ρ and σt
2. 
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Appendix B: Autocorrelograms of the data 
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 Figure B1 

 Autocorrelation Functions for Logs of Real Variables 
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 Figure B2 

 Autocorrelation Functions for Differenced Logs of Real Variables 

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8 9 10

A
ut

oc
or

re
la

tio
n United 

States

 

France

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8 9 10

Au
to

co
rr

el
at

io
n

Japan

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8 9 10
Lag

Au
to

co
rr

el
at

io
n

Sales R&D Employment Investment Cash Flow



Hall-Mairesse  December 2002 

43 

Appendix C: Model estimates using simulated data 
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Estimation Method

Time series process 
for DGP

True 
value of 

rho

Average 
estimate of 

rho

Std. 
deviation 

of 
estimated 

rho

Average 
estimated
std. error 

on rho

Average 
estimate of 

rho

Std. 
deviation 

of 
estimated 

rho

Average 
estimated
std. error 

on rho

Average 
estimate of 

rho

Std. 
deviation 

of 
estimated 

rho

Average 
estimated
std. error 

on rho

Average 
estimate of 

rho

Std. 
deviation 

of 
estimated 

rho

Average 
estimated
std. error 

on rho

Random walk 1 1.000 0.003 0.003 0.749 0.018 0.015 -0.001 0.026 0.025 0.318 0.718 0.991

AR(1) with r=0.3 0.3 0.300 0.007 0.006 0.288 0.007 0.007 -0.327 0.021 0.023 0.294 0.052 0.058

AR(1) with r=0.9 0.9 0.900 0.004 0.004 0.822 0.012 0.010 0.125 0.029 0.024 0.896 0.026 0.066

AR(1) with r=0.99 0.99 0.990 0.003 0.003 0.744 0.018 0.015 -0.006 0.024 0.025 0.832 0.244 0.405

Fixed effect 0 0.993 0.001 0.003 -0.093 0.021 0.022 -0.500 0.018 0.022 -0.001 0.045 0.043

AR(1), FE, and r=0.3 0.3 0.993 0.001 0.003 0.182 0.021 0.022 -0.349 0.021 0.023 0.300 0.070 0.068

AR(1), FE, and r=0.9 0.9 0.992 0.002 0.003 0.681 0.019 0.016 -0.046 0.024 0.025 0.781 0.278 0.400

AR(1), FE,and r=0.99 0.99 0.993 0.003 0.003 0.742 0.018 0.015 -0.004 0.025 0.025 0.746 0.374 0.562

The data are simulated using parameters derived from the first and second moments

  of log R&D in the United States, E(y)=2.5; V(y)=4.59; E(dy)=.085; V(dy)=.0672.

The model estimated in panel 1 is   y(i,t) = a0 + delta*t + rho*y(i,t-1) + e(i,t).

The model estimated in panel 2 is   y(i,t) = a(i) + delta*t + rho*y(i,t-1) + e(i,t).

The model estimated in panels 3 and 4 is   dy(i,t) = delta + rho*dy(i,t-1) + e(i,t).

The instruments in panel 4 are dy(i,t-2), dy(I,t-3) and dy(I,t-4)

Instrumental Variables
Differences

T=12; N=200; 1000 Draws

OLS and IV Estimates for Simulated Data

TABLE C

Ordinary Least Squares
Differences

Ordinary Least Squares  
Levels

Ordinary Least Squares
Within
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