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It is known that innovations in the market value of manufacturing
firms and their R&D expenditures are related (Pakes (1985) and Mairesse
and flu (1984)). This could be due to shifts in the demand for the

output of a particular firm, to shifts in the technological
opportunities available to the firm, or to both. In this paper we use
innovations in patenting activity as an additional piece of information
about technological shifts in order to attempt to identify the relative
importance of these two types of shocks. We build a simple two factor

model of innovations in sales, investment, R&D investment, patent
applications, and the rate of return to holding a share of the firm, and
estimate it using a time series-cross section of U.S. manufacturing
fins (340 firms from 1973 to 1980).

Except in the pharmaceutical industry, we find little evidence of a
second factor which can be clearly identified with technological
opportunity, although there is evidence of a long run growth factor
linking both types of investment, patenting activity, and the market
value of the firm. We then go on to demonstrate that this null result
could be caused by our use of patent counts as an indicator of the value
of the underlying patents: under reasonable assumptions on the value
distribution, the changes in patenting rates can account for only an
infinitesimal fraction of the changes in the stock market value of the
firm, and hence provide essentially no additional information to the
estimation procedure. However, the pharmaceutical industry is an
important exception to this: here we find that the technological factor
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R&D, Patents, and Market Value Revisited:

Is There Evidence of a Second, Technological Opportunity Related Factor?

Zvi Griliches, Bronwyn H. Hall, and Arid Fakes

1. Introduction

As part of our ongoing research on the economic content of patent

statistics we have been trying to ask the question, "Is there additional

information in patent numbers on the rate and output of inventive activity

above and beyond what is already contained in R&D expenditures data?" Can

one use such data to distinguish between "demand side" and technological

"opportunity" factors as they affect the rate of inventive activity? In this

paper we use information on additional variables, especially physical

investment and the stock market rate of return, to help us disentangle the

effects of such factors, We do it first in two different ways: once in the

framework of an unobservable two-factors model and then in a "causality

testing" type of analysis. When both approaches turn out not to be sensitive

enough to yield unequivocal information on the presence of such distinct

"factors", we turn to an analysis of the potential information content of

patent count statistics and show that, in view of the larger variance in
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patent values, this "failure" of patent numbers to be very informative

is not all that surprising. Nevertheless, the analysis of the relationship

between patent numbers and patent values turns out to be quite interesting on

its own merits and indicates some new avenues for additional research on this

range of questions.

Earlier work (Griliches 1981, Ben-Zion 1984, Mairesse-Siu 1984, and

Pakes 1985) has shown that fluctuations in market value and R&D are related.

It is not clear however, whether these fluctuations arise largely on the

demand side, as Schmookler (1966) has argued, or represent shifts in

technological opportunity (cf. Rosenberg, 1974). Most likely both forces

are involved but it would be interesting if one could separate them and

provide some indication of their relative importance.

It is not obvious whether one can separate "demand" from "supply"

factors in this area, even conceptually. Our definition of "demand" factors

relates to macro shifts in aggregate demand, population, exchange rates, and

relative factor prices which make inventive activity more (or less)

profitable at a given level of scientific information, a fixed "innovation

possibilities frontier." We would identify changes in technological

"opportunity" as those scientific and technological breakthroughs which make

additional innovation more profitable or less costly at a fixed aggregate or

industry level demand. These distinctions are far from sharp, especially

given our inability to measure the contributions of science and technology

directly. Moreover, what is a technological opportunity in one industry may

spillover as a derived demand effect to another. Nevertheless, there is

something distinct in these factors, in their sources of change and

dynamics, which motivates our pursuit of this topic. We were led to it, in

particular, by our hope that the availability of detailed data on patenting

would be helpful distinguishing between them.
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Patent data could help here if one were willing to assume that

independent, "unanticipated" shifts in the level of patenting by firms,

represent shifts in technological opportunities and not responses to current

changes in economic conditions (demand forces). That is. the identifying

assumption we will make is that the economy impinges on the level of

patenting only through the level of R&D expenditures (and slowly changing

trends) and that the "news" component in the patent statistics is either

error (random fluctuation) or a reflection of technological "news", giving

information that a particular line of research has turned out to be more

(or less) fruitful or easier (harder) than expected when the decision to

invest in it was made originally. That is, what we are hoping to identify

here are changes in technological opportunity as reflected in "abnormal,"

"unexpected," bursts (or declines) in the number of patents applied for.2

Several implications of this formulation are immediate. If patent

statistics contain additional information about shifts in technological

opportunities, then they should be correlated with current changes in market

value above and beyond their current relationship with R&D and they should

affect R&D levels in the future, even in the presence of the change in

market value variable since the latter variable is measured with much error.

Patents should "cause" R&D in the sense of Cranger (1969) , a topic which we

shall explore in the third section of this paper.

The available evidence on this point is not too encouraging: While

Griliches (1981) found a significant independent effect of patents on the

market values of fins, above and beyond their R&D expenditures, Fakes

2. This and the following paragraph restate the formulation of the problem as
given by Fakes (1985).
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(1985), who studied this question bcsed on a slightly different two-factor

formulation, did not detect a significant influence of lagged patents on R&D

in the presence of lagged R&D and the stock market rate of return variables,

Nor did Hall, Griliches and Housman (1986) find future R&D affecting current

patenting as the "causality" argument might have implied.

Since the first two studies were based on relatively small samples

(about 100 fins) and since the Hall, Griliches and Hausman paper did not

investigate the relationship of market value to the technological

opportunity factor, it seems worthwhile to examine it a bit further, using a

slightly more general model, and a longer and more updated data set.

2. R&D, Patents, and Market Value in a Two Factors Model

The model we will consider is very simple: we look at five variables

which describe the current levels of the firm's output, stock market, and

investment performance: sales, capital expenditures, research and

development investment, patent applications, and the one period rate of

return to holding a share of the firm. All variables are defined as the

logarithm of their values (except for the stock market rate of return) and we

divide each observation into an 'anticipated" (predictable) and

unanticipated or "news' part:

(I) s_s*+s
* A

1.—i +i
* a

r—r +r
* A

p—p +p
* A

q—q +q

where s is "real" (deflated) sales, i is tangible investment (buildings and

equipment), r is R&D expenditures, p is successful patent applications, and
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q is the annual stock market rate of return (defined as (V.V1+Div)/v1)

x is the anticipated or predictable (on the basis of past data) part of a

variable while x" is its "news" (innovation) component.

We make this division into "anticipated0 versus the "news" part,

because it is only the "news" part in the number of patents applied which we

wish to identify with changes in technological opportunity. Of course, one

could try to develop more explicit investment equations and expectation

formation equations, derive the "news" component explicity, and impose all

the available cross-equation constraints. Since our approach is

exploratory, we condition instead on all the available past data,

controlling thereby both for size differences and individual firm effects

and the past information on which such expectations would be formed. This

allows us to concentrate our modelling on the inovation components of these

variables, reducing thereby significantly the dimensionality of the

estimation problem.

