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Two problems which occur in analyzing large pa-
nels of cross section data are considered I missing
data and self-selection. In the case of randomly
missing data using only the complete data sub-
sample results in unbiased but inefficient estima-
tes. We demonstrate that in large panels the effi-
ciency gains from using efficient methods are
likely to be quite small. For non-random missing
data we present a methodology which corrects
for the bias which occurs if only the complete data
subsample is used. Lastly, we formulate and
estimate a model where the missing data arises
from self-selection in the decision to remain in
school. Using the National Survey of Young Men,
we find that accounting for self-selection increases
the estimated returns to schooling by 50 %.



The discussion of missing data has a long history in
statistics and a somewhat more limited history in econometrics.
Most of it consists of the discussion of the randomly missing
case with suggestions for ad hoc or more elaborate maximum
likelihoed computational "solutions."l There are also some
scattered Monte Carlo results suggesting that the performance
of most such methods is relatively poor (relative to the
alternative of concentrating on the smaller "complete" data

subsamples).2

The purpose of this paper is somewhat different. First we
point out that in the "randomly” missing data model, the only
gain from "solving" the problem is the increased efficiency of
the resulting parameter estimates. We explore briefly the
source and possible size of such efficiency gains and conclude
that in large samples, such as the currently available micro-

surveys and panels, the game may not be worth the candles.

The major problem in econometrics is not just missing data
but the possikility (or more accurately, probability) that
they are missing for a variety of self-selection reasons. Such
"behavioral missing" implies not only a loss of efficiency but
also the possibility of serious bias in the estimated coeffi-
cients of models that do not take this into account. The
recent revival of interest in econometrics in limited dependent
variable models (Tobit), sample-selection, and sample self-
selection problems has provided both the theory and computa-

tional technigues for attacking this problem.

The substantive examples in this paper are taken from our
research on the economic_returns to schooling using the
National Longitudinal Survey of Young Men.4 Three problems
will be addressed: (1) The "filling-in" of missing data (IQ
data were missing for about one-third of the sample);
(2) Changing sample size over time, due both to sample attri-
tion due to the inability to find respondents and sample accre-
tion due to the dropping into the working-with-wages sample of
those youths who drop out from or finish their schooling;
(3) The self-selection "to work" of the out-of-school subsample,

the subsample for which an earnings function could be computed.



Consider the simple model:
y = lel + 62x2 + e

which satisfies the usual OLS assumptions and where we have
suppressed the constant for notational ease. For some fraction
of our sample we are missing observations on Xy - Let us rear-
range the data and call the complete sample A and the incom-
plete sample B. Now, given the assumption that the X values
are missing at random, i.e., that the conditional expectation
of Xy E(xligiven that it is observed) = Exl, equals its uncon-
ditional expectation, and in particular E(eixl observed) =
Ee = 0, the ecuation above can be estimated consistently solely
from sample A. Obviously, however, there is some more infor-

mation in sample B. The following questions then arise:

1. How much additional information is there in sample B

and about which parameters?
2. How should the missing values of x. be estimated?

Options include using only Xy using X and y, or usting X,
and z, where z is an additional instrumental variable, related

to X, but not appearing itself in the Yy equation.

To discuss this, it is helpful to specify an "auxiliary"

equation for Xgt
xl = 6x2 + nz + v

where E(Qe) = 0. Note that as far as this equation is con-
cerned, the missing data problem is one of missing the depen-
dent variable for sample B. If the probability of being
present in the sample were related to the size of v, we would
be in the non-random missing case. We shall ignore this pos-
sibility for now. It will be taken up in the next section.
We also limit ourselves at first to the simplest case, one

with no additional instrumental variables present (n = 0).
We can then rewrite our model as
= +
Ya lela + B2x2a €a

= +
*1a 6X2a Va

Y = By + B 8)xy +e 4 BV
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where the a and b subscripts refer to samples A and B, respec-

tively.

~

Sample A yields estimates of Bl, 82, and 6§, with variance-
covariance matrix Ea' Sample B yields an estimate of

ft = (82 + 816) with variance Oi. A maximum likelihood soclution
would blend the two independent pieces of information optimally,
imposing the non-linear constraint # = 82 + Bld,

A "first order" procedure, i.e., one that estimates missing

Xl's by X, alone and does not iterate, would be equivalent to

the following: Estimate Bla’ 82a' 6a from sample A, rewrite
the y equation as
Ya 3laxla €a
= 82x2 + + €
Yp ~ 81a%a%op ep * AW

where € involves terms which are due to the discrepancy between
the estimated Bla and éa and their true population values.

Then just estimate 82 from this "completed" sample by OLS.

It is clear, then, that this procedure results in no gain
in the efficiency of Bl, it is just based on sample A.S It is
also clear that the resulting estimate of Bz'could be improved

somewhat using GLS instead of QLS.

How much of a gain is there in estimating 62 this way? Let
the size of sample A be Nl and of B be N2. The maximum (un-
attainable) gain in efficiency would be proportional to
(N1 + NZ)/NI (when 63 = 0). 1Ignoring the contribution 9f c's,
which is unimportant in large samples, the variance of 82 from

the sample as a whole would he

2 . 2 2 2 2 2 2
Var(82a+b) = {Nlo + N, (07 + Blcfv)]/(Nl + N2) ox2
and
; 2.2
Eff(é )y = var 62a+b - N1 1+ N2 B].Ov
2a+b Var(62 ) Nl + N2 Nl + N2 02
a
where 02 = 02.6
e
Let us loock now at a few illustrative calculations. In the

sample to be discussed below, y will be the lowarithm of the
wage rate, Xy - 19, and Xy - schooling. IQ scores are missing
for cne~third of the sample, hence Nl/(Nl + Nz) = 2/3 and
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vage rates is relatively small. Its independent contribution

.2 2 . . . . .
(82,0_) is small relative to the large unexplained variance in y.

“lv

Typical numbers are Bl = .005, o, = 12, and 0 = .4, implying
- . 1 .0036, _
Eff(82a+b) = 2/3 (1 + 3 T i€ ] = .672,

which is about equal to the 2/3's one would have gotten ignor-
ing the term in the brackets. 1Is this a big gain in efficiency?
First, the efficiency (squared) metric may be wrong. A more
relevant question is by how much can the standard error of éz
be reduced by incorporating sample B into the analysis. By
about 18% (/.672 = .82) for these numbers. TIs this much? That
depends how large the standard error of 62 was to start out
with. For 1973 our "good IQ" subsample consists of 1,540
individuals yielding an estimate of éZa = . 0641 with a stan-
dard error of..0052. Processing another 700 plus observations
we could reduce this standard error to .0043, an impressive

but rather pointless exercise, since nothing of substance

depends on knowing 82 within .001.

If IQ (or some other missing variable) were more‘important,
the gain would be even smaller. For example, if the indepen-
dent contribution of X EO y were on the order of 02, then
with 1/3rd missing, Eff(623+b) = 8/9, and the standard devi-
ation of 82 would be reduced by only 5.7%. There would be no
gain at all, if the missing variable was 1% times as important

as the disturbance (or more generally if Bioi/oz >(Nl + Nz)/Nl)'

What do we gain if we have an additional instrumental z vari-
able? As far as 62 is concerned, this would be reflected in a
reduction in 03, moving the gain closer to (Nl + NZ)/Nl' But
now there is also a possibility of some gain in the efficiency

of Bl.

