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Section 2.1 Methods of Proof

� Deduction
To prove A) Z, deduction goes like A) B ) � � � ) Y ) Z

� Contraposition
To prove A ) Z, contraposition is to prove :Z ) :A: It goes like :Z ) :Y ) � � � )
:B ) :A

� Induction
A typical structure of proof is
For n = 0 (or other initial value), show that the statement is true. This is the base step.
For n = k; suppose that the statement is true. This is the inductive hypothesis.
For n = k + 1; use what we get from the inductive hypothesis to show that the statement
holds for the case of n = k + 1
Conclude that the statement is true for all n.

� Contradiction
To prove A ) Z by contradiction, we �rst suppose Z is not true. Then we check whether
it leads to results that contradict with A or what we get from A.
Contraposition can be regarded as a special case of contradiction. Contraposition means:Z )
:A so that we get results that contradicts with A.

� De�nition Convergence of a Sequence of Real Numbers in Euclidean Metric Space.
A sequence of real numbers fxng converges to a real number x if 8" > 09N (") 2 N, for all
n > N (")) j xn � x j< ". We denote it as xn ! x or limn!1 xn = x:

The following two examples will use this de�nition. We are going to learn the general de�n-
ition of convergence of sequences in metric spaces in Lecture 3. However, they are pretty
similar.

Example 2.1.1 Prove the following statement by deduction:
fxng is a sequence of real numbers. If limn!1 xn = x > 0;then there exists N 2 N such
that n > N ) xn > 0.
Solution:
Since limn!1 xn = x > 0. The de�nition of convergence means 8" > 09N (") 2 N,
for all n > N (") ) j xn � x j< ": Let " = x

2 > 0. Then there exists N (") such that
n > N (") )j xn � x j< " = x

2 . Since j xn � x j<
x
2 )

x
2 < xn <

3x
2 . We have

x
2 > 0: So

there exists N (") such that n > N (")) xn > 0.

Example 2.1.2 Prove the following statement by contradiction:
fxng is a sequence of real numbers. If every subsequence of fxng converges to a real number
x, then limn!1 xn = x.
Solution:
Suppose limn!1 xn 6= x. Since the de�nition of convergence means 8" > 09 N (") 2 N,
for all n > N (") ) j xn � x j< ", the non-convergence means 9 "0 > 0, for all N 2 N, 9
n(N) > N such that j xn�x j� "0. Then we can construct a subsequence fxnkg as follows:
Let n1 � 1, such that j xn1 � x j� "0.
Let n2 > n1, such that j xn2 � x j� "0.
...
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Let nk+1 > nk, such that j xnk+1 � x j� "0.
So we obtain a subsequence fxnkg such that limn!1 xnk 6= x. Contradiction.
As you can see, when we write the negation of the de�nition of convergence, an easy way is
to switch 8(for all) and 9 (there exist).
Constructing a counter example is not easy. It requires inspiration and experience.

Example 2.1.3 Prove the following statement by induction:
12 + 22 + : : :+ n2 = n(n+1)(2n+1)

6 .
Solution:
First, consider the base case n = 1: 12 = 1 = 1(1+1)(2+1)

6 .
Now suppose that the statement holds for some n (the inductive hypothesis).
We want to show that it holds for n + 1 as well (the inductive step). By the induction
hypothesis, we have

12 + 22 + � � �+ n2 + (n+ 1)2 = n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=
n(n+ 1)(2n+ 1)

6
+
6(n+ 1)2

6
:

n(n+ 1)(2n+ 1) + 6(n+ 1)2 = (n+ 1)(6(n+ 1) + n(2n+ 1))

= (n+ 1)(3(n+ 2) + n(2n+ 4))

= (n+ 1)(n+ 2)(2(n+ 1) + 1);

It follows that 12 + 22 + � � �+ n2 + (n+ 1)2 = (n+1)(n+2)(2(n+1)+1)
6 .

We conclude, by induction, that 12 + 22 + � � �+ n2 = n(n+1)(2n+1)
6 for any n � 1.

Induction is the easiest one since you have already got the result.
Make sure that you are familiar with how to calculate the summation of a sequence by
induction.

Setion 2.2 Binary Relation

� Lecture 1 De�nition 4: A binary relation R on a set X is a subset of X �X. Write xRy
as an abbreviation for (x; y) 2 R.

