Math 104-Spring 2005-Anderson
 Lecture Notes on Contraction Mapping Theorem

Definition 0.1 Let (S, d) be a metric space. A function f : $S \rightarrow S$ is a contraction if

$$
\exists \alpha \in[0,1) \forall x, y \in S d(f(x), f(y)) \leq \alpha d(x, y)
$$

s is a fixed point of f if $f(s)=s$.
Theorem 0.2 (Contraction Mapping Theorem) If (S, d) is a complete metric space, and $f: S \rightarrow S$ is a contraction, then f has a unique fixed point.

Proof: We first show that a fixed point exists. Since $S \neq \emptyset$, we may choose an arbitrary $s_{0} \in S$. Consider the sequence $\left(s_{n}\right)$ defined by

$$
\begin{aligned}
s_{1} & =f\left(s_{0}\right) \\
s_{2} & =f\left(s_{1}\right) \\
& \vdots \\
s_{n+1} & =f\left(s_{n}\right)
\end{aligned}
$$

If $s_{1}=s_{0}$, then $f\left(s_{0}\right)=s_{1}=s_{0}$, so s_{0} is a fixed point.
If $s_{1} \neq s_{0}$, we claim that

$$
d\left(s_{n+1}, s_{n}\right) \leq \alpha^{n} d\left(s_{1}, s_{0}\right)
$$

The proof of the claim is by induction. Note that

$$
\begin{aligned}
d\left(s_{2}, s_{1}\right) & =d\left(f\left(s_{1}\right), f\left(s_{0}\right)\right) \\
& \leq \alpha d\left(s_{1}, s_{0}\right)
\end{aligned}
$$

Now suppose that $d\left(s_{n+1}, s_{n}\right) \leq \alpha^{n} d\left(s_{1}, s_{0}\right)$. Then

$$
\begin{aligned}
d\left(s_{n+2}, s_{n+1}\right) & =d\left(f\left(s_{n+1}\right), f\left(s_{n}\right)\right) \\
& \leq \alpha d\left(s_{n+1}, s_{n}\right) \\
& \leq \alpha \cdot \alpha^{n} d\left(s_{1}, s_{0}\right) \\
& =\alpha^{n+1} d\left(s_{1}, s_{0}\right)
\end{aligned}
$$

so the claim follows by induction.
Next, we show that $\left(s_{n}\right)$ is a Cauchy sequence. Let $\varepsilon>0$. Since $0<\alpha<1, \lim _{n \rightarrow \infty} \alpha^{n}=0$ by Example 9.7(b). Choose N such that

$$
\alpha^{N}<\frac{\varepsilon(1-\alpha)}{d\left(s_{1}, s_{0}\right)}
$$

If $m \geq n>N$,

$$
\begin{aligned}
d\left(s_{m}, s_{n}\right) & \leq d\left(s_{m}, s_{m-1}\right)+\cdots+d\left(s_{n+1}, s_{n}\right) \\
& <\alpha^{m-1} d\left(s_{1}, s_{0}\right)+\alpha^{m-2} d\left(s_{1}, s_{0}\right)+\cdots+\alpha^{n} d\left(s_{1}, s_{0}\right) \\
& =\left(\frac{1-\alpha^{m}}{1-\alpha}-\frac{1-\alpha^{n}}{1-\alpha}\right) d\left(s_{1}, s_{0}\right) \quad(\text { by Exercise 9.18) } \\
& =\frac{\alpha^{n}-\alpha^{m}}{1-\alpha} d\left(s_{1}, s_{0}\right) \\
& <\frac{\alpha^{n}}{1-\alpha} d\left(s_{1}, s_{0}\right) \\
& <\frac{\alpha^{N}}{1-\alpha} d\left(s_{1}, s_{0}\right) \\
& <\varepsilon
\end{aligned}
$$

so $\left(s_{n}\right)$ is Cauchy.
Since (S, d) is complete, $\left(s_{n}\right)$ has a limit $s \in S$. We will show that $f(s)=s$. Fix $\varepsilon>0$. There exists N_{1} such that

$$
n>N_{1} \Rightarrow d\left(s_{n}, s\right)<\frac{\varepsilon}{2}
$$

Since $\left(s_{n}\right)$ is Cauchy, there exists N_{2} such that

$$
n>N_{2} \Rightarrow d\left(s_{n+1}, s_{n}\right)<\frac{\varepsilon}{2}
$$

Choose any $n>\max \left\{N_{1}, N_{2}\right\}$. Then

$$
\begin{aligned}
d(s, f(s)) & \leq d\left(s, s_{n+1}\right)+d\left(s_{n+1}, f(s)\right) \\
& =d\left(s, s_{n+1}\right)+d\left(f\left(s_{n}\right), f(s)\right) \\
& <\frac{\varepsilon}{2}+\alpha d\left(s_{n}, s\right) \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
& =\varepsilon
\end{aligned}
$$

Since ε is arbitrary, $d(s, f(s))=0$, so $f(s)=s$. Thus, f has a fixed point.

To show the fixed point is unique, suppose $f(s)=s$ and $f(t)=t$. Then

$$
\begin{aligned}
d(s, t) & =d(f(s), f(t)) \\
& \leq \alpha d(s, t)
\end{aligned}
$$

so

$$
(1-\alpha) d(s, t) \leq 0
$$

so $d(s, t) \leq 0$. Since d is a metric, $d(s, t)=0$, and thus $s=t$, so the fixed point is unique.