Assume that we have good estimates of 82 and § from sample

A. Then we can rewrite the problem as

~

Ya BZaXZa\ *la ea
. R AP S s ,
Yb T 82a%2a *1b %y T BV
where Xp = 6ax2b + n,2%, is the "predicted"” value of X4 for

sample B using the coefficients of the auxiliary equation (2.2)

estimated from the complete A sample.7 Again, a large sample
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estimate of the variance of such a combined estimate of £

would be
N 1 2 2 2 2 2
Var [Sl(a+bi)] = 5 (L - Mg + x(c” + Slﬁv)/R
Ng
1

_ 2 2 .

where N = N, + N,, X = N_/N, R® = R , and hi stands for
1l 2 2 xl.xz,Z'

the "instrumented" B sample. The large sample efficiency of
OLS in the "complete"” A subsample relative to this combined

instrumental variable estimator is then

. - - A
asbi)) = (1R LA s (e g

Eff(Bl

In our cross-sectional example Bici/oz is rather small,
0.02, and hence the whole expression is equal approximately to
(1 - A)Z + A(l - A)/Rz. In cross-sectional micro samples one
is unlikely to find a collection of instruments for which
R2 > .5, Given X = 1/3 and an R2 = 1/2, the upper bound on
efficiency is 8/9th. That is, expanding the sample by 50 per-
cent and using a set of instruments for the missing Xy which
correlate with it with an R2 of about .5, will yield a reduc-
tion in the standard error of él of less than 6 percent. And,
if X; were a more important variable (Bl gighef than assumed)
and the equation were better specified (¢° lower than assumed},

the gain would be even smaller.

Up to now we have talked about the efficiency of "first
order” methods, methods that do not re-weight the samples, do
not iterate, and do not use the information on y (the depen-
dent variable) to infer the missing values of X - The general
analysis of such methods is beyond the scope of this paper,
but we want to sketch out briefly the potential sources of

additional gains in efficiency, if any.

The simple model that we started out with at the beginning

of this section (with n = 0), can be rewrit--n in "reduced
form" as:

®1a = %%2a TV

Yia = (82 * BlS)XZa * €a * B1Va

Yop = (By + B 8)xyy + e, + 3 vy

where Xy has been solved out of the y equaticon. Sample A pro-

vides direct estimates of §, (82 + 516) and .an estimate of 31
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‘rom the covariance of the residuals from the first two equa-
-ions. Thus, it also yields an estimate of 82. Sample B pro-
vides an additional estimate of 82 + Blé, but no additional
information on § and very little on 81. Most of the extra
information derivable from sample B is translated into more
information on £, the coefficient of the non-missing variable.
The additional i;formation about Bl in a full information con-
text arises out of improving the estimates of reduced form
residuals from the Yia equation by imposing the constraint
that the coefficients of X0 82 + Bld, should be the same in
both parts of the sample. The "first order" method uses the
residuals estimated from sample A alone to derive ¢ and 81 and
uses sample B only to improve 82. A full maximum likelihood
procedure would improve the estimate oI 81 slightly by impo-
sing the restriction that the reduced form residuals 1in samples
A and B be based on the same coefficients and by reweighting
the contribution of samples A and B to the estimated 52. But
there are no more observations with additional direct infor-
mation on 8., only an improvement in the estimates of the
residuals in sample A. Since the first stage (sample A alone)
residuals are consistent and since we are talking in the con-
text of large samples, the potential gains from such full-in-

formation procedures are unlikely to be large.

III. NON-RANDOMLY MISS5ING DATA

In this section we shall consider the possibility that
the missing xl's are not missing at random, the probability of
missing being somehow related to v, the residual in the Xy
equation. We shall still maintain the assumption that v and e
are independent, and concentrate only on improving our esti-
mates of ;lb’ without regard for the possible additional
information contained in the y eguation. The reason for such
a single-equation approach is that we are trying to prepare a
large body of data for subsequent analysis. There will be many
v's we shall want to consider (different variables, different
subsamples) and it is both computationally and conceptually

inefficient to try and solve the massing data problem anew for
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each particular subproblem that will arise in the future.

In our sample of NLS Young Men we have, as of 1966 (the
first year of the survey), 5,094 young men with complete data
on such major variables as schooling and scores on a test of
the "knowledge of the world of work”™ but only 3,324 of these
(65%) have IQ scores in their records.9 It was decided to
"fill-in" the missing IQ values using the available data as of
1966 on schooling, parental background, race, region, and
scores on a test of the "knowledge of the world of work." The
suspicion was raised, however, that IQ scores may be missing
non-randomly, in the sense that those with low IQ scores might
pe less willing to give permission to collect the scores from
their original high schools, and that schools frequented by
such students may not have their records in good order and
might have greater difficulty in retrieving such scores. The

following model formalizes such considerations.LO

Let D = 1 when an IQ score 1s cbserved and O = 0 when it is
unobserved. We assume that D = 1 when a set orf observable
variables Z and random component uy together exceed scme
threshold value, which can be set at zero, without any loss of

generality. That is

D 1 if Z6 + u

120

fl

0 if 26 + u, < 0

D 1

In addition, we have the IQ equation:

IQ = X8 + U,

where X is another set of independent variables which may con-

tain or be contained in Z. We only observe I{Q, however, when

D = 1. Our problem now is one of a missing dependent variable.
While Eu2 = 0 is assumed to be true for the population at
large, this need not be the case for the observed subsample
(sample A). In particular, for the cobserved data
E(IQ|%,Z, and D = 1) = %B + E(u21x,z, and D = 1)
= 3 Lz nd L = # XNr
X8 + leE(ul] , and 1) # X

where we have assumed that uy and u, have a bivariate normal

. . : . . 2 < .
distribution with means zero, variliances vy and -, correlation
1

2
= ; = . s 18 there :1s <
Pygr and b21 Com(uluz)ol 01202/61 As long s there a

correlation between the random term in the selec-ion—-into-the=-
sample equation, and the random term in the eguacion that we

are interested in estimating (p12 # 0) and E(ul D= 1) # 0,



limiting our attention to the "complete data" subsample will

not do. First-order methods will not provide consistent esti-

mates of the missing values because the OLS coefficients

derived from sample A are not consistent estimators of £. To

show the source and magnitude of this inconsistency, we have
to evaluate E(ullD = 1) which is the mean of the normal random

variate u, truncated from below at the point -2§. For nota-

1
tional simplicity let us divide the selection equation by 74

where ¢ is now a scalar

and rename ZG/Ul = ¢ and ul/ol = e,

(differing for each individual observation) and ¢ is the unit

normal variate. Then,

E(ul]ul > -28) = g,E{e e > -¢), and

1

E(E’Q > =-g) = l*—%“_(—_c)_.[ ef(e)de
-C

and F(e)

cumulative normal functions,

where f{c) are the normal probability density and

respectively. Since the deriva-

tive of the normal density function is -ef(g), and 1 - F(-c} =
F(c), the above expression simplifies to
ey = 1L _ _ f(c)
E(ele > -c) = Fey - "fle) = Flo)
-c
since f(») = 0, and f£(-c) = f(c). Calling the ratio
f{c}/F(c) = M(c) (its reciprocal is known in the statistical

literature as the "Mills ratio") and collecting terms, we have

E(IQ|X,Z§/01, D=1) = XB + p;,0,M(28/0,)

