Math 104-Spring 2005-Anderson Problem Set 7 Due Tuesday March 8

1. Let $S=[1, \infty), d(x, y)=|x-y|$ for $x, y \in S$.
(a) Show that (S, d) is a complete metric space.
(b) Let $f: S \rightarrow S$ be defined by

$$
f(x)=1+x+\frac{1}{2 x}
$$

Show that

$$
d(f(x), f(y)) \leq d(x, y)
$$

for all $x, y \in S$, with strict inequality if $x \neq y$.
(c) Show that f has no fixed point. Explain why this does not contradict the Contraction Mapping Theorem.
2. Do the following problems from Ross: 13.11, 13.12, 13.14, $13.15,14.1,14.3,14.4,14.5,14.6,14.8,14.10,14.12$