A simple two orthogonal factor model is given by:

(2) —
fi0d + '1

i*efl1d
+

'2

r* —
fl2d + q1t +

p— ti2t+c4

q — d+ t+c5

where d is a "demand" shift factor which affects sales, investment, and

R&D concurrently, while t is a "technology" factor which connects

patents and R&D. Both factors affect also market value and are
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normalized to have a unit impact on it. The c's are specific errors or

disturbances and are assumed to be uncorrelated with each other and with

d and t.3 (I.e., it is assumed that the two particular factors are

adequate to account for the intercorrelation structure in the S x S

matrix.) The major identifying assumptions are that "t" does not enter

the s and i equations (in the same year) and that "d" does not enter the

p equation1 except possibly via r

If the innovations in r are allowed to affect p directly, via the r
*

term, the reduced form equation for p is

— +
(iq1+q2)t + 7C3 + £4

and the resulting variance-covariance matrix of forecast errors (the x*s)

has the following structure

(3)
fl0d2+o fl0fi1d2 fl0fl2d2

fl1fl2d2 fi1ifl2d2 fl1d2

4d2+it2+c 74d2+q1(y1+,72) t2+-yu

724d2+(7,71+n2)2t2+(y)202+02 7p2d2+(.n1+12)t2

where d2 — Var (d), t2 — Var (t) and — Var
(ck).

3. For the purposes of estimation, we assume that the distribution of d, t,
and the C's is stationary over time, to allow us to pool the estimates.
Allowing for changing variances and covariances would yield slightly
different standard errors, but the pooled estimates are consistent even
in this case.
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That this model is identified can be seen by trying to solve this

system recursively. The first row yields estimates of l' 2' and 'y.

The second row, given an estimate of ft1, yields an estimate of d2 (and

another estimate of 2• Having an estimate of d2 allows one also to solve

for and subsequently for and o. Given estimates of

and 42 yields, in row 3, estimates of q1t2 and in row 4, ,2t2. Multiplying

the main diagonal term of row 3 by -y and subtracting it from the first off-

diagonal term yields an estimate of 12t2 and hence also estimates 'l' 12.

and t2 and the rest of the parameters.

Given our assumptions, this is an overidentified model which can be

estimated in two passes. First run a seemingly unrelated regression system

of x on all the variables assumed to be in the "information" set and produce

the variance-covariance matrix of the residuals ("innovations"). Then f it

the model to the estimated residual covariances matrix using a maximum

likelihood program such as MOMENTS or LISREL (see the references).

Justification for proceeding in two stages can be found in MaCurdy (1981).

3. Basic Results

In this section we present the results of such computations. The

sample we used starts out with the NBER R&D data base (Cummins et al

1985), which is based on firms that were in existence in 1976 and had

good data for at least three years around that period. We selected only

firms which had continuous data on the variables of interest for some

period within 1970 to 1980. To minimize the measurement problems

associated with the discreteness of the patent variable at low values,

the particular sample used here was limited to those firms which

averaged more than three successful patent applications per year during
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the period over which we observed them.4 We also required that the

fin's fiscal year end sometime between October 31 and February 28,

since our patent data are available only on a calendar year basis. These

restrictions brought us down to about 340 firms per year (for up to

eight years after allowing for lags) and a total number of firm-year

observations — 2377.
A

The definition of x includes two lags of sales, investment,

employment, the firm-specific sales deflator, R&D, and q, three lags of

patents, and eight year dummies (reflecting common unanticipated macro

events). The resulting variance-covariance matrix of residuals and the

associated correlation matrix is shown in Table I. Before we look at it, it

is worth noting that as expected, in the forecast equations not shown here,

very little of the stock market rate of return is explainable by past

4. This still leaves us with some observations in individual years for some
firms where the number of patent applications is zero. In order to make
use of these observations after the log transformation, we set the
number of patents in such years arbitrarily to one third.

S. The main points to be made do not appear to be sensitive to the rather
drastic selection. Earlier we had used a somewhat tighter patents
requirement of at least six patents per year. Results are also similar
when the model is run on a larger sample based on an average of 600+
firms.

6. On theoretical grounds, we have in fact excluded all variables except
the year dummies from the prediction equation for q in the results
presented here. Except for possible measurement or timing problems due
to the non-coincidence of the fiscal year and calendar year, the current
stock market rate of return should not be predictable on the basis of
the prior year variables. This is confirmed in the data. Although the
existence of risk premia for the stocks of individual fins would
theoretically introduce some systematic variation in q, we found that
including two lags of q in the q equation reduced the variance by only
one tenth of one percent, and had no visible effect on the covariances.
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and that the tags of the stock market rate of return are significant
predictors of both physical investment and R&D. As we have previously

observed in these data (Hall, Criliches, and Hausman 1986 and Hall 1986),

both employment and R&D are highly persistent with a coefficient on the

first own lag of above 0.9, while sales, investment, and patents are less

so.

Table 1 already gives the bad news. The correlation between the p and

q residuals is .007, implying that there is little room for a separate "t"

factor, or at least one whose identification depends on its "loading" on

both the q and the patents variable. The same conclusion is reached if one

uses the formulae in (3) and the data in Table 1 to try to compute the

various coefficients. A direct computation yields either negative or close

to zero values for var(t). In Columns 1, 2 and 3 of Table 2 we present

maximum likelihood estimates of the parameters of a one factor model (for

comparison purposes) and two versions of the two factor model (with and

without r* in the p* equation). To facilitate comparison with the

conventional factor model, we have renormalized the factors so. their

variance is unity, and d2 and t2 are now equal to the square of the factor

loadings on q. Both models yield a very small negative variance for the

second factor (see the estimate of t2) and almost no improvement in the fit.

Why do the data yield these 'bad" results? After verifying our

data and sample, we considered the possibility that the appropriate

structural relationship to be Looking for is between lagged q and

contemporaneous sales, investment, R&D, and patents as in Fakes 1985).

Our q is measured between the ends of the previous and current year, so

this version emphasizes the role of q as a price influencing investment

decisions, while contaminating the news component of the variables with

some information that was available during the previous year. While
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we found that covariances were generally higher using lagged q in place

of contemporaneous q (and dropping it from the information set of

predetermined variables), the results for the two factor model were

worse, if anything: the second factor now has a distinctly negative

variance.

Although we focus on patents as an indicator of technological success,

the reason for our negative result lies partly in the R&D variable itself.

If we assume that one factor Links sales, investment, and R&D, then there is

clear prediction for the covariance of r and q which is based on the

relationship between sales, investment, and q. In the cases of both

contemporaneous and lagged q, the difference between the observed covariance

between r and q and the covariance due to d2 is insignificantly different

from zero or negative, leaving little room the technological factor.

Either is extremely small, or t2 is negligible. Only by allowing r to

enter the p equation directly can we justify the fairly large covariance

between r and p. and this leaves us with only two very small covariances

between r and q and p and q with which to estimate t2.