As long as there is a correlation between the Z's and the
X's and P12 # 0, OLS estimates of B which ignore the M term
11
(1) As

will be biased.
suggested by Heckman (1976), one can estimate §/0 from a probit

There are two ways out of this:

analysis of the qualitative variable D (IQ present) as a func-

tion of the observed Z's, evaluate the M term explicitly and
separately for each observation using the estimated Ziﬁ/ol and
add this term to the of I¢ on X,

regression {(in sample A)

converting it into a regression of IQ on X and M. Heckman

shows that this will
While this procedure

allow for the rather

by substituting Zd/ol

yield consistent estimates of R and Pyo-
is not fully efficient since it does not
complicated heteroscedasticity introduced

for the "true" Z8/c and does not uti-

ll

lize information contained in sample B, it is relatively simple

and rather convenient for exploratory data analysis.
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(2} Alternatively, cne can compute the joint maximum-likelihood
estimates of B, §, P17 and 9, (ol is not, in general, identified
in such models and is set routinely to 1). Assume that the

first s observations are those with D = 1 (IQ present), out of

a totai of N, and express the expected value of u1 in terms of

u. as E(uliuz) = (p/vz)uz, where we have dropped the subscripts

2
on p for notational ease. Then the log likelihocd of an obser-

vation with data on IQ is

2

u., .
- _ _ 1 21
LLFi\D = 1) = ln02 5|50

2.8 + (/o) u,.
E + 1nF { = 22l
2 (r - %)

i
bl

while the log-likelihood of a missing data observation is

LLFi(D = 0) = lnF(-Zid),

where
P
-u”
u 7‘/
F(u) = jﬁ e T~ //72m,
and we have set gy = 1. Then the summed log-likelihood func-

tion for the combined sample (A + B) is

1 s 2 3 (2.8 + (g/oz)u/i)
InL = -s ln¢2w02 - = I (uz./oz) + ¥ 1nF 5L =
< i=1 -t i=1 (1 - 0%~
n -
+ b in [1 - F(Z.8)]
P 1
1=s8+1

which can be evaluated directly by non-linear optimization
methods. The advantage of the MLE procedure is that it yields
the correct asymptotic standard errors for the estimated coef-
ficients, which is not the case for the estimation procedure
suggested by Heckman. One of the goals of this paper 1s to
compare the relative cost and performance of such procedures

in a substantive research context.

To implement the Maximum Likelihood procedure, we use an
algorithm proposed by Berndt, Hall, Hall, and Hausman (1874) .
Tt is similar to the method of scoring, but instead of
‘requiring large sample expectations to be taken to evaluate
IR. A. Fisher's information matrix, it relies on the result
'that in large samples the covariance of the gradient is a con-
fgistent estimate of the information matrix in the neighborhood

Cof the optimum. Letting 6 be the parameter vector and the
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gradient g(8) = %%[A, its asymptotic covariance in the neigh-
2]

borhood of the optimum is approximated by

~ T 5f. 5f, !
Q(8) = = \—Gllh Zali,\'where £, is the log likelihood of the ith
i=1 77 g’ 9
cbservation. Thus, the method requires only computation of
first derivatives. The updating formula at the jth iteration

for 93+l is then

~iy - .o s
5371 257 4 009y g ed)

where 37 > 0 is the stepsize chosen in the direction
Q(BJ)_lg(aj). The stepsize 373 is chosen according to the cri-
terion in Berndt, et al., page 656, and ccnvergence to a local

maximum is assured. The algorithm has the desirable "uphill™”
property: an improvement in the likelihocd function occurs at
each step. Experience with this algorithm has been very satis-—-
factory as long as the derivatives are calculated correctly.
The algorithm can be considered a generalization of the Gauss-
Newton algorithm. Estimates of the asymptotic covariance
matrix of the estimates follow from Q(éML)_l, where gML is the
value of which maximizes the likelihood function. Care must
be taken to insure that the global maximum has been found al-

though in practice no difficulties arose.

Table 1 lists our estimates for the "being in sample A" (IQ
present) equation. Table 2 lists the major coefficients in the
estimated IQ equation based on (a) OLS, (b) OLS with the added
M term (the Heckman procedure), and {(c) the MLE result5.12 For
this example, there is little difference in the estimates of
the first equation {IQ present) listed in Table 1. The coef-
ficients of the independent probit equation and the MLE coef-
ficients are almost equal to two decimal places. There is a
bit more happening in Table 2. The addition of the M variable
shifts some of the coefficients noticeably, by 10 to 20 perxcent,
even though its own coefficient is not "statistically signifi-
cant" at the conventional significance levels. This is a
reflection of the rather high multicecllinearity between the M
term, which is a non=~linear function of the variables listed in
Taple 1, and some of the variables included in the IQ equation.
The MLE estimates turn out to be between the OLS and the "Heck-
man" estimates, indicating that the latter may overshoot some-
what in their adjustment for selectivity bias, but the changes
are not very large. In the OLS with M version, the M term 1s

not statistically significant. In the MLE equations, the
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Table 1. Estimates of the "Having-Good-Data" (1Q pressnt)

Equatlion. NLS Young Men, N = 5094
Coefficients (standard errors)

Variables Probit MLE

Constant .635 (.183) .635 (L180)

Black - .607 (.058) - .608 (.027)

FOMY 14 - .036 (.013) - .035 (.C13)

Culture .140 (.028) -141 (.028)

Together .123 (.080) 122 (.060)

Age 66 - .073 (.009) - .074 (.010)

KWW .0066(.0036) L0065 (.0035)

S66 110 (.017) L110 .01

SLT9 -2.69 (.120) -2.70 (.11d)

Log L ~-2038 -2010

FOMY 14 = Occupation of father (or heard of househoid:
when respondent was 14 scaled by the median
earnings of all U.S5. males in this occupation
in 1959, in thousand dollars.

Culture = Index based on the availability of newspapers,
magazines, and library cards in the respon-
dent's home.

Together = Both parents 1n household when respondent was
14.

KWW = Score on the "Knowledge of the World of Worx"
test administered in 1966.

566 = Schooling completed in 1966.

SLT9 = Dummy variable, egquals 1 when Sé66 less than 9.

IQ = Score on IQ type tests collected from the hi:h

school last attended by the respondent.

148



Table 2. Alternative Estimates of the IQ Equation:

NLS Young Men

Coefficients (standard errors)
of Major Variakles
Variables OLS OLS including MLE
estimated M
variable from
probit
N = 3324 N = 3324 = 5094
Black -9.94 ~-11.04 -10.69
(.64) (.80) (.72)
FOMY 14 .248 .196 .213
(.129) (.131) (.133)
Culture .89 1.11 1.04
(.31) (.32) (.31)
Kww .608 .619 .615
(.036) (.036) (.036)
S66 1.98 2.17 2.11
(.17) (.19) (.19)
MED .366 .371 .369
(.097) (.097) (.095)
M 3.71
(2.29)
o) 0 .304 .202
{.100)
02 12.21 12.20 12.31
Log L -13035 -313032 -13060
Other variables in the equation: Siblings, RNS 66, FED,
FAMY 66, Age 66.
MED = Mother's education.
FED = Father's education.
M = "Inverse Mills Ratio," £(28)/F(25) computed from the

probit equation given in Table 1.

Siblings = Number of siblings.
RNS 66 = Region South in 1966.
FAMY 66 = Total Family Income in 1966.

See notes to

The standard
approximate,
duced by the

Table 1 for additional definitions.
errors for the OLS with M equation are only

since they ignore the heteroscedasticity intro-
estimated M term.
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estimated p 1s statistically significantly different from zero,
but not very high. A more general test for selection bias is
given by comparing the summed likelihood of the separately
estimated in-sample probit and OLS IQ equation and the jointly
estimated maximum likelihood: twice the difference in the log-
likelihoods is 3.74 which is to be compared to a critical

xz(l) = 3.84 at the 5 percent significance level. Thus, one
could maintain the hypothesis that ¢ = 0 and that no bias is
introduced by treating the missing values as random. But,
because the estimated bias is on the borderline of statistical
significance and because we are interested in how much dif-
ference the procedure makes substantively, we shall proceed to

estimate the missing IQ values using the MLE results.