� Lecture 1 De�nition 5: A binary relation R on a set X is also an equivalence relation
if it is

� re�exive: for all x 2 X; xRx.
� symmetric: for all x; y 2 X; xRy if and only if yRx.
� transitive: for all x; y; z 2 X, if xRy and yRx; then also xRz.

� Lecture 1 De�nition 6: Given an equivalence relation R, write [x] = fy 2 X : xRyg. [x]
is called the equivalence class containing x.

Example 2.2.1 Binary Relation & Equivalence Relation
The followings are three examples of a binary relation R on X. Are they equivalence
relations?
Solution:
1. Suppose X = f1; 2; 3g. Let R = f(1; 1); (2; 1); (2; 2); (3; 1); (3; 2); (3; 3)g.
According to the de�nition, R is a subset of X � X. So R � f1; 2; 3g � f1; 2; 3g. Let�s
represent it in a graph (the �rst element is represented by the horizontal axis):

3 �
2 � �
1 � � �

1 2 3
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In fact, R is the binary relation � (is weakly greater than).
Check the three conditions:
re�exive yes
symmetric no
transitive yes
So R is not an equivalence relation.
2. Suppose X = f1; 2; 3g . Let R = f(1; 1); (2; 2); (3; 3)g.
Solution:
Similarly we can represent the binary relation = on X graphically as (the �rst element is
represented by the horizontal axis):

3 �
2 �
1 �

1 2 3

In fact, R is the binary relation = (is equivalent to).
Check the three conditions:
re�exive yes
symmetric yes
transitive yes
So R is an equivalence relation.
3. Suppose X = f1; 2; 3; 4g. Let R = f(1; 1); (1; 2); (2; 1); (2; 2); (3; 3); (3; 4); (4; 3); (4; 4)g:
Solution:
We can represent R in a graph (the �rst element is represented by the horizontal axis):

4 � �
3 � �
2 � �
1 � �

1 2 3 4

Check the three conditions:
re�exive yes
symmetric yes
transitive yes
So R is an equivalence relation.

Section 2.3 Numerically Equivalent

� Lecture 1 Section 1.4: A function f : A! B is a bijection if it is

�one to one, i.e. a 6= a0 ) f(a) 6= f(a0)
�onto, i.e. 8b 2 B; 9a 2 Af (a) = b

� Lecture 1 Section 1.4: Two sets A; B are numerically equivalent (have the same Car-
dinality) if there exists a bijection f : A! B.

Example 2.3.1 Numerically Equivalent
Prove that (0; 1) is numerically equivalent to R.
Solution:
Recall the function tan(x): The range of tan(x) is R: The domain of tan(x) is all real
numbers excluding �

2 + n� where n is an integer. Let f(x) = tan(�x�
�
2 ), x 2 (0; 1). f is

a bijection from (0; 1) to R.
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The basic way to prove set A is numerically equivalent to set B is to construct a bijection
between A and B.
Coutable means being numerically equivalent toN. Picture proof could be useful if we want
to prove or disprove that a set is countable.

Example 2.3.2 The Uncountability of the Real Numbers.
Prove that (0; 1) is not countable.
Solution:
We do it by picture proof and contradiction. Suppose that (0; 1) is countable. Then for
every x 2 (0; 1) there exists a unique n 2 N corresponding to x which is the bijection from
N to (0; 1): Denote it as xn; n = 1; 2; 3 : : : : Then write out each xn in a decimal expansion
in a picture such that

x1 = 0:a11a12a13a14:::
x2 = 0:a21a22a23a24:::
x3 = 0:a31a32a33a34:::
x4 = 0:a41a42a43a44:::

where each aik is a natural number between 0 and 9: Now consider the real number x =
0:b1b2b3 : : :where each bk is chosen such that bk = 1 if akk 6= 1 and bk = 2 if akk = 1: Then
x 6= xk for all k 2 N since it di¤ers from xk in the kth decimal place. But x 2 (0; 1):
Contradiction. So there is no bijection from N to (0; 1). (0; 1) is not countable.
In Example 2.3.1 we proved that (0; 1) is numerically equivalent to R. So we can further
conclude that R is not countable.
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