Testing for Unit Roots in Panel Data: An Exploration Using Real and Simulated Data Bronwyn H. HALL UC Berkeley, Oxford University, and NBER Jacques MAIRESSE INSEE-CREST, EHESS, and NBER

Introduction

Our Research Program:

- Develop simple models that describe the time series behavior of key variables for a panel of firms:
 - Sales, employment, profits, investment, R&D
 - U.S., France, Japan
- Substantive interest: use of these variables for further modeling (productivity, investment, etc.) requires an understanding of their univariate behavior
- Technical interest: explore the use of a number of estimators and tests that have been proposed in the literature, using real data.
- This paper: a comparison of unit root tests for fixed T, large N panels, using DGPs that mimic the behavior of our real data.

Outline

- Basic features of our data
- Motivation issues in estimating a simple dynamic panel model
- Overview of unit root tests for short panels
- Simulation results
- Results for real data

Dataset Characteristics Scientific Sector, 1978-1989

Country Data sources	France Enquete annuelle sur les moyens consacres a la recherche et au dev. dans les entreprises;enq. annuelle des entreprises	United States Standard and Poor's Compustat data – annual industrial and OTC OTC, based on 10-K filings to SEC	Japan Needs data; Data from JDB (R&D data from Toyo Keizai				
# firms	953	863	424				
# observations	5,842	6,417	5,088				
After cleaning	5,139	5,721	4,260				
No jumps	5,108	5,312	4,215				
Balanced 1978	-89						
(# obs.)	1,872	2,448	2,652				
(# firms)	156	204	221				
Positive Cash F	low						
(# firms)	104	174	200				
The scientific sector consists of firms in Chemicals, Pharmaceuticals, Electrical Machinery, Computing Equipment, Electronics, and Scientific Instruments.							

3/12/02

Variables

- Sales (millions \$)
- Employment (1000s)
- Investment (P&E, millions \$)
- R&D (millions \$)
- Cash flow (millions \$)

All variables in logarithms, overall year means removed (so price level changes common to all firms are removed – Levin and Lin 1993).

3/12/02

NSF Symposium - Berkeley

Representative data - sales

Representative data – R&D

Autocorrelation Function for Differenced Logs of Real Variables United States

Summary

- 1. Substantial heterogeneity in levels and variances across firms.
 - However, firm-by-firm estimations yield trends with distributions similar to those expected due to sampling error when T is small. (not shown)
 - The sigma-squared distribution differs from that predicted by sampling error, implying heteroskedasticity. (see graph)
- 2. High autocorrelation in levels => fixed effects or autoregression with root near one?
- 3. Very slight autocorrelation in differences; however, the within coefficient is substantial and positive =>heterogeneity in growth rates?

A Simple Model

 $y_{it} = \text{logarithm of the variable of interest.}$ $y_{it} = \alpha_i + \delta_t + u_{it}$ $u_{it} = \rho u_{it-1} + \varepsilon_{it}$ i = 1, ..., N Firms; t = 1, ..., T Years $\varepsilon_{it} \sim (0, \sigma_i^2) \qquad E[\varepsilon_{it}\varepsilon_{js}] = 0, t \neq s \text{ or } j \neq i$

$$y_{it} = \alpha_i (1 - \rho) + \delta_t - \rho \delta_{t-1} + \rho y_{i,t-1} + \varepsilon_{it}$$

=> (FE): $y_{it} = (1 - \rho)(\alpha_i + \delta_t) + \rho(\Delta \delta_t + y_{i,t-1}) + \varepsilon_{it}$
=> (RW): $y_{it} = \Delta \delta_t + y_{i,t-1} + \varepsilon_{it}$ if $\rho = 1$

3/12/02

NSF Symposium - Berkeley

Estimation with a Firm Effect

Drop δ_t (means removed) and difference out α_i :

$$\Delta \boldsymbol{y}_{it} = \rho \Delta \boldsymbol{y}_{i,t-1} + \Delta \boldsymbol{\varepsilon}_{it}$$

OLS is inconsistent; use IV or GMM-IV for estimation with $y_{i,t-2},...,y_{i1}$ as instruments.

Advantages: robust to heteroskedasticity and nonnormality; consistent for β 's; allows for some types of transitory measurement error in y.

Disadvantages: biased in finite samples; imprecise when instruments are weakly correlated with independent variables.