To estimate the missirg IQ values we use not only the esti-
mated coefficients from the IQ equation but also the knowledge
that the values are missing. That is, by a similar argument

as before

E(IQ|D = 0) = XB + po E(ul!—zs > u,)

2 1
= XB - o, £(-28)/F(-28)
= X - poz £(z28)/[1 - F(28)]

and hence the missing IQ values are estimated by

~ ~ A

IQ = X8 - po. £(28)/(1 - F(28)]

2

where we have normalized Cl = 1.

We now apply this machinery to the estimation of an earnings
function using the 1973 data base for these same young men. In
1973, there were 2,246 young men who were not enrolled in
school, interviewed, and had complete data on schooling, wage
rates and work experience.14 However, only 1,540 of the 2,246
had IQ scores. Table 3 lists the means, standard deviations,
and correlation coefficients of three estimates of the missing
IQ scores (N = 706) Tl'—based on the OLS regression, Tz——based
on the coefficients of the OLS + M regression and the missing
values adjustment using the independently estimated probit
equation to evalu:te the f(zZd)/[1 - F(zZ8)] term, and TJ——based
on the Maximum Likelihood estimates, including also the

—p02 £f(zZ8)/(1 - F(Z28)] term. Table 4 shows the estimated

schocling and IQ coefficients in the 1973 earnings function,
separately for the "complete" and "incomplete" subsamples and

for the combined total sample using all three ways of computing



Table 3. Predicted IQ Scores for Working NLS Young
Men in 1973 with IQ Missing (N = 706)
Standard Correlation
Mean Deviation Coefficients
T2 T
Tl 88.4 14.7 .991 .996
T, 84.0 14.3 .999
4
T3 85.5 14.4
Tl X8, B from column 1 of Table 2.
T2 X5 - pozf(Zd)/{l - F(258)]: B and po from column
2 of Table 2, & from column 1 of Table 1.
T3 X3* - Qozf(Zé*)/[l - F(z&d*)], B* and PO, from

column 3 of Table 2,

§* from column 2,

Table 1.



Table 4.

Working NLS Young Men in 1973. Estimates of
the Coefficients of Schooling and IQ for
Different Subsamples and Alternative Treat-
ment of Missing IQ Values

Sample and .. Residual
Type of IQ Coefficient (standard error) Standard
and Variables Schooling 10 Error
A: "Good data"
Subsample,
N = 1540
T .064 . 387
{.005)
2. IQ . 055 .0031 . 385
{.006) (.0008)
B: Missing IQ . 058 .394
Subsample, (.006)
N = 706
A + B: Combined
N = 2246
1. .64 . 391
(.004)
2. IQ + 'I‘l .051 L0043 .388
(.004) (.0008)
3. 10 + T2 .052 L0042 . 388
(.004) (.008)
4. IQ + T3 .052 .0042 . 388
(.004) (.0008)

Dependent variable LW73. Other variables in the equation:
AFEXP, XBT, SMSA, RNS 66, Black.

AFEXP = Length of military service, in years.

XBT =

-0.1 EXP 73
e

EXP73 = postschool work experience esti-

L4

mated on the basis of the work record since 1966 and
the date of first job after school or the date stopped

school

(in years; truncated at age 14) if respondent

reported starting work earlier.

See Table 3 for definition of Tl’ Tz, and T3.



the missing IQ values.

Let us first look at the biased schooling coefficients in
samples A and B, excluding the IQ variable whose values are
partially missing. We called them © = (a + 86) in Section II.
They are given in lines Al and Bl of Table 4. Though sample B
indicates a somewhat lower return to schooling (.058 v. .064
for A}, the difference is not statistically significant and we
éan maintain the hypothesis that sample B comes from the same
population as A. The second part of the table indicates, as
might have been expected from the earlier results, almost no
difference in the performance of the different ways of fil-
ling-in the missing IQ scores. Our estimate of the schooling
coefficient holding IQ constant is .055 (.006! in the "all good
data" subsample and .052 (.$04) in the combined sample with
extrapolated IQ measures. The difference is hardly siénifi—
cant.15 Moreover, the apparent gain in precision is exag-
gerated, since the computed standard errors do not take into
account either the heteroscedasticity introduced by the extra-
polated IQ measures or the fact that these measures are based

on estimated rather than population coefficients.

The procedure discussed in this section was a partial cne:
we treated the problem of filling-in missing IQ values
separately from the problem of estimating the earnings equa-
tion and we did not allow for the possibility that the distur-
bance in the variable (IQ)-present equation. 1In this parti-
cular substantive context, there seemed no ne=d tc move in
that direction. The next sections will take up, however,

examples where such a dependence could be quite important.

IV. SAMPLE SELECTION BIAS OVER TIME

In this section we come closer to utilizing the panel
nature of our data. The conventional use of such data has
been to pick a particular year, either latest available (1973)
or one that has the more interesting data {(e.g., answers tc the
union membership question in 1971) and analyze it separately,

as if it were a single cross-section. Or at best, as we shall
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do in the following section, compare it to the results for
another year, treating them as an independent replication.
Alternatively, in trying to utilize fully the recently
developad methods of error-components analysis, one tends to
focus on the subsample of those observations that are available
and are "good" for all years in the sample. The first approzch

results in varying sample size and serious questions about the

comparability of the results over time. The second approach
tends to focus on a rather small subset of the original data,
raising serious questions about the representativenes:z uand

generalizability of such results.

It is our intent in this section tc explore the offzcts ot
such sample selection rules on the estimates of the staindard
semi-log wage equation, focusing in particular on their effeots
on the estimated coefficient of years of school completed.
These are only the first steps in this direction. We are try-
ing out only rather simple models and not allowing yet fully
for the dynamic aspects of the problem. What follows s a

report on the exploratory stage of our analysis.

In trying to estimate the wage equation over time w2 face
several sources of sample change and attrition. (1) Non-inter-
view in a particular year, which can be divided rough.. into
(a) a permanent loss of the respondent from the samplo and
(b} temporary loss, primarily because of service in the armed
forces. (2) The fraction of respondents still enrollied 1in
school full-time is declining over time. If one insic2s on
having only those who are out-of-school and working carly in

the history of the panel (1966-1968), one tends to lose very

large fractions of the potential population. (3) "Bad data."
Having "fixed-up" the missing IQ measures in Section I.I, the
major other source of missing data is the experience ~ariable.
It is based on the job history of the individual and tI:at 1is

often incomplete in the record. Table 5 presents a distribu-

tion of the fraction not-in-the~sample by major reason by year.
It illustrates the two major and contradictory forces it work

over time: Attrition versus completion of schoocling.

While each of the reasons for being out-of-the-samp.< may be
caused by somewhat different forces and should perhaps be ana-
lyzed separately, we focus instead on specifying a sinule
probit equation for being-in~the-sample, as a functicn «f the
major socio-economic variables as observed in 1966.Jb it can

be thought of as a kind of reduced-form eguation summarizing
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Table 5. Sources of Change in Sample Composition.
NLS Young Men, 1966-1973. N = 50948

Percentage by Year
1966-1973

Category 1966 1967 1968 1969 1970 1971 1973 | combinedP
In sample® | 34.3 37.7 39.9 41.7 41.9 41.7 45.6 14.6
Out-of-

sample:

Non-inter= | 4 35 g5 9.4 10.8 13.6 18.0 19.9
view

In Armed 0.0 5.0 10.8 13.4 12.6 9.7 5.0 24.3
Forces
Enroclled

in School |62.0 49.9 37.5 26.9 19.9 15.8 9.9 35,7
(Full-time)

"Bad” data | 3.6 4.2 5.3 8.5 14.7 19.2 21.6 5.5

“Based on "good" data for KWW and S66 in 1966. Original
panel size was 5,225. The discrepancy of 2.5% could be added
to the "Bad" data row.

bNot in school and good data in all years. Obviously an
observation may be missing from the sample for different rea-
sons in different years. The hierarchy used in this column
was fi st, in Armed Forces any vyear, second, not interviewed
for .aother reason any year, third, enrolled full-time in
school any year, and finally, missing other data.

