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Section 2.1 Methods of Proof

e Deduction

To prove A = Z, deduction goes like A= B=---=Y =7

Contraposition

To prove A = Z, contraposition is to prove =Z = —A. It goes like -7 = Y = ... =
-B=-A

Induction

A typical structure of proof is

For n = 0 (or other initial value), show that the statement is true. This is the base step.
For n = k, suppose that the statement is true. This is the inductive hypothesis.

For n = k 4+ 1, use what we get from the inductive hypothesis to show that the statement
holds for the case of n =k + 1

Conclude that the statement is true for all n.

Contradiction

To prove A = Z by contradiction, we first suppose Z is not true. Then we check whether
it leads to results that contradict with A or what we get from A.

Contraposition can be regarded as a special case of contradiction. Contraposition means—2 =
—A so that we get results that contradicts with A.

Definition Convergence of a Sequence of Real Numbers in Euclidean Metric Space.

A sequence of real numbers {z,} converges to a real number z if Ve > 03N (¢) € N, for all
n>N(e) = |z, — 2 |<e. Wedenote it as z,, — x or lim,, 0 T, = T.

The following two examples will use this definition. We are going to learn the general defin-
ition of convergence of sequences in metric spaces in Lecture 3. However, they are pretty
similar.

Example 2.1.1 Prove the following statement by deduction:

{zn} is a sequence of real numbers. If lim, o 2, = & > 0,then there exists N € N such
that n > N = xz,, > 0.

Solution:

Since lim,, oo &, = & > 0. The definition of convergence means Ve > 03N () € N,
foralln > N(¢) = | 2, —x |[< e. Let ¢ = § > 0. Then there exists N (¢) such that
n>N() =z, —2|<e=2% Since |z, —z|< =% <z, <2 Wehave £ > 0. So
there exists N (g) such that n > N (¢) = =, > 0.

Example 2.1.2 Prove the following statement by contradiction:

{z,} is a sequence of real numbers. If every subsequence of {x,,} converges to a real number
x, then lim, ., z, = x.

Solution:

Suppose lim,,_,o &, # z. Since the definition of convergence means Ve > 03 N (¢) € N,
for all m > N (¢) = | , — z |< ¢, the non-convergence means 3 g9 > 0, for all N € N, 3
n(N) > N such that | x,, —z |> 9. Then we can construct a subsequence {x,,, } as follows:
Let ny > 1, such that | z,,, — 2 |> 0.

Let ny > ny, such that | z,, —z |> .



Let ngy1 > ng, such that | z,, , —z [> <o.

So we obtain a subsequence {zy, } such that lim,_,. ©,, 7# . Contradiction.

As you can see, when we write the negation of the definition of convergence, an easy way is
to switch V(for all) and 3 (there exist).

Constructing a counter example is not easy. It requires inspiration and experience.

Example 2.1.3 Prove the following statement by induction:
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Solution:

First, consider the base case n =1.12=1= %.

Now suppose that the statement holds for some n (the inductive hypothesis).

We want to show that it holds for n + 1 as well (the inductive step). By the induction

hypothesis, we have
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We conclude, by induction, that 12 4+ 22 + ... + n? = % for any n > 1.

Induction is the easiest one since you have already got the result.

Make sure that you are familiar with how to calculate the summation of a sequence by
induction.

Setion 2.2 Binary Relation

e Lecture 1 Definition 4: A binary relation R on a set X is a subset of X x X. Write xRy
as an abbreviation for (x,y) € R.

e Lecture 1 Definition 5: A binary relation R on a set X is also an equivalence relation
if it is
— reflexive: for all x € X, zRx.
— symmetric: for all z,y € X, xRy if and only if yRx.
— transitive: for all z,y,z € X, if x Ry and yRz, then also xRz.

e Lecture 1 Definition 6: Given an equivalence relation R, write [z] = {y € X : zRy}. [z]
is called the equivalence class containing x.

Example 2.2.1 Binary Relation & Equivalence Relation

The followings are three examples of a binary relation R on X. Are they equivalence
relations?

Solution:

1. Suppose X = {1,2,3}. Let R = {(1,1), (2,1), (2,2), (3,1), (3,2), (3,3)}.

According to the definition, R is a subset of X x X. So R C {1,2,3} x {1,2,3}. Let’s
represent it in a graph (the first element is represented by the horizontal axis):




In fact, R is the binary relation > (is weakly greater than).
Check the three conditions:

reflexive yes

symmetric no

transitive yes

So R is not an equivalence relation.

2. Suppose X ={1,2,3} . Let R ={(1,1), (2,2), (3,3)}.
Solution:

Similarly we can represent the binary relation = on X graphically as (the first element is
represented by the horizontal axis):
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In fact, R is the binary relation = (is equivalent to).

Check the three conditions:

reflexive yes

symmetric yes

transitive yes

So R is an equivalence relation.

3. Suppose X = {1,2,3,4}. Let R = {(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3), (4,4)}.
Solution:

We can represent R in a graph (the first element is represented by the horizontal axis):

N QO

Check the three conditions:
reflexive yes

symmetric yes

transitive yes

So R is an equivalence relation.
Section 2.3 Numerically Equivalent

e Lecture 1 Section 1.4: A function f: A — B is a bijection if it is
— one to one, i.e. a # a' = f(a) # f(a)
— onto, ie. Vbe B,dac Af(a) =0

e Lecture 1 Section 1.4: Two sets A, B are numerically equivalent (have the same Car-
dinality) if there exists a bijection f: A — B.

Example 2.3.1 Numerically Equivalent
Prove that (0,1) is numerically equivalent to R.
Solution:

Recall the function tan(z). The range of tan(x) is R. The domain of tan(z) is all real
numbers excluding & + nm where n is an integer. Let f(z) = tan(rz — §), z € (0,1). fis
a bijection from (0,1) to R.



The basic way to prove set A is numerically equivalent to set B is to construct a bijection
between A and B.

Coutable means being numerically equivalent to IN. Picture proof could be useful if we want
to prove or disprove that a set is countable.

Example 2.3.2 The Uncountability of the Real Numbers.
Prove that (0,1) is not countable.
Solution:

We do it by picture proof and contradiction. Suppose that (0,1) is countable. Then for
every x € (0, 1) there exists a unique n € N corresponding to x which is the bijection from
N to (0,1). Denote it as x,,, n = 1,2,3.... Then write out each z,, in a decimal expansion
in a picture such that

1 = 0.a11012013014. ..
x2 = 0.a21a22a23a24...
3 = 0.a31a32a330a34. .
x4 = 0.a41042a43044. ..

where each a;; is a natural number between 0 and 9. Now consider the real number x =
0.b1b2b3 . . .where each by is chosen such that by = 1 if agg # 1 and by = 2 if agx = 1. Then
x # xy for all k € N since it differs from zy in the kth decimal place. But = € (0,1).
Contradiction. So there is no bijection from N to (0,1). (0, 1) is not countable.

In Example 2.3.1 we proved that (0, 1) is numerically equivalent to R. So we can further
conclude that R is not countable.