It was a maintained assumption of our model that the technological

opportunity factor is only "news" for R&D, patents, and q. In art effort to

explore further why our firm data fail to reveal such a factor, we perform

in Table 2 a conventional factor analysis in order to test for the esistence

of a second factor of any kind. It turns out that the data will not support

two factors with a complete set of loadings for all variables, since we have

a so-called "Heywood" case, where the off-diagonal covariances imply

negative idiosyncratic variances, but there is a two factor model with zero

restrictions which will fit the observed data perfectly (x2(2)—0.07): this

model is shown in Column 4 of table 2 and it differs from our original model
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only in that investment as well as R&D, patents, and q is allowed to load on

the second factor. While we cannot label this factor as pure

technological opportunity, because it may also reflect longer run demand

forces it is still an interesting finding in and of itself. However, the

contribution of this second factor to the variance of q is infinitesimal, on

the order of .02 percent, and its loading on p is not particularly

significant either.

¶Je have also estimated some of these models on nine fairly coarse

industry groupings (see Table 4 for a listing of them) and found that a one

factor model was sufficient in all but. three of them: Petroleum-Rubber,

Metals-Stone-clay-class, and Drugs. Only in drugs was the second factor

model sensible, in the sense that the variance estimates and the loadings on

p were all positive. These estimates are shown in Table 2a. The

coefficients for this industry (column 2 of Table 2a) imply that d2 accounts

for 2.3 percent of the variance in the rate of return and t2 accounts for

1.5 percent. Thus in this industry, the patent-linked technological factor

is almost as important as the shortrun demand factor; this finding is

consistent with other evidence on the importance of patents in the

pharmaceutical industry, though again the statistical significance of this

finding (the factor loading on the patents variable) is not particularily

impressive.

Finally, the interesting finding in the preliminary regressions,

which create the "news" (unforecastable), components of these variables,

is the strength of the employment variable. In Table 3 we show the

first differenced (growth rate) version of these preliminary

regressions, which are somewhat easier to interpret than the level
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regressions.7 Changes in employment are as good or better than

changes in deflated sales in explaining changes in investment and R&D.

The most significant variables in the sales equation are the lagged

stock market rate of return and lagged employment growth. Neither

lagged investment, lagged R&D, or lagged patents are significant

although patents lagged twice are marginally so.

In the investment change equation the main important variables are

the lagged stock market rate of return, the lagged employment change,

and the lagged investment change (negatively). Lagged sales change is

insignificant in the presence of the lagged employment change, and its

coefficient is negative. Neither lagged R&D or lagged patent changes are

significant in the investment equation. In the R&D change equation, the

significant variables are the lagged employment change (.13(.OS)],

lagged stock market rats of return [.07(.Ol)], lagged sales change

[.l9(.04)], and the lagged R&D change (-O.07(.02fl. In the patent

equation1 besides lagged patent change [-O.46(.02)J, only lagged R&D

[.14(.06)) and lagged employment (.29(.12)] are significant. It appears

chat the employment change contains more information about the

"permanent" changes in the firm's fortunes than most of the other

variables. This last finding is consistent with Hall's (1986) finding

that there is almost no transitory measurement error in the employment

7. Except for the q variables, which we do not difference, the growth rate
regressions will be identical to level regressions with the first lag
coefficient constrained to be unity. Since this coefficient was near
unity except for patents, and the coefficients of the other lags tended
to be equal and opposite in sign, it is somewhat more parsimonious to
look at the regression in first differenced form.
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variable.

4. The Time Series Relationship of R&D, Patents, and Market Value

Another way of testing for the presence of a second, patents

connected factor is to return to the Pakes (1985) model and retest some

of his hypotheses on our larger and more recent data set.

In his model, there is one set of news that is associated with

contemporenous movements in q. r, and p which induces also subsequent moves

in r and p. In particular, his conclusion that the •news" works almost

entirely via R&D and hence a one factor model is adequate, is based on the

non-significance of lagged patents in the R&D equation, in the presence of

lagged R&D and the stock market rate of return variables. Another

implication of the two factor hypothesis is that current q should also

appear in the patent equation, reflecting the technological news not fully

recoverable from current R&D (due to superimposition of other sources of

variation).

Table 4 summarizes various tests of this sort performed

separately for different industrial groupings and for the sample as a

whole. A log R&D equation is computed containing three lagged values of

R&D, three lagged values of patents, and the current and three lagged

values of the stock market rate of return. The first test asks whether

lagged values of q, beyond the first lag (which was the measure used by

Pakes) enter this equation. The second test includes the first lagged

q, which enters significantly in more than half the industries. The

third test asks whether all the lagged patent variables could be deleted

from this equation while the fourth test asks whether one lagged value

of R&D is enough. The regressions are based on the same unbalanced

panel of firms as Table I, with slightly fewer observations due to the
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additional. lags of r, p, and q.

turning to the third test first, the one of most interest to us,

lagged patents are barely significant in the overall sample and the

relevant coefficient is-not economically significant (for Log p2 it is

O.02(.Ol)). Lagged patents are significant in the Chemicals and

Electrical groupings; in both cases it is the second lag rather than the

first. In Drugs, where we might have expected to see the strongest

effect, because of the economic importance of patents in that industry,

all the coefficients are insignificant, as is their sum. This may not

be unreasonable per se. It says that a burst of patents does not lead

to a permanent increase in R&D above and beyond the level which was

forecastable from lagged r and q, reflecting a transient rather than

permanent technological opportunity.

Lagged q (the stock market rate of return) is a significant

determinant of R&D overall and for most of the industrial grouping

separately. two and three year lagged values of q are also significant

overall but only for the non-electrical machinery grouping separately,

implying that there may be serious costs in adjusting R&D rapidly to

current events. Overall, lagged q, the original Fakes formulation, is a

somewhat stronger variable than current q (about twice as large on

average with substantial inter-industry variation), implying again that

it may take some time to adjust R&D to the market and technological news

that are implicit in q.

Table 5 lists similar results for the patent equation where the

first test asks whether lagged q's enter the equation above and beyond

current and lagged R&D levels; the second test asks whether adding current q

contributes to the explanation of the variability in patent applications;
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while the last test asks whether there is a significant lag in the effect of

R&D on patent applications (it is a follow up on the question explored in

Hall, Criliches, and Hausman, 1986). At the pooled all-industries level

none of these effects seem important. Neither current or lagged q are

either individually or jointly significant and lagged R&D values are only

barely so. q is marginally significant only for the firms in Primary

Metals, Stone, Clay, and Class while lagged R&D is of some importance in the

Petroleum, Drugs and Metals groupings.

Table 6 gives the estimated coefficients for both R&D and patents

equations for the overall pooled sample, indicating the type of result

yielded by this approach. Note that lagged R&D expenditures are not

statistically significant in the patent equation either. The stock market

rate of return does explain movements in R&D but not in patents and R&D is

close to a random walk while there is much more evidence of a persistence in

a firm's propensity to patent. These findings are effectively the same as

in Pakes (1985). A bigger sample and more variables have not really

increased our ability distinguish between the various hypotheses about the

underlying sources of these fluctuations.

