Econ 204 Summer 2009

Problem Set 3

Due in Lecture Friday August 7

1. Cauchy Sequence

Suppose $\left\{x_{n}\right\} \in \mathbf{R}^{n}$ is a Cauchy sequence. It has a subsequence $\left\{x_{n_{k}}\right\}$ such that $\lim _{n_{k} \rightarrow \infty} x_{n_{k}}=$ x. Show that $\lim _{n \rightarrow \infty} x_{n}=x$.
Solution:
Consider a Cauchy sequence $\left\{x_{n}\right\} \in \mathbf{R}^{n}$. For any $\varepsilon>0$, there exists an $N(\varepsilon)$ such that for any $m, n>0,\left|x_{m}-x_{n}\right|<\frac{\varepsilon}{2}$. If there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$, such that $\lim _{n_{k} \rightarrow \infty} x_{n_{k}}=x$, then there exists a $K(\varepsilon)$ such that $k>K(\varepsilon) \Rightarrow\left|x_{n_{k}}-x\right|<\frac{\varepsilon}{2}$. Choose $M>\max \left\{n_{K(\varepsilon)}, N(\varepsilon)\right\}$. For every $n>M$, we can find a $n_{k}>M$. By triangle inequality, $\left|x_{n}-x\right| \leq\left|x_{n}-x_{n_{k}}\right|+\left|x_{n_{k}}-x\right|<$ $\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$. Hence $\lim _{n \rightarrow \infty} x_{n}=x$.

2. Compactness

Use the open cover definition of compactness to show that the subset $\left\{\frac{n}{n^{2}+1}, n=0,1,2 \ldots\right\}$ of \mathbf{R} is compact.
Solution:
Denote $A=\left\{\frac{n}{n^{2}+1}, n=0,1,2 \ldots\right\}$. Let the collection of sets $\left\{U_{\lambda}\right\}_{\lambda \in \Lambda}$ be an open cover. Since $0 \in A$, there exists an open set $U_{\lambda_{0}} \in\left\{U_{\lambda}\right\}$ such that $0 \in U_{\lambda_{0}}$. Hence we can find an $\varepsilon>0$ such that $B_{\varepsilon}(0) \subset U_{\lambda_{0}}$. Note that there are only finitely many points of K not included in $U_{\lambda_{0}}$ which are those with $\frac{n}{n^{2}+1}>\varepsilon$. Denote them as a_{1}, \ldots, a_{n} and for each a_{j} choose a $U_{\lambda_{j}}$ from $\left\{U_{\lambda}\right\}_{\lambda \in \Lambda}$ such that $a_{j} \in U_{\lambda_{j}}$. Then $\left\{U_{\lambda_{0}}, \ldots, U_{\lambda_{n}}\right\}$ is a finite subcover by construction. So A is compact.

3. Completeness

a. Show that $(0,1)$ is not complete in the Euclidean metric space.

Solution:
By Theorem 9 in Lecture 5, \mathbf{R} is complete with Euclidean metric. $\forall A \subseteq \mathbf{R}$, by Theorem 11 of Lecture $5, A$ is complete if and only if A is a closed subset of \mathbf{R}. So we only have to show that $(0,1)$ is not closed. Consider a sequence $\left\{x_{n}\right\}, x_{n}=\frac{1}{n+1},\left\{x_{n}\right\} \subseteq(0,1)$, $\lim _{n \rightarrow \infty} x_{n}=0 \notin(0,1)$. So $(0,1)$ is not closed. Therefore $(0,1)$ is not complete in the Euclidean metric space.
b. Show that $\left\{\frac{n \sqrt{2}}{m}, m \neq 0, n, m \in N\right\}$ is not complete in the Euclidean metric space.

Solution:
By Theorem 9 in Lecture 5, \mathbf{R} is complete with Euclidean metric. $\forall A \subseteq \mathbf{R}$, by Theorem 11 of Lecture $5, A$ is complete if and only if A is a closed subset of \mathbf{R}. So we only have to show that $\left\{\frac{n \sqrt{2}}{m}, m \neq 0, n, m \in N\right\}$ is not closed in the Euclidean metric space. Consider a sequence $\left\{x_{n}\right\}, x_{n}$ is the decimal expansion of $\sqrt{2}$ up to the n 'th decimal place, i.e $x_{1}=1.4, x_{2}=1.41, x_{3}=1.414, \ldots$,So x_{n} is rational number. Hence $y_{n}=x_{n} \sqrt{2} \in$ $\left\{\frac{n \sqrt{2}}{m}, m \neq 0, n, m \in N\right\}$. But but $x_{n} \rightarrow \sqrt{2} \Rightarrow y_{n} \rightarrow 2 \notin\left\{\frac{n \sqrt{2}}{m}, m \neq 0, n, m \in N\right\}$. So $\left\{\frac{n \sqrt{2}}{m}, m \neq 0, n, m \in N\right\}$ is not closed. Thus it's not complete.

