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A Note on Measurement Error and Proxy Variables 
 

Bronwyn H. Hall 
 
It is very common for researchers to include multiple indicators for the same underlying concept 
in their regressions. It is equally common for them to discover that one variable enters with a 
positive sign and the second with a negative sign. Most students who have completed a basic 
regression course understand that obtaining opposite signs on the coefficients in a two variable 
regression implies positive correlation for the two independent variables, as in this case. What is 
less obvious is that when the measurement error in the two proxies is positively correlated, the 
same result (opposite signs) can be obtained even if the true relation between the dependent 
variable and the underlying concept was positive. The purpose of this note is to simply to point 
out this fact and indicate how the bias varies with respect to different properties of the 
measurement error.  
 
The true model is assumed to be the following: 

 
The researcher has two proxies available for x*, x1 and x2. These proxies are measured with error, 
and the measurement errors may be correlated with each other, but not with the underlying 
disturbance ε: 
 

 
In general I will assume that x1 is a better proxy than x2, that is, that σ1 is smaller than σ2.1 The  
researcher estimates the following regression: 

 
What will be the resulting estimates for γ1 and γ2? The conditional expectation of y given x1 and x2 
depends on the conditional expectation of x* given x1 and x2: 
 

 
 

                                                      
1 For example, a common application is to use both R&D and patents to proxy for the innovative activity of 
a firm. It is well-known that R&D is a “better” measure than counting patents in most relationships (see 
Griliches, Hall, and Pakes 1987). But the error in the two variables in measuring innovative activity may be 
related – they both require conscious innovation activities on the part of the firm. In addition, GHP show 
that the noise to signal ratio in the patent count variable is likely to be about one per cent, which will 
increase the bias even for small amounts of correlation.  
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Where I have conditioned on the actual x1 and x2 that were observed. These covariances and 
variances are easily computed give the assumptions of the model above.  
 
 
 
 
 
 
 
 
Using these formulas, one can show that the estimated γ has the following form: 
 

 
 
The condition for the expected value of the estimated γ2 to be negative is easy to derive:  
 

 
Thus we can expect a negative coefficient on the proxy that is poorly measured when correlation 
of the measurement error is high OR when the variance ratio is small, that is, when one variable is 
measured much worse than the other.  
 
Simulation results also reveal that for samples of any size, the estimated γ1 in this regression will 
be positive (and less than unity) and the estimated γ2 will be negative if the correlation coefficient 
ρ is high enough. As the sample size grows, things get worse, not better, since the measurement 
error bias becomes better and better determined. See Figures 1 and 2, which show the t-statistic 
on γ2 as a function of ρ for two variance ratios (10 and 1 per cent) and 4 sample sizes.  
 
As usual with measurement error, the sum of the two coefficients is a biased estimate of the true 
β: 
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Surprisingly, when the measurement error is perfectly correlated (postiively or negatively), that 
is, when |ρ|=1, the bias in the sum is zero, even though the bias in each individual coefficient 

may be large. The estimated sum as a function of ρ is shown in Figure 3. 

2

2

2 2
1

2 2 2
1 2 2

( *, )

( )

x

x

x

x x

Cov x x

Var x

σ
σ

σ σ
σ ρσ σ σ σ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

⎡ ⎤+
= ⎢ ⎥+ +⎣ ⎦

2 2
2 1 2

1
2 2

2 1 1 2

( )
( )ˆ

ˆ ( )
( )

x

x

Var x
E

Var x

βσ σ ρσ σ
γ
γ βσ σ ρσ σ

⎡ ⎤−
⎢ ⎥

⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

2 1 2ˆ[ ] 0 /E γ ρ σ σ< ⇔ >



B. H. Hall 11 May 2004  
 

3 

Figure 1 
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Figure 2 
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Figure 3 
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