5. Patent Counts and Patent Values.

Why are these results so poor and fragile? The answer to this

question lies in the noisiness of patents as an indicator of the value

of inventive output. Beginning with Schmookler's critics and possibly

even earlier the use of patent statistics as an invention indicator has

been questioned on many grounds. The problems cited by critics of the

patent count methodology are twofold: first, not all useful innovations

are patented; in fact in some industries very few may be. Second, the

distribution.of the value of individual patents is extremely skewed
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toward low values. There is informal evidence on this point (see

Freeman (1982) and the references there) and there are recent estimates

by Schankerman and Pakes (1986) and Pakes (1986) of the distribution of

the value of patent rights in several European countries. There are

also calculations by Crabowski and Vernon (1983) of the distribution of

the value of New Chemical Entities for pharmaceutical companies, which

probably corresponds to the upper tail of the patent value distribution.

This empirical evidence, although somewhat sparse and imprecise,

confirms what most of those knowledgable in the field would say: a few

patents are worth a great deal in present value terms while most are

(nearly) worthless.

From the point of view of the present attempt to identify a second,

more technological opportunity related factor, this skewness in the

patent value distribution is bad news. In order to identify this second

factor, we need to measure the covariance between the increase in the

present value of the firm which is signalled by the new patents and q,

the stock market rate of return; the closest we can come to measuring

this quantity is to measure the covariance between current patent counts

and q. and the quality of this measurement is dependent on the quality

of the link between counts and values.

It is possible to derive the quantitative implications of such a skewed

distribution of values for the quality of the patent count indicator by

combining what we know about patent counts in both the time series and cross

section dimension with estimates of the distribution of their values.

Following Criliches (1981), assume that at any point in time a firm

possesses a stock of knowledge, K, which was produced by the past stream of

R&D expenditures. Each year. there are surprises in the additions to this

stock of knowledge generated by current and past R&D. We assume that the
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number of patent applications in & year, nt. is an indicator of the size of

the surprise associated with new inventions that occurred during this

period.8 In addition, there are also surprise revaluations of past

"news", of the discoveries of previous years. We now proceed to estimate

the relative importance of patents as a component of the variance in the

firm's rate of return.

Let us decompose the change in the value of the firm (net of its

expected dividend and investment policy) into three components:

where is the rate of return on stock holding, Vt is the total market-

value of the firm's assets, and three components w. and u are defined

to be orthogonal to each other. w corresponds to the change in the value

of a firm's R&D "position" (program) arising from the "news" associated with

current patent applications. reflects revaluations of previous

achievements associated with past patents (above and beyond their correlation

with current patents). u reflects all other sources of fluctuation in the

value of the firm, including also possibly the contribution of not patented

R&D. We shall first focus on w and the role of patent numbers as an

indicator of it. Next, we shall ask about the possible magnitude of the

variance of w (relative to the variance of qV). That is, how large could

the contribution of current patents be to the explanation of fluctuations

8. This is an oversimplification since the average patenting level of the
firm is predictable based on its history. However, given the level of
the noise in the value distribution, it is not unreasonable to begin
with this assumption and then correct the observed variance for the
predictability later in the computations. It will make very little
difference to the result.
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in market value, even if we had perfect measures of the values? Indirectly,

we shall be also asking how big is the haystack (the fluctuations in market

value) relative to the needle that we are searching for. Finally, we shall

sketch out a procedure which should allow us, in principle, to estimate the

variance of q, the contribution of the revaluations of past patenting.

In order to decompose the variance of the first component, we make the

following stochastic assumptions: 1) The number of patents applied for each

year is distributed as a Poisson random variable with a mean which is a

distributed lag of past R&D expenditures (see Hausman, Mall, and Criliches

1985). 2) yi, the underlying value of each patent to the firm is

distributed as a log normal random variable with a mean and variance which

will be derived from the earlier literature. With these assumptions, the

total value of the patent applications of a firm in any one year is

W y

where p is Poisson and y is lognormal.

If p is Poisson and y is lognormal, the first two moments of w

(under independence) are

E(wl — E[py] — AE[y] where A — E(p]

V(w] — V( y) — A V(y] + [Ey32 A

Note that in this model, and in Hausman, Hall. and Criliches, A is taken

as a function of R&D. Hence, given an R&D policy, A is a constant for

the firm. Since we shall be allowing for the contribution of R&D

changes separately, it is reasonable to make this computation holding

R&D constant. We are interested in the value of the news contained in
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the patent variable above and beyond what is already summarized in the

R&D variable. That is, we are looking for patents to measure the

"output" value of the R&D process above and beyond, and distinct from,

its "input".

The component of the variance of w which could be accounted for by

patent numbers corresponds to the last term

Var (n yJ —

and its relative size is given by

Var (n y] /Var (w] — l/(l+V(y)/(Ey]2) — l/(l+12)

where r is the coefficient of variation in the distribution of patent values.

Now we can turn to the literature for some order of magnitude estimates

of these various parameters and make a few illustrative calculations. For

this purpose we need estimates of Ey, the average increment to the value of

the firm associated with an "unanticipated" patent, and Var(y), the variance

in this value. It will become clear, shortly, that our conclusions are not

particularly sensitive to the precise value of such parameters and hence we

will not try to defend them in great detail.

Turning first to the mean value of patents we have estimates of the

value of the news associated with patents in the U.S. of between $200,000

(Griliches, 1981) and $800,000 (Pakes, 1985) per patent. There is also some

information on this point in our data: using the covariance matrix in Table

1, we can regress q on the news in patents to obtain an approximate estimate

of the rate of return to an increase in patenting. This produces an

estimate of $98,000 per unexpected patent at the geometric mean of our data

(with a very large standard error). The data for the drug industry, where

patents are more important, yield a larger and somewhat more precise
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estimate: an $821,000 average increase in the value of the firm per

unexpected patent. This is in fact very similar to the Fakes (1985)

estimate which was based on a smaller sample of larger firms and is

therefore more comparable to our drug firm subset.

If we take the upper range of these numbers, $800,000 per "unexpected"

patent, and use A — 13, the average (geometric) number of patents received

in our sample (per year. per fin), the expected contribution of the

variance in patent numbers to the average variance in market value is

13 (•3)2 (mil$)2 — $8.3 million squared. This is to be compared to

the average variance of qV in our sample. The variance of q is 0.133 which,

evaluated at the geometric average value of our finns ($276 million),

yields a variance of market value changes on the order of $10,000 million

squared. Comparing the two variances yields an estimate of the size of the

needle as less than one-tenth of one percent (.0008). And this number is

already based on the upper range of the available estimates!

The next task is to estimate the potential size of Var(w). the variance of pacer

values rather than its approximation by patent numbers. For this we need

an estimate of Var(y). which we shall try to borrow from Schankerman and

Fakes (19a6).9 If we take their numbers for Germany from their tabLe 4 and

project the distribution of present values of patent rights back to age

zero on the basis of the relationship between their estimates of this

9. Shankerman and Pakes obtain distributions ef the value of the patent right to the
/ since their estimates are based on the decision to patent; while we are assuming

that the value of the underlying innovation to the firm is proportional to
the patent right value and highly correlated with it.
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distribution for age three and age five10 we get approximate estimates of

the mean and variance of the lognormal distribution (9.25 and 2.62

respectively, estimated from the inter-quartile range of this

distribution), which imply an arithmetic mean patent value of about $39,000

and a standard deviation of $139,000. Of course the average value of the

news in a patent for a U. S. manufacturing firm is undoubtedly higher both

due to the larger market and the higher value of corporate patents.

