Econ 204
Problem Set 6
Due Monday, August 17th

Exercise 1

Consider $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ such that $f \in C^{3}\left(\mathbf{R}^{2}\right)$. Now let $F(x, y, w, z)=$ $f(x, y)-(w, z)$ and suppose that $F(x, y, w, z)=0$ has solutions in \mathbf{R}^{4}. Let $S \subset \mathbf{R}^{4}$ be the set of solutions to this system. Show that there exists a set B such that B^{c} has measure zero and for $(x, y, w, z) \in S$ where $(w, z) \in B$, there is a local implicit function $h: W \subset \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ (W open) such that $F(h(w, z), w, z)=0$ for all $(w, z) \in W$ and $h \in C^{3}\left(\mathbf{R}^{2}\right)$.

Exercise 2

Let $f:[0,1] \rightarrow[0,1]$ be a correspondence defined as $f(x)=\{0,1 /(x+1)\}$ for $x \neq 0$ and $f(0)=\{1 / 2\}$. Does f have a fixed point? If yes, find the point(s). Does any of the fixed point theorems you have learned apply here? Explain. Answer the same questions for $f(x)=[\epsilon, 1 /(x+1)]$ for all $x \in[0,1]$ where $0<\epsilon$ $<1 / 2$.

Exercise 3

We say that a relation R on X is convex if whenever $x R y$ and $z R y$ then $(\alpha x+(1-\alpha) z) R y$ for all $\alpha \in(0,1)$. (if x and y are in \mathbf{R}, \geq is an example of such relation). Let R_{i} be a convex relation on \mathbf{R}^{n} for $i=1,2, \ldots m$, fix $x \in \mathbf{R}^{n}$ and let $B_{i}=\left\{y-x: y R_{i} x, y \in R^{n}\right\}$. Show that B_{i} is convex.

Let $B=\sum_{i=1}^{m} B_{i}:=\left\{z_{1}+z_{2}+\ldots+z_{m}\right.$; such that $z_{i} \in B_{i}$ for all $\left.i\right\}$. Show that B is convex. In the case where R is a "preference" relation (you will learn this later in $E \operatorname{con} 201 B), 0 \notin B$ is equivalent to x being a Pareto optimal allocation. Show that in the case where $0 \notin B$, there exists $p \neq 0$ such that $\inf (p \cdot B) \geq 0$. This is how we construct prices in Econ $201 B$.

Exercise 4

Show that if $B \subset R^{n}$ is open and convex, then $B=\cap_{i \in I} S_{i}$, where $\left\{S_{i}, i \in I\right\}$ is the set of all open half-spaces containing B (an open half-space in \mathbf{R}^{n} is a set $S=\left\{y \in R^{n}: p \cdot y<c\right\}$ for some $p \in \mathbf{R}^{n}, c \in \mathbf{R}$.

Exercise 5

State whether the following functions are Lipschitz and prove your claim:
a) $f(x)=\ln (x)$ for $x>0$;
b) $f(x)=\cos (x)$ for $x \in \mathbf{R}$;
c) $f: \mathbf{R} \rightarrow \mathbf{R}, f$ differentiable, such that $\left|\frac{d f}{d x}\right| \leq M$ for some $M \in \mathbf{R}$;

If any of the functions above is not Lipschitz, what can you change to make them Lipschitz?

Consider the differential equation $\frac{d y}{d t}=\frac{3}{2} y(t)^{1 / 3}$ defined for all $t \geq 0$ and $y\left(t_{0}\right)=0$. Does this differential equation have a solution? Is that solution unique? If yes, prove it. If not, explain why not and then modify the problem to make the solution unique.

Try to find a solution if it exists.

Exercise 6

Consider the following system of first order differential equations:

$$
\begin{aligned}
x^{\prime}(t) & =x^{2}-y \\
y^{\prime}(t) & =y(y-1)
\end{aligned}
$$

a) Plot the $x^{\prime}(t)=0$ and $y^{\prime}(t)=0$ curves on the $x-y$ coordinate axes. Find the stationary point corresponding to $x, y>0$.
b) Linearize the system using Taylor-series expansion around the $x, y>0$ steady state. Write down the linearized equations.
c) Describe the behavior of the system and write down the general solution.