CBeing not-enrolled in school (full-time) and having data
on wage rates and work experience in the particular year.

dTo the extent known and stated in the record.
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the net effect of the various variables on the sample partici-
pation probability. Table 6 presents estimates of the major
coefficients in such probit equations. These are to be used

in turn4 in the Heckman (1976) mode, to construct the inverse
Mills ratio variables, which are then added to the estinated
wage equations. Their coefficients are also used as .nitial
values for the MLE algorithm. The changing character of the
selection process can be seen clearly in this table. arly o:.,
those in the sample are distinctly older than the gro.i: as &
whole, with less schooling, and a lower estimated IQ. As time
goes by, these differences attenuate and by 1973 the rzhor
reasons for not being in the sample are non-interview and bad
data rather than further full-time study. The first two tend
to be related negatively to personal and family soccio-economic
characteristics while the third is related positively. By

1973 their effects come close to cancelling each other out.

This can also be seen in Table 7, which lists the e=stimated
coefficients of schooling in the wage equation by year, before
and after allowing for sample selectivity bias. Before 1970
the sample selectivity bias is positive, causing an overesti-
mate of the schooling cecefficient. By 1971 it changes =sign,
implying an underestimation of the true coefficient. There is
some indication here, as was also true in the earlier -oction,
that the Heckman-type estimates tend to "overadjust” for

selectivity bias, since the MLE estimates are by and l:irge

between the OLS and the Heckman-type estimates.

The major difficulty with the estimates presented atove 1s
that they lump together the various reasons for not being in
the sample into one selectivity equation. Actual sampic
selectivity occurs because of rather different reasons and on
different and somewhat independent margins. To take adequate
account of this would require the development of multiviriate
truncation models, a toplc to which 'we hope to return =it which
is beyond the scope of this paper. We can, however, narrow
the problem by focusing only on a subpopulation where sample

selectivity is based on one set of considerations only .nd

hence can be modeled more legitimately by a single selaecnion
equation. In the following section we limit ourselves - the
subset of interviewees with good data, interviewed in 1471 and

1973, and focus solely on their dropping out from or finishing
school and going to work decision as the source of samupio

selection bias.
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Table 7. Estimated Coefficient of Schooling in
Different Years, Allowing for Sample
Selectivity Bias, NLS Young Men,

1966-1973
Coefficient of
Schooling SEE
Year Without With MLE Estimated Without With
M M . 3 M M
1966 . 0525 .0413 .0431 -.45*% —.37%* . 370 .363
1967 . 0545 .0375 .0416 -.71* =.49* . 337 .332
1968 . 0540 L0444  .0451 -.48*% -—,41%* . 335 . 334
1969 .0544 .0478 .0447 -.48*% -—-.61%* . 327 .326
1970 .0662 .0632 .0576 -.27 -.60* . 345 . 345
1971 .0638 .0673 .0650 .30 .18 . 352 .352
1973 .0481 .0510 .05903 .39 . 34% .402 .402
Combined
1966-1973
subset . 045 .048 n.c. L17* n.c. 321 320

Dependent variable: LW = Logarithm of the wage rate on
current or last job.

Other variables in the eguation: Black, IQ 3, XBT, SMSA,
RNS 66. In the combined 1966-1973 subset also year dummies
for each of the survey years.

M = Inverse Mills ratio, computed from the probit eguations
described in the previous table.

MLE = Maximum Likelihood Estimate of the schooling coefficient.

p = Estimated correlation between the disturbances in the
sample selection and wage equation.

[4 = p from MLE.

SEE = Estimated residual standard error in the wage equaticn.

* = Statistically significantly different from zero at the
.05 level.

n.c. = Not computed.



V. SAMPLE SELECTION BIAS AND ENDOGENEITY

In this section we consider the case of a dependint vari-

able "missing" or not being relevant to the assumptions cf the

. . . . By 5
model, for a significant fraction of the sample. Tor aexXample,

[

a significant fraction of the young men in the 5LS wer sritl
enrolled in school full time at the time of the latest avail-
able survey (1973). For these young men there is eiti»r no

wage information in the record or the wages recorded are tikely

to be associated with a part-time job, not measuring aucquately
their current or future human capital. Alsc the informaition cn

their schooling level may be misleading, since 1t cannot be

taken as "completed." The usual solution to this prctliom has
been to limit estimation to the "good" and relevant data subset,
ignoring the possibility that those who have chosen t. stay 1o
school longer may not be a random sample with respect =9 the
determinants of the returns to schooling, the major fo:ous of

the equations to be estimated.

In tackling this problem we have to extend the model outlincd

in Section III significantly. It is not enough just - speci:iy

ot

a "being-in-sample" (out-of-school) eguation and estimote 1
jointly with the earnings function. The trouble arises becaus:s
the major variable of interest in the earnings equation--

schooling, is itself a product of the operation of the

(dropping-out-of-school) equation in the previous years.
ing for correlation between the disturbances in the in-sample
and earnings equations implies also a correlation between con-

pleted schooling and the disturbance in the earnings oguations,

unless we were to make rather strange no-serial correl:tion
assumptions. After all, completed schooling is just -ho inte-
gral of the in-schcol equation (the complement of the cut-ot-
school equation), containing all the lagged values of 1z dis-
turbances in that equation. Hence, there i1s no e¢scape trom
treating schooling itself as an endogeneous variable ::n this

context. This leads us then to the problem of estimat._ng a
system of simultaneocus eguations in the context of lin.ued
dependent variables, an area in which very little wors has

been done to date.18



Oour model can be described as follows:
Let S*ibgi"@esired" {completed) schocling. Actual schooling 5

is assumed to equal S* if the person is not in school and work-

ing. Thus, being in sample is defined by

S > §*

If a person is still in school then S < S*_. The ultimate

desired level of schooling S* is given by the equation

s5* = Bb, + sz + e

1 2

where B is a set of family background variables and X is a set
of variables such as age, armed forces experience, and 10,
whose impact on desired versus actual schooling may not be the
same. Actual schooling equals desired schooling if out-of-
school. For in-school people actual schooling is a function
of their age and the "speed" with which they are making scho-
lastic progress. This "speed"” dependg on IQ, on the presence
of absence of an interruption such as service in the armed
forces, and on a set of other unmeasured random variables u.
Thus actual schooling S if still in-school (out-of-sample) is

given by

s = Xb3 + u

Being-in-the-sample then occurs when

Xb3 + u > Bbl + sz + e2

Or, defining e, =u- e, when

e, = u - e

1 , > (BB, + X(B

, = By

This points out the expectation that the coefficients of the
background variables such as father's occupation or mother's
education should be proportional to each other in the sample
selection and completed §chooling equations, while other
variables such as age or IQ need not satisfy this constraint.
It also suggests the probability of a negative correlation
between the in-sample and schooling equations.