Multiplying through by 3, to adjust roughly for the relative size of the

two countries yields comparable U.S. "estimates" of $116,000 and $413,000

respectively.

Since we are looking for upper-bound estimates, we shall take from them

the implied estimate of 3.6 for the coefficient of variation in these

values. (Similar estimates in Pakes 1986 can be interpreted as implying a

coefficient of variation on the order of 3). Applied to our "upper" range

estimate of Ey — $0.8 million, it implies a variance in y of (3.6 x $0.8

million)2 — $8.3 million squared. The total variance of w is now

l3U2.88)2 + (.8)2) — $166 million sq.

or a little over one percent of the total variance in market value. That is.

even if we had good estimates of patent values, they would account for very

little of the fluctuations in market value. Having numbers instead of

values only makes matters worse, reducing this fraction even further. The

10. The ratio of the arithmetic means in the two years is 1.32, which
suggests a depreciation rate of fifteen percent per year for the sample
of patents which survive until the fifth year (over 98 percent of all

patents granted).
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contribution of patent numbers to the variance in their values is only on

the order of .7 percent 11(1+3.6), and their contribution to the explanation

of the variance in the unexpected changes in the market values of individual

firms is even smaller, •an infinitesimal .0008.

For the drug industry, where the variance of market values is smaller

(Var q —0.06) and the average number of patents received is larger (23),

the news in patents could account for as much as 2 percent of the observed

variance in the market value of firms but patent numbers would pick up less

than a tenth of this still rather small fraction.

There are two major problems in using this procedure to estimate the

variance of the news in the economic value of patents held by the firm:

the first is that the distribution estimated by Schankerman and Fakes is a

distribution of the value of patent rights, which may be less than the true

economic value of the associated invention to the firm. Thus our estimate

may be an underestimate of the variance in the value of inventions. Using

the upper bound of the various estimates based on our stock market rate of

return data for the drug industry we have tried to correct for this

problem. The second problem probably goes in the other direction: some of

the change in the fin's patent value this year may not be news, and thus

may already be incorporated into the market value at the beginning of the

year. But allowing for some predictability of patent numbers would only

reduce such fractions further, multiplying them essentially by 1-ft2 of the

prediction equation. Because of these problems we try an alternative

approach in the next section.

6. Estimating Variance Components

An alternative approach to this question can be developed from an

explicit modelling of the components of variance in stock market value
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surprises as a function of current and past patenting and R&D activity. In

principle, this approach allows us also to estimate the contribution of

revisions in the value of past patents to current changes in market value.

Unfortunately, the estimates in this case are based essentially on fourth

moments of the data and are, therefore, rather imprecise.

The estimating equation, which is derived in greater detail in

Appendix A has the form

2

(3) Yo+p xt+)1cp+&

where yft — (qV)2 is the squared annual change in the stock market

value of each firm, and x is the surprise component in current patent

applications

xit — - P)2

to be estimated using a patent forcasting equation described in Table Al.

Equation (3) partitions the variance in market value surprises into

three components: the contribution of the "News" in current patents --

the contribution of the revaluations in the past and previously

anticipated patents -. Sa2p and the contribution of all other sources

of market value change--a. The major assumption made in deriving this

equation is that the various individual surprises and revaluacions are

independent of each other, the common components being captured by time and
2

also possibly firm dummies. The parameters to be estimated are , the

square of the average patent value, o, o, c, c,

the variance of the surprises in the values of patents of different

vintages, and a set of dummies reflecting common macro events (the

Before we estimate this equation we need to confront the following
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problem: qV in our data ranges all the way from $7,000 to $12 billion,

owing to the large size range of our fins. Since the majority of firms

have changes in market value at the lover end of this range, the

dependent variable in equation (3) has a very skewed distribution.

Consequently we expect that it will have considerable size-related

heteroskedasticity. This will not bias the results if we have

exactly the correct model for (qft Vit)2. but it does tend to place more

weight on the extreme observations than we might like. If the true

model has some nonlinearity, for example, weighted least squares

estimates may differ substantially from unweighted ones.

We choose to mitigate this problem in this case by allowing each firm

to have its own average level of variance in annual stock market value

changes. That is, we write as

e —.it I. it

and we estimate ci. the fin specific variance of qV, along with the

other parameters of the equation. This introduces approximately 400

nuisance parameters into the regression, but, as is well known, the

estimates from a linear regression on panel data with fixed effects are

still consistent. After introducing these fin effects, we find that

the simple lagrange multiplier test for heteroskedasticity of the

residuals now has a value of 51. with 12 degrees of freedom, which is

significant but not greatly so.

11. In fact the TR2 from a regression of the residuals squared from this
regression on the independent variables is 131.2 with 12 degrees of
freedom.
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The results of estimating equation (3) are shown in Table 7. The F-

statistic for the industry effects in column 2 is F(19, 2468) — 5.65 and

that for the firm effects is column 4 is F(367, 2120) — 3.18. Because we

believe that not allowing each firm to have its own variance may bias the

coefficient estimates (for example, if the general riskiness of the firm is

correlated with its patenting activity), we focus on the estimates in

columns 3 and 4. From these estimates, we hope to get an approximate

measure of js'1, the expected return to a patent application, and a2, r

— 0,1 the variance in the revision of the value of a patent

application which is r years old. The estimates shown are not completely
2

sensible since they imply a negative value of ,f' , although with a fairly

large standard error. Thus, at best, the expected value of a patent

application is approximately zero using this methodology (remembering that

the variable in question, x, is imperfectly measured in any case). The

estimates of 2, on the other hand, imply that the news about patent

values is of roughly the same order in the first two years after a patent is

applied for, with substantial revisions in value taking place even after

three or more years (as is indicated by the large estimate for the P3

coefficient)

We are particularily interested in estimating the part of the

variance of the stock market return which is attributable to news about

the expected stream of returns from patents, which is

V•' 2r 2
(4) V(vq0 I 3) — L $

r—0

In table 7 we display this quantity, under the assumption thatfl—0.9.

It is quite large, on the order of $500 million squared.

It implies that the variance in the news about the value of patents
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(current and past) could account for over five percent of the total. variance

in market value surprises. This is not a negligable amount, given the high

market volatility from other sources.

It is also consistent with our previous. "back-of-the-envelope"

calculations of the potential contribution of the news value in current

patents, which we had estimated at $166 million squared. If we take the

last number in Table 7 ($538 mill. sq.) to be the variance associated with

an average stock of 52 (4 x 13) patents, each with an independent revision

in its value, then the implied standard deviation of an individual patent

value revision is on the order of $3.2 million. Given our earlier

assumption of a coefficient of variation of 3.6 in patent values, this is

in turn fully consistent with the assumed $800,000 news value per new

patent in the previous section.

7. Concluding Comments

In this paper we tried first to use patent and market value data at the

firm level to distinguish between "demand pull" and "technological

opportunity" push forces affecting inventive activity. Two different ways

of looking at it, via an unobservable factors model and via time-series

causality testing, yielded interesting but statistically insignificant

results. The data were not strong enough to discriminate between the

various hypotheses.