Three Data Generating Processes

1.
$$\rho \equiv 1 \Rightarrow y_{it} = y_{i,t-1} + \delta + \varepsilon_{it}$$

or $\Delta y_{it} = \delta + \varepsilon_{it}$
OLS is consistent; IV with lagged instruments not identified.
2. $\rho \equiv 0 \Rightarrow y_{it} \equiv \alpha_i + \delta t + \varepsilon_{it}$
or $\Delta y_{it} \equiv \delta + \Delta \varepsilon_{it}$
OLS is inconsistent; IV or GMM with lag 2+ inst. is consistent
3. $\rho < 1$, no effects $\Rightarrow y_{it} \equiv \alpha + \rho y_{i,t-1} + \delta t + \varepsilon_{it}$
or $\Delta y_{it} \equiv \rho \Delta y_{i,t-1} + \delta + \Delta \varepsilon_{it}$

OLS is inconsistent; IV or GMM with lag 2+ inst. is consistent

3/12/02

NSF Symposium - Berkeley

Results of Simulation

N=200 T=12 No. of draws=1000 Estimated coefficient for dy on dy(-1) Instruments are y(-2)-y(-4)

Truth	OLS	IV	GMM1	GMM2	GMM CUE
rho=1.0	-0.001	0.279	-0.040	0.440	-0.047
(RW)	(.026)	(.690)	(.175)	(.228)**	(.168)
rho=0.0	-0.500	0.000	-0.028	-0.010	-0.006
(FE)	(0.019)**	(.046)	(0.042)	(.333)	(.041)
rho=0.9 (no effects)	-0.059 (.025)**	0.868 (.089)			

** Different from truth at 5% level of significance. 3/12/02 NSF Symposium - Berkeley

Conclusion from Simulations

- As with ordinary times series, it is essential to test first for a unit root (even though asymptotics in the panel data case are for N and not T).
- Failure to do so may lead to the use of estimators that are very biased and misleading in finite samples even though they are consistent.
 - If unit root => assume no fixed effect and then OLS level estimators appropriate.
 - If no unit root => fixed effect (usually) and IV.
 - Near unit root => OLS bias can be large.

Unit Root Tests Considered

- Note that these tests are generally valid for large N and fixed T.
- IPS: Im, Pesaran, and Shim (1995) alternative is ρ_i <1 for some *i*. Based on an average of augmented Dickey-Fuller tests conducted firm by firm, with or without trend. Normal disturbances assumed.
- HT: Harris-Tzavalis (JE 1999) alternative is ρ<1. Based on the LSDV estimator, corrected for bias and normalized by the theoretical std. error under the null. Homoskedastic normal disturbances assumed.

Unit Root Tests (continued)

- SUR: OLS with no fixed effects and an equation for each year (suggested by Bond et al 2000) – consistent under the null of a unit root. Has good power. Allows for heteroskedasticity and correlation over time easily.
- CMLE:
 - Kruiniger (1998, 1999) CMLE is consistent for stationary model and for ρ=1 (fixed T). Use an LR test based on this fact. Homoskedastic normal disturbances assumed, but not necessary.
 - Lancaster and Lindenhovius (1996); Lancaster (1999) similar to Kruiniger. Bayesian estimation with flat prior on effects and 1/σ for the variance yields estimates that are consistent when ρ=1 (fixed T). σ is shrunk slightly toward zero.
 - CMLE-HS: suggested in *Kruiniger (1998)* heteroskedasticity of the form σ_i² σ_t² can be estimated consistently.

Conditional ML Estimation (HS) Model: $Y_{it} = (1 - \rho)\alpha_i + \rho Y_{i,t-1} + \varepsilon_{it}$ Or $y_{it} = \alpha_i + U_{it}$ $U_{it} = \rho U_{i,t-1} + \varepsilon_{it} \quad \varepsilon_{it} \sim N(0,\sigma_i^2)$ Stacking the model: $y_i = \alpha_i \iota + u_i$ With $E[u_i u_i'] = \sigma_i^2 V_\rho = \frac{\sigma_i^2}{1 - \rho^2} \begin{bmatrix} 1 & \rho & \dots & \rho^{T-1} \\ \rho & 1 & \dots & \rho^{T-2} \\ \rho^2 & \rho & \dots & \rho^{T-3} \\ \dots & \dots & \dots & \dots \\ \rho^{T-1} & \rho^{T-2} & \dots & 1 \end{bmatrix}$

NSF Symposium - Berkeley

3/12/02

Conditional ML Estimation (HS)

Differenced: $Dy_i = Du_i$ where $D = \begin{bmatrix} -1 & 1 & 0 & \dots & 0 \\ 0 & -1 & 1 & \dots & 0 \\ 0 & 0 & -1 & \dots & 0 \\ \dots & \dots & \dots & \dots & 1 \end{bmatrix}$