To discuss the statistical aspects of this model we shall
rewrite all this more compactly by combining the B and X
matrix into one matrix Z of exogenecus variables, relabeling
S = §* for the in-sample people as Yoo and attaching to the
model a wage (y3) egquation. All this then leads to a three
equation model, consisting of the in-sample (not-in-school)

equation



pr(d = 1) = pr(2; 86+ e > 01,
the completed schooling equation
= + e
¥y = Iy T
and the wage equation
Y3 = gyz + Z3Y3 + 63,

where y, is schooling (in years), Y3 is the logarithm oif tho

wage rate, 216 = ~[Bb1 + X(b2 b3)], 2272 = Dbl - mbz, and I,
is another set of exogeneous independent variables which mav
overlap with Zl and 22. The identification of £ depends, 1n

part, on some of the Z's in the schooling eguaticon not entering
the wage equation directly. Note that the system as written

down is triangular, simultaneity occurring becausa we have

allowed for possible correlations among the e's. w2 assume that
the e's have a joint multivariate normal distrizuiiicon, witih a
mean vector of zero, and variance covariance matri:i o,

5 bor
12 713 N
L= —————:-——i——-—~]
|
Ta2 923 e e
“21 “2{J
923 733
where we have setdll = 1. Then the probability -: obserwving
in-sample respondents can be written as the produci of the con=-
ditional probability of the observation being in the sample
given, Zl,‘e2 and eq, and the marginal probability of observing
e, and e, given 22 and Z3:
pr(D, = 1) = pr(Zle ey > Oiez,e3,zl) f(e:,v3‘22,ZE)
Let us call the vector [ez,eE] = e'. Expressing ¢, in terms of
€5 and @5, we have for the log likelihood functi.r of the out-
of-schocol observations:
-1
+ Z,,Z
_ [ B8 Y Ly, e 1 s -
LL_ = log F —1 - = log | ., .
a (1 - 5..C -1 % 2 22 .
“12722 21
where the first term corresponds to the probabil:ty of being
in-the-sample (cut of school} as a function of - and e, and Zl'
with le¢22 playing the role of b12 in the earl:v:r formulae,

the denominator being the conditional standard deviation of ey

and where the second and third terms correspond * +“he

el



probability of observing the particular e, and €y

The log likelihood of the in-schoel, out-of-samnle, observa-

tion is given, as before by

Ll = 11~F(zlé)]

We need now to transform these equations from ©7: unoboor
e's into the observakle vector [y2y3]. Using the < ransforma-
tion

%2 Yo T Epv;
u = =
43 Y3 = By, - Eaiy
and denoting the Jacobian of the transformation by J, we have
-1
Z,.8 + Z._.L u
LL_ = log F 1 12 22 ~ Lyogiz
a (1 ~ ¢ ﬁ—lz );i 2 R
“12722 T21
I
Su'i s ou ot log|J]

Since our model is triangular,

1 0
J = , log]J] = @,
83 1
and we are left with a multivariate least squares twpe likeli-
hood function.19 Thus the combined log likelihood Tuncticn
s
s by hnd [ —1
log L = = 3 logli,,| - I uf I,50 u
i=1
-1
S Z..8 + L L u.
2
+ I log F 13 lﬁ_EZ :
. - - - 2
=1 (l L1282 Ea1)
n
+ T logll - F(Z, .8)]
i=s+l 11
is to be maximized with respect to & v, Y. o and tio ele-
ments of I and Z “l. This is achieved using the sl ovitin
12 22 20

described in Section III.

The sample used and the wage equation to be estimared In

this section differ from that considered in the previous

sections in three ways: {1) Not to treat too many problems
at once we limit our sample here to those having IQ = :nres.
As can be seen from the results in Section ITI, th:z -rould
not lead to much bias in our results. (2) We limit t.ie
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working and out-of-school subsample to those who havz good
wage data and are working full time (35 hours or more per
week).21 and (3) because we shall be treating schooling as
endogeneous, and because our experience measure, though
independently computed, cannot be taken as independent of
schooling, we reparameterize the wage function, using age as
a variable instead of experience.

We estimate this model for the two latest vears I our

7
panel, 1971 and 1973."2 As the result of the restr.iorions

described above our samples consist of 2,176 and 2,-19 young
men in 1971 and 1973, respectively, with 1,570 and «,057 of
them or 72 and 85 percent, respectively, having left schoal

and working full time.

Table 8 gives the results of estimating the thre:: equacion
model outlined above for these samples. Part A shows the
estimates of the first two equations. The major determinants
of being ithhe“sample {out of school) are age, IQ, military
experience, and the culture index. There is, appar=ntly, an
attempt to make up for lost schooling due to military serwvice
and possibly alsoc a response to the schooling subsiiies
available to army veterans. Total (completed) schooling 1is
strongly related to parental background, IQ, and recatively
to military service. Other things being equal, youna blacxs
had more schooling than would have been predicted :tor them by

their measured parental background and IQ.

The restriction that family background variables should
have proporticnally similar coefficients in the in-sample
and completed schooling equations is satisfied only approxi-
mately. The ratio of the respective coefficlents .1 the tvo
eguations (for the 1973 estimates) moves from —.13 for FOMY 14
to -.3 for FED. Culture, with a ratio of -.7 has apparently
an independent additional effect on the speed with which

desired schooling is accomplished. A formal test i the vro-

porticnality restriction for four family backgroun.: coefi:-

cients (FED, MED, FCMY 14, and SIBS) across the two oquat:ons
yvields the following A2(4} test statistics: 9.4 ftor the 1371
estimates and 6.6 fcr the 1973 ones. Since the critical (.05)

2 . ,
value for x (4) is 9.5, these results are not too 3urprising

and are consistent with the model outlined above.

part B of Table 8 presents several estimates ¢! “he wage
eguation, starting with OLS, going to a two equat:on sample

selection model similar to the one estimated in the previous
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for

Table 8. Estimates of a Three Equation Model
NLS Males, 1971 and 1973
1971: N = 2,176 (1,570 out of schoecl
with wage data and good
1973: N = 2,419 (2,057 out of schoo:
with wage data and good
Part A: In-sample and Completed Schooling Zuu.
In-sample
Variables (out of School) Completea
1971 1973 1971
IQ -.028 -.016 . 066
{.002) (.002) (.004)
FED -.046 -.029 .092
(.012) (.013) (.018)
MED -.007 -.019 .078
(.014) (.014) (.018
FOMY 14 -.018 -.013 .134
{(.018) (.020) (.028)
Culture -.156 -.185 .231
(.048) {.051) (.064)
SIBS .013 . 015 -.075
(.015) (.016) (.0223
Age .160 2122 .070
(.011) (.012) (.021)
AFEXP -.076 -.138 -.183
{.034) (.0386) (.066)
Black -.405 -.346 .838
(.103) (.116) (.164)
o} 1.0 1.0 1.73
912 -.43

Zchoolinu

197 :
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Table 8~-Continued

Part B: Different Estimates of the 1971
and 1973 Wage Equations

Part B1--1971

Coefficients (standard errors)

Variables OLS 2 equation 38LS 3 equa*ion
- MLE MLE
Schooling .019 .020 .048 .07¢
(.005) (.005) (.015) (.Cie
10 .0024 .0047 .0003 L0800
(.0008) (.0009) (.0013) (.0014)
Age . 045 .036 .042 .032
(.003) (.004) {.0023) (.ot
Black -.128 -.104 -.137 -.124
(.028) (.030) (.028) (.033}
AFEXP -.009 -.00¢ -.002 . 004
(.011) (.C11) (.012) (.¢iz2
5 347 .364 L350 I
- - = - 19
P13 .505 L3891
F2o3 -.094 -.176

Part B2--1973

Schooling .019 .020 .051 L066
(.004) (.005) (.014) (.014)
1Q .0033 .0045 L0007 L0007
(.0007) (.0008) (.0013) (.00
Age .042 .036 . 040 .G34
(.003) (.003) (.003) (.003;
Black -.107 -.090 -.115 ~.102
(.028) (.032) (.028) (.027%:
AFEXP -.008 +.0006 -.001 .01l
(.010) (.010) (.011) (.012°
o .388 .404 _392 L412
P13 -.509 -.464
Q23 -.116 -.17F

Additional variables in equation: constant, SMSA, RNS 66.