We asked ourselves, then, perhaps belatedly, the question: can such

effects be estimated at all with the data at hand? What is the potential

information content of patent data, especially in the context of using

market value changes as the variable to be explained?

Two relatively simple conclusions emerged from this examination: (1)

If we are interested in estimating the impact of the value of inventive
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output using only patent counts as an indicator, we are, at best, likely to

capture only about six to ten percent of it, using such measures. (2)

Trying to do so in the context of market value change equations makes this

task almost impossible, primarily because of the stock market's very high

volatility. Our conclusions can be restated in terms of the following

orders of magnitude. Fluctuations in the market's evaluation of the patented

portion of firm's R&D program could account, perhaps, for about five percent

of the total variance in market value surprises, of which about one-fifth

might be attributable to the news associated with current patent

applications. But, using only the number of current patent applications

would account for less then 0.1 percent of the total variance, making tests

of any hypotheses associated with these effects rather difficult to perform.

Yet another way of making the same point is to note that the estimated

0.08 patent counts variance component translates itself into a required

sample size of 5000 for a t-ratio (significance level) of 2 (t — 2 — .0008N,

N — 5000). We are not that far away from it in the aggregate regressions:

Our sample size is about 2500 and we would need "only" to double our sample

size to approach 'significance." But at the industry level the outlook is

not particularly optimistic. Only in the drug industry, where we estimate

that patent counts could account for about one percent of the variance n

market values, might a modest expansion in sample size be adequate.

We do develop an alternative approach, using a model of the variance in

market values, which allows us to estimate the variance component associated

with patent count fluctuations, but here too, because the approach relies on

fourth moments of the data for identification, larger samples and/or more

relevant variance in the independent variables may be a prerequisite for

further progress.

The major conclusion of this paper is that one should probably not be
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looking at data on stock market fluctuations if one is trying to test

detailed hypotheses about the information content of patent statistics.

Because the variability of stock market values exceeds by an order of

magnitude the variability associated with any of the "reaP causes that one

might estimate, our estimates do not tell us that the returns to inventive

activity are small or that the topic we have been pursuing is not

interesting, only that we have been looking for our particular needle in a

very large haystack and should not be really surprised when we are turned

back empty-handed.
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Table 1

Innovations in Sales, Investment, R&D,
Patents and Market Value

Number of Firms — 340
Number of Observations — 2377

1973- 1980

Variances and Covariances

s i r p q

s .014177 .016585 .007351 .00017 .008257

1 .186597 .014282 .003742 .012137

r .041618 .007567 .005521

P .270047 .001277

q .132988

Correlation Coefficients

s 1.0 .322 .302 .0028 .190

i .162 .017 .077

r 1.0 .071 .074

p 1.0 .007

q 1.0

Residual variances, covariances and correlations from regressions
containing the same variables lagged once and twice, lagged values of
employment and the sales deflator, and year dummies.

Variables:
s - deflated sales
1 - investment
r - R&D
p - patents
q - stock market rate of return.

All variables are in logarithms of original values except for q.
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Table 2

Estimates of Factor Models

Number of Observations — 2377

One Factor Model Two Factor Models

r in p eq.

Loadings on Factor 1
$ .O96(.OOS) .095(.014) .095(.O14) .1O8(.O17) .O95(.0ll)

I .173(.Ol2) .174(.02O) .174(.O2O) .154(.O25) .156(.027)

.077(.O06) .O78(.O09) .078(.0O9) .068(.O11) .102(.O34)

p .011(.013) - - - .041(.033)

q .084(.O09) .085(.O1O) .085(.OlO) .076(.O14) .O70(.014)

.0O70U0016) .0073(.OO17) .OOJ3(.OO17) .0O58(.0027) .0048(0020)

Loadings on Factor 2
- - - - .051(.041)

I - - - .043(.034) .035(.O43)

- ** ** .088(.065) - .O46(.056)

p - ** ** .085(.064) .O73(.063)

*

q - ** ** .OOS(.023) .032

- - .00005(.0009) - .000003(.00006) .00002(.00022) .00102*

Idiosyncratic Variances
s .0O49(.O010) .0050(.001O) .0050(0010) .0025(.0036) .0025(0036)

1. .1567(.0055) .1565(.0056) .l565(.0O56) .1611(0077) .1611(.0077)

r .0358(.0012) .0374(.0033) .0385(.0018) .0292(.0108) .0292(.0109)

p .2699(0078) .4384(2.78) .3179(2.17) .2629(.0131) .2630(.0130)

q .126O(.0038) .1252(.004O) .1257(.0038) .1271(.0040) .1271U0040)

log L -1785.4 -1782.5 -1782.5 1778.2 1778.2

x2 14.4 8.6 8.6 0.07 0.05

DF 5 3 2 2 1
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Table 2*

Estimates of the Factor Models
Pharmaceutical Industry

Number of Observations — 240

One Factor Model Two Factor Models

r in p eq.

Loadings on Factor 1
s .061(.007) .066(.032) .069(.013)

i .133(.024) .127(.060) .123(.030)

r .079(.Oll) .077(.034) .074(.015)

p .O1l(.037) -

q .O43(.019) .038(.0l7) .036(.019)

d2fl* .0O18(.00l6) .0014(.O0l3) .00l3(.O0l4)

Loadings on Factor 2
S - -

- - .024(.O4O)

r - .0458(.033) .050(.037)

p - .323(.392) .295(.216)

q - .O29(.023) .033(.O27)

- .0009(.OOI4) .OOll(.0O18)

Idiosyncratic Variances
s .0024(.0008) .0O18(.0008) .0O14(.O0l1)

i .0887(.0089) .09O2(.0080) .09O9(.0O93)

r .O085(.O015) .0O72(.0025) .0O72(.O026)

p .2411(.0220) .1368(.13O2) .1539(.1270)

q .O582(.0054) .0579(.0O49) .O578(.0054)

log L 243.5 254.1 254.3

x2 24.1 3.0 2.6

DF 5 , 3 2
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Notes to Table 2 and Table 2a

*This parameter was fixed at this value since the model with two free
factors was not estimable in this data (see the text).

Because the estimate of the variance of the second factor t2 is
negative these factor loadings are not computable (they are imaginary).