 $\Rightarrow Dy_i \sim N(0, \Sigma) \text{ with } \Sigma = \sigma_i^2 DV_\rho D' = \sigma_i^2 \Phi$

The log likelihood function:

$$\log L(\rho, \{\sigma_i^2\}) = \frac{-N(T-1)}{2} \log(2\pi) - \frac{(T-1)}{2} \sum_{i=1}^N \log(\sigma_i^2) - \frac{N}{2} \log|\Phi| - \frac{1}{2} \sum_{i=1}^N \frac{(Dy_i)' \Phi^{-1} Dy_i}{\sigma_i^2}$$

NSF Symposium - Berkeley

20

3/12/02

Conditional ML Estimation (HS)

The σ_i^2 can be concentrated out using

$$\sigma_i^2 = \frac{1}{T-1} tr(\Phi^{-1}Dy_i(Dy_i)')$$

which yields
$$\frac{\log L(\rho) = \frac{-N(T-1)}{2}\log(2\pi + 1)}{-\frac{(T-1)}{2}\sum_{i=1}^{N}\log(\sigma_i^2(\rho)) - \frac{N}{2}\log|\Phi(\rho)|}$$

for estimation.

3/12/02

NSF Symposium - Berkeley

Conditional ML Estimation (HS)

- Kruiniger (1999) proves consistency of the CMLE-HS estimator for ρ⊂(-1,1].
- However, the concentrated or profile likelihood version is problematic:
 - Nuisance parameters (σ_i²) increase with N standard error estimates biased downward; not efficient (see B-N & Cox, ex. 4.3).

• Non-orthogonal parameters (ρ , σ_t^2 , and σ_i^2)

- Possible alternatives:
 - Modified profile likelihood Barndorff-Nielsen and Cox (1994), but not clear how to do this.
 - Integrated likelihood (Woutersen 2000).

Results of Simulations

IPS

- zero augmenting lags to be consistent with other tests.
- we found size was too large if the data were allowed to choose the number of augmenting lags.
- size slightly too large
- power weak against large rho alternatives.
- HT
 - size correct if homoskedastic;
 - power weak against large rho alternatives, with or without FE.

SUR

- size correct; slightly too large if heteroskedastic
- power weak against large rho alternatives, with or without FE.

Results of Simulations

- size correct if homoskedastic
- power weak against large rho alternatives, with or without FE

CMLE-HS

- size wrong
- power slightly weak against large rho alternatives, with or without FE
- requires sandwich var-cov estimator; appears to have downward-biased standard errors, so rejects too often.

Results of Simulation -Homoskedastic DGP

N=200 T=12 No. of draws=1000 Empirical size or power (nominal size=.05)

Truth (DGP)	IPS no trend	IPS trend	H-T	CMLE t test	CMLE-HS t test	SUR
rho=1.0 (RW)	.067	.100	.062	.056	.520	.073
rho=0.0 (FE)	1.00	1.00	1.00	1.00	1.00	1.00
rho=0.99 (no effects)	.486	.125	.193	.260	.520	.370
3/12/02 NSF Symposium - Berkeley					25	

Results of Simulation -Heteroskedastic DGP

N=200 T=12 No. of draws=1000 Empirical size or power (nominal size=.05)

Truth (DGP)	IPS no trend	IPS trend	H-T	CMLE t test	CMLE-HS t test	SUR
rho=1.0 (RW)	.090	.050	.210	.200	.450	.124
rho=0.0 (FE)	1.00	1.00	1.00	1.00	1.00	1.00
rho=0.99 (no effects)	.125	.240	.369	.390	.550	.303
3/12/02 NSF Symposium - Berkeley			26			

Results of Unit Root Tests Series with unit roots

	IPS no trend	IPS with trend	HT	CMLE	CMLE with HS	SUR
Sales	US,J	US,F,J	US,F,J	US,F,J	US,F,J	J only
Employment	US,F,J	US,F,J	US,F,J	US,F	US,F,J	J only
R&D	US only	US,F,J	US only	US only	US,F,J	
Investment						
Cash flow	US only	US,J				

3/12/02

NSF Symposium - Berkeley

27

Conclusions

- A model with a very large autoregressive coefficient and no level fixed effect may be a good description of these data – the substantive implication is that we use the initial condition rather than a permanent "effect" to describe differences across firms.
- CML estimation is feasible and may be a useful estimator in the cases where we cannot use the SUR idea.
- Next steps:
 - Heteroskedastic-consistent standard errors to correct size in CMLE-HS, etc.
 - Further exploration of heterogeneous trends.
 - Modeling a more complex AR process for our data with heteroskedasticity but no fixed effects.

Trends – real and simulated data

Intercepts – real and simulated data