Dependent variables: eq. 1 D = dummy variable for beinag
out of school and working among all the persons interviewod
in either 1971 or 1973 with good IQ data and other minor <o
restrictions; eq. 2 S71, 573 = highest grade of schooling
completed for out~of-school youths; eq. 3 LWJ71l, LW73 =
logarithm of the wage rate per hour on current or last jobh.

2 equation MLE = Joint estimation of equation 1 and 3,
assuming Pry = 0.
3S8LS = Three stage least sguares estimates of

LA

equations 2 and 3, ignoring sample selecticn

bias problems.
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3 equation MLE

Table 8--Continued

Joint maximum likelihood estimates of equa-
tions 1 through 3.

Estimated standard deviations of the distur-
bances in the relevant equations. 1In the
probit equation vy =1 by definition.

Estimated correlation coefficients of the
disturbances across the cdifferent eJuations.

166



section {assuming that ¢ 0), then to a Three 5rage
12

o}
Least Squares estimale allowinéjfor the endogeneity of schoolinag
but not for potential sample selection bias in the wage soquation,
and finally to the complete 3 eguation model MLE results . Note
that we start out with a significantly lower schooling coeffi-

cient, because we are holding age rather than experience ~on-

stant. A rough adjustment is just to add the age coefsiiont
tg the schooling cccfficient_23 The effect of allowinc |07

selection bias is rather striking in these samples, espsoially
once simultaneity is alsoc allowed for. The schooling o - Tie
cient is raised by akbout .02 in koth 1971 and 1973 (cory oring
column 4 to 3). The biggest impact, however, 1is Irom zll.wing

the schooling variable to be endogeneous. It raises itz
coefficient by about .03 and drives the IQ coefficient tu 1n-
significance.24 The effect is a bit smaller when one locis at
the holding experience constant schooling coefficient, 2:iing

in the age coefficient: the estimated rate of return to

schooling rises from 6.1 (6.4) percent in the 1973 (1271 OLS
eguation to 10.3 (10.2) percent in the 3 eguation MLE m7icl.
Quite a difference. The rise in the coefficient of schuuling

occurs because those with a higher disturbance in the wi
equation are more likely to be in school and out of the suaple
and because the disturbances in the schooling and wage <ygua-

tion are negatively correlated.

The signs of the correlations among the disturbances . uulre
some-care in interpretation. Note that they are all neTitlve.
That o, 0 is understandable since being cut-of-schocl, other

things equal, reduces the level of completed schooling. That
€3 < 0 has been observed also in other contexts (cf. Gr:iiiches,
1977). It can be interpreted as the result of errors in
measurement in S and of the dependence of both wage rates and
completed schocling on unmeasured initial human capital :vels.
These initial human capital levels have, however, opposit:

signs in the two equations, since a higher initial level
reguires less additiconal investment (formal schooling) to attain
the ultimately desired level. The negative sign on o, i zlsc
not too surprising since it implies that, other thinq;Jogual,
the better people (in terms of the wage egquation disturbnoe)
are still in school. It appears, however, to contradict
expected relationship among the signs, since both T3 T s
are alsoc negative. But that can be explained with recourze to
the model outlined above. Recalling that e, = u - SRR Q0

1
implies that Cov ue, - Cov e e, < 0, i.e., that the "specd" with
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which actual schooling is accomplished is also negatively
correlated with the unobserved compcnents of the wage egua-
tion.25 This could be due to the same reasons as discussed
above for the negative correlation between e, and €, and to a
possible misspecificatior of the wage equation. Those who go
through school faster méy have lower wages because they tend
to choose jobs with more non-pecuniary benefits (such as
teaching) or more on-the-job training. 1In any case, there is

no necessary inconsistency in the observed signs of the | 's.

The estimated biases are not only of substantial size but
also statistically significant. One can test the single equa-
tion OLS estimates against the 3 equation MLE's by asking the
question whether the estimated 613, 623, 612, could all be
zero. The estimated X2(3) = 77 for 1973 is highly significant.
It is unlikely that these results could have arisen by chance
from a population with no correlation among the disturbances
of the different equations. We get a similar answer when we
consider these correlations in pairs or singly. For example,
the restriction that both sample selection correlations be zero
yields a x2(2) of 67 and 66 for 1973 and 1971 samples, respec-
tively. Similariy, setting 0y3 = 0, results in a x2(1) of 6
and 10 in the 1973 and 1971 samples, respectively. All rather

unlikely events,

Having tested and decisively rejected the joint null hy-
pothesis of no correlation among the disturbances of all three
equations, it is also interesting to ask if the estimates of
the wage equation alone differ significantly. We are primarily
interested in this equation and would like to assess the
specific effect of our procedure on our estimates of it. To
do so, we use a specification test developed by Hausman (1976).
Under the null hypothesis of no self-selection, three stage
least squares (3SLS) estimates of the schooling and wage equa-
tion are asymptotically efficient. Thus, Hausman's lemma 2.1
applies so that the asymptotic variance of the difference
between the ML and 35LS estimates is the difference in their
respective variances. Performing a large sample X2 test with
6 degrees of freedom on the estimates of the coefficients of
the wage equation for 1971 and 1973 we find X2(6)'s of 125 and
93, respectively,which are highly significant. Thus self-
selection is indeed important. Testing only the difference in
the sum of the schooling and age coefficients, which is on the
order of .01, yields xz(l)'s equal to 14.7 and 6.4 in 1971 and

1973, respectively, again indicating a statistically significant
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difference. It is clear that for this population, self-selec-
tion has a substantial effect on the estimated returns to

schooling.

We have developed, in this section, a three equation wage
determination model allowing for both sample selection and
simultaneity, and estimated 1t in a substantive context, illus-
trating the seriousness of such biases ard the computaticnal
feasibility of the suggested estimation methods in a large-
sample many-variables context. The main reservation about this
model is that it does not take fully intc account the dynamic
aspect of the going-to-school decision. The school-vs-work
equation is treated as a once and for all decision independent
of the time sequence of previous events. But in any period,
being in school, being at work, and the accumulated level of
schooling all depend cn a string of such previous decisions.

It is beyond the scope of this paper, however, to try to
develop a fully integrated optimizing-over-time schooling and

work decision model, though we hope to do so in the future.

VI. SUMMARY

The conseguences of missing data and sample selection are
analyzed best within the context of the consistency and (asymp-
totic) efficiency of the estimates. 1In a large panel of indi-
vidual respondents such as the NLS Young !Men panel data consis-
tency of the estimates is by far the more important concern
since the large sample size guarantees relatively accurate
estimates. There is no need, however, to use only consistent
estimation methods since even for the rather complex models
considered in this paper we find that maximum likelihood pro-
cedures are readily applied. They do not seem unreasonably
more expensive than alternative consistent methods which do not
utilize all of the data. Also, they seem to provide more powerful
tests of non-randomness than do the consistent methods even for
guite large samples. Thuas, our first conclusion is that maxi-
mum likelihood is the appropriate estimator except perhaps for

initial data exploration.

169



The first substantive problem considered in estimating the
returns to schooling for the NLS Young Men is that IQ scores
are missing for about one-third of the sample. Missing IQ is
not a problem of self-selection; but reasons exist that indi-
cate that it might not be missing at random. We find, however,
that IQ is missing almost at random and therefore techniques
which would lead to consistant estimates in the presence of
non-randomness are probably unnecessary. Moreover, first order
missing data type techniques which produce efficilent estimates
for the random missing data case are unlikely to lead to much
improvement in such data. This happens because the "instru-
ments" used in place of the missing data are unlikely to be
very highly correlated with the missing data due to the large

proportion of randomness in individual data.