Since we estimated the fa9or modls with the variance of the factors
normalized to be unity, the t and d parameters are just the square of
the factor loadings for q, and are derived estimates.
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Table 3

Growth Rate Regressions

Growth Rate of
i

.20(.l0) .13(.05)

-.04(.10) .20(.04)

- .30(.02) .002(.010)

.07(.04) •.07(.02)

.03(.02) .005(.008)

.OL(.02) .03(.0l)

.43(.19) .19(.09)

.34(.03) .07(.01)

.l1(.02) .03C01)

Year Effects

.19(.03) .01(.01)

.23(.03) -.01(.01)

-.14(.04) - .05(.02)

-.20(.04) -.03U01)

-.07(.03) -.05(.01)

.06(.03) .004(.01)

.15(.03) .03(.01)

.05(.03) .002(.02)

.418 .206

.25 .28

.29(.12)

.01(.ll)

.004< .025)

• 13( .05)

•.46(.02)

• . 17(.02)

-.03(.23)

.05< .03)

.008 ( .029)

These are based on the same dataset as the first stage regressions for
Table 1. The variables e and d are employment and the firm specific
sales deflator respectively. . i, and r are deflated variables (see
Cummins at a]. 1986 for details of the deflation).
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Dependent Variable:
S ___ C

s-I

i-l

p-i

p-2

1973

1974

1975

1976

1977

1978

1979

1980

Stu. Error

R2

.35<. 03)

-.07(.03)

.007(.006)

.006(.0ll)

-.004C 005)

.012( .005)

-.46(.05)

.04(.0i)

.006(.007)

.12(.01)

.03(.01)

-.03(.0l)

.11(.O1)

.OS( .01)

10< .01)

.07< .01)

- .01(.0i)

123

.36

-.08(.04)

.001(.04)

-.06(.04)

-.09(.05)

-.07(.04)

•.08(.03)

- .13(.04)

• .35(.04)

535

.21

-.21(.02)

•.23(.02)

.54< .02)

.42< .02)

.04(.02)

.12< .02)

.29< .02)

30( .02)

366
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tab].. 4
**

The R&D Equation: Summary of test Statistics

Number of PLns — 340
1973- 19 80

P Statistics for the Hypothesis of Zero Coefficients

test 1 test 2 test 3 Test 4
All p r2r3r4

Sample
Groupings F(Prot F(Prob) F(Prob) F(Prob)

1) Food 6 278 .18 .20 44j* .30

Chemicals .998 (.83) (.89) (.01) (.74)

2) Petroleum & 190 1.63 2.54 1.42 .76

Rubber .998 (.20) (.06) (.24) (.47)

3) Metals, Stone 173 1.40 2.41 .90 4.96*

Clay Glass .993 (.2S) (.07) (.4S) (.01)

4) Drugs 228 .24 1.12 1.89 6.14*

.999 (.79) (.34) (.13) (.00)

5) Machinery, 460 4.65* 4.00* .83 2.14

Engines, & .984 (.01) (.01) (.49) (.12)

Fabric. Metals

6) Computers & Sci. 370 .91 498 1.29 10.43*

Instruments .991 (.40) (.00) (.27) (.00)

7) Elec. Mach. & 290 .22 1.67 3.23* 1.26

ElectronLcs .996 (.80) (.17) (.03) (.29)

8) Motor Vehicles 181 1.00 9* 1.33 2.32

S Aircraft .997 (.37) (.02) (.27) (.10)

9) Other 157 .32 3.88* 1.82 1.81

.989 (.73) (.01) (.15) (.17)

Total Sample 2154 9 .53' 24.73* 555* 1.60

.995 (.000) (.000) (.05) (.20)

See the following page for notes to the table.
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Notes to Table 4:

The estimated equation is of the form

r — year dummies, q,q11q21q3, r11r2,r_3, p1'p2.p3.

where all the lower case variables except q are logarithms of the

original variables.

The sample is an unbalanced panel of firms with good R&D and market
value data, a fiscal year end between October and February, and an
average number of patents over the whole period of at least three per
year. The period covered is 1973-80, for between 160 to 340 firms. In
a few cases where the number of patents was zero in a particular year, p
was set to .33.

+N.r is the number of fin-year observations; there are up to eight years
per firm.

*statistically significant rejection of the null hypothesis. The
numbers in parenthesis are the "probability levels" corresponding to
the particular test statistics.
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Table 5

Patent Equation: Suiuary of Test Statistics

F Statistics for the Hypothesis of Zero Coefficients

Test 1 Test 2 Test 3

lagq Allq lagr

sample
Groupings F(prob) F(prob) F(prob)

1) Food & 278 .97 .87 .70

Chemicals .990 (.41) (.48) (.56)

2) Petroleum & 190 1.76 1.34 394*

Rubber .989 (.16) (.26) (.01)

3) Metals, Stone 173 .90 2.46* 4.65*

& Class .976 (.45) (.05) (.00)

4) Drugs 228 .98 .89 533*
.981 (.41) (.47) (.00)

5) Machinery, 460 1.90 1.42 1.74

Zngines, & .952 (.13) (.23) (.16)

Fabric. Metals

6) Computers & 217 1.52 1.21 1.65

Sci. Inst. .984 (.21) (.31) (.18)

7) Elec. Mach. & 270 2.18 2.25 .66

Electronics .964 (.09) (.06) (.58)

8) Motor Vehicles 181 .44 .33 .15

& Aircraft .981 (.73) (.86) (.93)

9) Other 157 1.02 .78 1.44

.960 (.39) (.54) (.23)

Total Sample 2154 .51 .61 385*
.974 (.68) (.65) (.01)

Notes:
The equation estimated is of the form:

p —year dummies, q,q1,q2,q3, r,r1,r2,r3, p1,p21p3.

See the notes to Table 2 for additional detail.
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Table 6

Estimated Log R&D and Log Patents Equations
for U.S. Manufacturing Firms

1973-1980

Dependent Variable

Log R&D Log Patents

Number of Observations 2154 2154

q .046(.012) .029(.032)

c-i .092(.012) .037(.033)

c2
.

.048(.Oll)
. .01O(.029)

q3 .O1i(.Oll) -.007(.030)

Log R&D
- - .212(.O56)

Log R&D_1 .961(.O21) .053(.O77)

Log R&D2 .018(.028) -.143(.073)

Log R&D3 .Oil(.020) -.021(.052)

Log P1 .012(.009) .489(.022)

Log '-2 .024(.009) .250(.024)

Log P3 -.026(.009) .139(.022)

Standard Error .204 .528

Notes:

This sample is the same as that in Tables 2 and 3. It is "unbalanced," in
the sense that the number of available data points varies from year to

year. Both equations contain year dummies.

Standard errors are in parentheses.
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Table 1

Equation for the Variance in Market Valuation of Patents

2498 Observations
1973- 19 80

Unweighted Estimates

Model (1) (3) (4)

-.012 (.006) -.008 (.006) -.019 (.008) -.015 (.008)

P -2.21 (.68) -1.96 (.67) 1.32 (.77) 0.22 (.69)

p-i 1.33 (.87)

0.46 (.89)

5.52 (.79)
3

-f 1.55 (.21) 1.16 (.22) 2.58 (.29)

Industry dummies no yes no no

Firm dummies no no yes yes

Estimated Vt .89 (.30) .36 (.30) 5.63 (.25) 5.38 (.25)

Estimated p - - -

All equations contain year dummies.

The dependent variable is the change in market value of the firm during
the year. squared. The coefficients of patents and of the dependent

variable are in units of a hundred million dollars squared (1016 $2)

*
This estimate is calculated using equation (5) with fi — 0.9.
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Appendix A

Estimating the Distribution of the Value of Nan in
Patenting

In this appendix we present the theoretical justification for the

regression equation (3) which allows us to perform a variance

decomposition of the variance in the firm's one period rate of return

into the fraction due to news in the value of patents (both those taken

out this year and in prior years) and all other news.