The next problem considered is the changing composition of
the sample over time which turns out to be the result of two
opposing forces: sample attrition and sample accretion, that
is, entrance into the labor forces of the fraction of the
sample originally enrolled in school. 1In the earlier period
of 1966-1969 we find sample selectivity to be an important
factor. By the later pericd of 1971-1973 when school enroll-
ment had decreased from 62 percent to 10 percent and sample
attrition had increased from zero to 18 percent, little effect
of sample selectivity could be found. The findings in this
section should be viewed, however, as preliminary since we
are mixing together disparate reasons for sample selection.

A more complete model would separate the different sources of
sample selection into schooling, military, and sample attri-

tion decisions.

The most interesting of our models concentrates on a sub-
sample of the NLS Young Men and considers the choice of work
versus school. Since self-selection is certainly at work in
the decision to continue‘one's education, non-randomness in
the unobserved attributes of those people continuing in school
is to be expected. Estimators which do not account for this

self-selection would lead to serious inconsistency in the

estimates.

Using an expanded model which permits the simultaneous
determination of schooling and earnings, we find that self-
selection of those remaining in the sample and the correla-
tion of the unobserved attributes acrouss equations results in

serious underestimation of the returns to schooling, on the
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order of 50 percent or more. Nor can these results have arisen

by chance since statistical tests indicate significant non-ran-

domness even for very small test sizes. Thus, we —onclude that

self-selection for additional schooling seems an . portant
factor in estimating returns to schooling emphasizirg again the
importance of unobserved individual attributes in :he wage

determination process.

Lastly, we have also presented in some detail “»» statisci-
cal and computational methods used to deal with san~le selec-
tion problems. These methods should prove useful -+ sthar

researchers as they confront similar problems.
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VvII. FOOTNOTES

1. See Afifi and Elashoff (1966) for an earlier survey,
Maddala (1977) Chap. 10, Sec. 4, for a survey from the ccono-
metric point of view, and Dempster et al. (1977) for the most
recent state-of-the-art paper.

2. See Dagenais (1972), Haitovsky (1968}, and Hester
(1976) .

3. See, among others, Amemiya {(1973), Hanoch (1976, ,
Hausman and Wise {1977), Hausman and Spence (1977), Heckman
(1974, 1976), Maddala (1976), and Tobin (1958).

4. See Griliches (1976) for more detailed description of
these data and for related work.

5. This point has been made by Kelejian (1969), among
others.

6. This is an asymptotic expression, making no allowance
for the e€'s, the discrepancies due toc the "first stage" EWa
and Ea not being equal to their population values. Hence, it
too 15 an upper bound. It appears to be equivalent to Kele-

jian's {(1969) formula 28, though we have not been able to
reproduce his derivations exactly.

7. This differs from the suggestion discussed by Hester
(1976) by including also X, among the list of instruments.
The exclusion of the other x's from his instrumental vari-
able estimator may account for his somewhat strange and
biased results.

8. We have not discussed explicitly using vy, to estimatc
the missing xj},. The full-information maximum-likelihood pro-
cedure would do so implicitly. To econometricians using y to
estimate missing x values looks suspiciously like an invita-
tion to simultaneity bias. But a complete maximum likelihoodo
procedure which assumes that both y and all the x's are multi-
variate normal, would use all the information in the sample
[see, e.g., the description of the E-M algorithm in Dempster
et al. (1977)], but it would not use the constructed Rjy
directly in a regression of y on xy and x,. Rather it would
use such an %3p to f£ill in the covariances in the X'X matrix,
where the fact that x]p pay depend on e (the disturbance in v
does not matter and rely on a more elaborate procedure for
getting an estimate of its variance, where it does matter.

9. The original sample consisted of 5,225 individuals.
One hundred thirty-one observations (2.5%) were eliminated
because of missing scores on the "knowledge of the world of
work" test (124) and the rest because of missing schooling
information as of 1966.

10. It is similar to the models considered by Amemivya
(1973), Hanoch (1976), Hausman and Spence (1977), Heckman
(1976), Maddala (1976), and Nelson (1975), among others.

11. This expression is given in Heckman (1976) and Hanoch
{1976) among cother places. We present the above derivation at



some length because we found their explications rather
cryptic.

12. A program using the algorithm described above was
written in Fortran IV (double precision} for the IBM 370/168%
It required approximately 40 seconds ($14.60) and took 6
iterations to converge from starting values given by OLS (for
the IQ equation) and prcbit (for the sample selection equation).
Note that this was a rather large-scale problem with N = 5094
(s = 3324) and 12 and 8 independent variables in the IQ and
sample selection equaticns, respectively. For comparison,
estimation of the probit equation, calculation of the inverse
Mills ratio, and OLS estimation of the wage equation including

this ratio, cost $10.60.

13. This differs from the "p is significant” finding in
Table 2, because of differences in asymptotic approximations
to the information matrix.

14. We shall deal with the out-of-school and non-interview
selectivity biases in subsequent sections of this paper.

15. The estimated "ability bias” 1s somewhat larger in the
combined sample: .012 versus .009 in the "good IQ" subsample
alone. This is due, in part, to the schooling coefficient

being somewhat lower in sample B, as already noted above, and
to the fact that the observed IQ scores are likely to be
subject to significant measurement error. In such a context,
using predicted IQ may be better than using actual. Thus,
both the coefficient of IQ and the fit go up when we substi-
tute T, for IQ in the sample as a whole. This contradicts the
model Maintained in the text. See Griliches (1%77) Zor
further discussion of this topic and for estimates which allow
for both errors in IQ ard the endogeneity of schooling.

16, To treat several causes of not being in the sample
differentially is a bit beyond the state of the art at the
moment. One could, of course, compute a multinomial probit
or loglit analysis and get differential coefficients for the
various variables. The difficulty, however, is in construc-
tion of the appropriate Mills ratio variables which would now
be the result of truncation on several correlated margins.
_See Hausman and Wise (1977b) for an initial attack on a
related problem.

17. Discussion of such models arose originally in the con-

text of studies of female labor force participation. 5See
Gronau (1974) and Heckman (1974), among others.

18. See Amemiya (1974), Hausman and Wise (1977), and
Nelson and Olson {1977) for attacks on similar problems.

19. See Hausman (1975) for a more detailed exposition of
this point.

. 2 2 - :

20. Least squares estimates of Yor Tas By 35,7 3 and probit
estimates of 6 were used as starting valtes with p,5, o1/ 2oy
set to zero initially. For one of the samples diséﬁssc%)beléw,
s = 2057 and n = 2419, the program convergJged in 18 iterations,

with an approximate cost of $56.00 on the Harvard-MIT
IBM 370/168 computer.

21. In an earlier version of this paper we restrict the
sample to the subset of high school graduates, focusing on
the going-to-college margin and truncating § from below at



S > 12. The results were similar to those reported kaelow
and perhaps even more striking. But since truncating o from
below introduces additional statistical problems we hLave
reverted in this version to the analysis of the compiete range
of S,
22. Originally we estimated our model only for 1373 ut
given the rather striking results we decided to chaox
against the 1971 data to convince ourselves that thov
not a fluke.

23. For the OLS results the schooling and age coefficients
add up to .019 + .042 = .061 for 1973 while the schoc.ing
coefficient holding experience rather than age constant is
.050. Both are comparable to the results reported in ths

previous section.

24. The IQ coefficient is probably underestimated. since
no allowance is made for errors in its measurement. see
Griliches (1977) for additional discussion of these issues antd
related results.

25. 1If one respecifies the model in terms of e = 1 - en
than the implied (for 1973) o = .84 and p = -.d6, with
o = 1.72. u2 us
u
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