Let there be some underlying measure space which suffices to define

the joint distribution of the sequence of net returns to all possthle

patents and the number of patents applied for, say (0, 5, Q). The

sequence1 ( ... 1÷l 3t÷2' ... S 5), is a sequence of increasing

sub a-fields ("information sets"). We assume that all moments needed in

the subsequent presentation are finite. Any other assumptions are

stated explicitly where necessary.

For the generic patent taken out in year q, let

(Al) Vqo — 0 S ft S 1

where (rq+j) are the sequence of net returns associated with the patent,

and define

(A2) vqa — fttqj
so that (v ) is the sequence of discounted values of net returns

q,a

remaining after "a" years (a 0). Then
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(A3) Vqo
—

'7q,O
+ 4a q,a

where

q —(S -E )v • forati
q,a a a-I q,a

— Z

and

Etx — f x Q(dxIS).

the conditional expectation of x where we condition on S, the

information available at time t. Note that for a > 0

0 ifr<a
(A4) E[q 15 1 —

q,a q+t ifr�a
q,a

That is, the innovation in the returns to a patent taken out in year q

which occur in year q+a are in the information set for years q+a and

later. We define the initial expected value of the patent as

(A5)
E[Vqo '3q-11 — 5[1qQ '3q-11 —

{lqj) is a sequence of mutually uncorrelaced random variables by

construction.

With these preliminaries out of the way, we can write down the

value of the patent stocks held by a firm and partition this value into

the predictable (measurable 3q•l and unpredictable part. We expect

only the latter part to be reflected in the current stock market rate of

return (at year q). Let be the expected discounted value of net

returns associated with the patents owned by the firm in year t. Then
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(A6) Wqtq

where

p(q)

Wqtq — Vjq.q

p(q) denotes the number of successful patent applications taken out in

year q and Viqt..q is the value of the ith patent taken out in year
q

remaining in year t. Note that p(q) is known with certainty at any t t

q, but not at t — s - 1 (that is, () is measurable w.r.t.

Under the assumption that the stock market value of the firm in

year t-l incorporates all the information in 5ql' the theoretical model

for the relationship between news in the value of patents and the stock

market value of the firm gives

(Al) — - +

— (Wo - EiWo) + (W11 - EjW1 1 + +

p(t)

— (E -

J

p(t-1) p(t-2)

+
'i,t-l,l '1i,t-2,2 + + Ct

To simplify the analysis we assume:
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Al: The distribution of (Ps. v1o. v201 v30 ..) conditional

on 3tl factors into the distribution of Pt conditional on and that

of (vio v20 v30• ... ). Moreover (vito. v20
consist of a sequence of exchangeable random variables.

Assumption Al Implies that each member of the sequence {v1o) has

a common mean which is independent of the number of patents applied for

(there is no cx ante relationship between the quantity of patents and

their expected values). Given assumption Al, we have that

p(t)

(A8) E1 vioti �
P(t))]

— is

where is" is defined above and — Et1p(t). Hence

p(t) p(t)

(A9) (S vito(i �
P(tfl]— i.t.o + (p -

where — - s. Substituting into equation (0) we

have

p(t) p(t-l
V p VS'— v-.

(AlO) — - + L i,t,o L. '7i,t-l,i. + ' . + Ct
i—i i—i

Thus, we have decomposed the one period rate of return to owning

the firm into a part consisting of the surprise due to the number of

patent applications this year, a part consisting of the news in the

value of patents applied for this year, parts which are news about the

value of old patents held by the firm which is learned this year, and,

finally, an residual which contains all other news which affects the

value of the firm, but is uncorre].ated with current or past patents.
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The simplest way to see the variance relationships is to assume

p(q)

£2: The double sequence {nit.qJ is a sequence

i—l,q—O

of mutually uncorrelated random variables. Moreover, is independent

of rtt r1

Then

2
(All) E[(qV) I . rt rtl. .

— V (p - P) + Pt + -i,i nt-i ÷ ... +

2
2

This is our regression function. Parameters are a,

°l "independent" variables are (p - pP) ' Pt.
and so forth.

In order to actually estimate the regression, we need to know

pP)2 the squared surprise in patent applications for the ith firm

in year t conditional on Since this quantity is unobservable, we

estimate it by regressing the observed on lagged p, lagged r, time

dummies, and industry dummies (to control for the differing propensity

to patent in different industries). We then form a predicted number of

patents in each year for each firm p using the estimated

regression coefficients and the observed p and r of the firm. The

estimated log patents equation which we use is shown in Table Al. We

found that the I it was improved substantially when we included squared

lagged patents and squared lagged R&D (1(2,2575) — 63.2). Although the

industry dummies are not very significant (1(19,2555) — 2.0), we

included them because some industries patent substantially less than
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others and not controlling for this would overestimate the variance of

the news in the patent counts. Thus the equation we used for predicting

in the following computation is based on column (3) of Table Al.
2 2

Now let y — (qV) , and — (Pt
- p) . Rewriting

equation (All), we have (under Al and A2)

(A12) y — + x + p(t-r) ÷

where c is the "error" in the equation and

I Xi:t Pt Pt_it ..] — 0

For the empirical work reported in the paper, we assume in addition

AS: — , v —

A3 merely specifies that the distribution from which patent values are

drawn does not change during our time period, which is about eight to

ten years. Using this assumption, the regression equation becomes

(A13) y + p1' x + 2 Pt.? +

which gives us time-homogeneous coefficients (except the constant term).

The subscript i indexes firms and t indexes years. When we estimate

equation (A13), we include three lagged values of patent application

counts in addition to the current value.
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Table Al.

Estisates of the Expected Number of Patents

2586 Observations
1973-1980

Model (2) (3)

P_i .77 (.02) .75 (.03) .75 (.03)

.24 (.03) .26 (.03) .26 (.03)

P_3
- .06 (.02) -.08 (.02) - .07 (.02)

a_I .08 (.02) .12 (.03) .11 (.03)

a2 -.17 (.04) -.14 (.04) -.14 (.04)

a3 .07 (.03) .04 (.03) .04 (.03)

p1 .20 10 (.13 10) .19 103C13 l0)

Squared .11 I0 (.22 l0) .13 i0(.24 10)

P2 Cubed -.37 i06 (.56 i0_6) -.42 i06(.57 10.6)

P1 Fourth power .50 (.37 i0) .54 i0(.38 i0)

R1 Squared -.14 l0 (.18 10) -.10 10(.08 10)

RI Cubed .19 io6 (.08 1o6) .16 1o6(.os 1o6)

K1 Fourth power -.07 l0 (.02 i0) -.07 10(.02 1C9)

K1 Squared p_i .01 106 (.07 i06) .01 106(.07 106)

P1 Squared • K1
.55 io6 (.17 102) .54 1o6(.17 1o6)

Industry dummies no no yes

Standard error 16.8 16.5 16.6

a-squared .970 .97 .97

The dependent variable is the number of patent applications taken out by
the firm during the year which were later granted.

All equations include year dummies. In column (3), twenty industry
dummies (at roughly the two and one half digit level) were included in
the regression.
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