4. Completeness and Compactness

(\mathbf{R}, d) is a metric space where d is defined as follows:

$$
d(x, y)= \begin{cases}1 & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}
$$

(a) Show that (\mathbf{R}, d) is complete.

Solution:
To see completeness, note that the only Cauchy sequences are those that are constant after some (finite) point. Otherwise, for every $x_{m} \neq x_{n} \Rightarrow d\left(x_{m}, x_{n}\right)=1$. As constant sequences trivially converge to their constant value, it follows that the given metric space is complete.
(b) Is (\mathbf{R}, d) bounded? Is (\mathbf{R}, d) compact? Prove your answer.

Solution:
(\mathbf{R}, d) is bounded but not compact. By the definition of $d,(\mathbf{R}, d)$ is a bounded (and complete) metric space, but it is not compact. Since every point is open under the topology induced by this metric, it follows that the cover $\left\{x_{\alpha}\right\}_{\alpha \in \mathbf{R}}$, whose elements are singletons, has no finite sub-cover.

5. Continuous Function

Let $f: X \rightarrow Y$ be a continuous function (X and Y are metric spaces).
a. Prove that if X is compact then $f(X)$, the image of f, is compact.

Solution:
Let $\bigcup_{\alpha \in \Lambda} U_{\alpha}$ be an open cover of $f(X)$. Continuity implies that $f^{-1}\left(U_{\alpha}\right)$ is open. By compactness of X, \exists indices $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that $X=f^{-1}\left(U_{\alpha_{1}}\right) \cup f^{-1}\left(U_{\alpha_{2}}\right) \cup \ldots \cup$ $f^{-1}\left(U_{\alpha_{n}}\right) \Rightarrow f(X) \subseteq U_{\alpha_{1}} \cup U_{\alpha_{2}} \cup \ldots \cup U_{\alpha_{n}}$. So $\left\{U_{\alpha_{1}}, \ldots, U_{\alpha_{n}}\right\}$ is a finite subcover of $f(X)$. Therefore, $f(X)$ is compact.
b. Prove that if X is connected then $f(X)$, the image of f, is connected.

Solution:
We prove the contrapositive: if $f(C)$ is not connected, then C is not connected. Suppose $f(C)$ is not connected. Find $P \neq \emptyset \neq Q, f(C)=P \cup Q, \bar{P} \cap Q=P \cap \bar{Q}=\emptyset$. Let $A=f^{-1}(P) \cap C, B=f^{-1}(Q) \cap C$. So $A \neq \emptyset$ and $B \neq \emptyset$. Then we have $A \cup B=$ $\left(f^{-1}(P) \cap C\right) \cup\left(f^{-1}(Q) \cap C\right)=\left(f^{-1}(P) \cup f^{-1}(Q)\right) \cap C=f^{-1}(f(C)) \cap C=C$. Since $A=f^{-1}(P) \cap C \subseteq f^{-1}(P) \subseteq f^{-1}(\bar{P})$ and $f^{-1}(\bar{P})$ is closed. Hence $\bar{A} \subseteq f^{-1}(\bar{P})$. Similarly, $\bar{B} \subseteq f^{-1}(\bar{Q})$. So $\bar{A} \cap B \subseteq f^{-1}(\bar{P}) \cap f^{-1}(Q)=f^{-1}(\bar{P} \cap Q)=f^{-1}(\emptyset)=\emptyset . \quad A \cap \bar{B} \subseteq$ $f^{-1}(P) \cap f^{-1}(\bar{Q})=f^{-1}(P \cap \bar{Q})=f^{-1}(\emptyset)=\emptyset$. So C is not connected.

6. Upper Hemicontinuous

Let $F: C \times \mathbf{R}^{p} \rightarrow \mathbf{R}^{1}$ be a continuous function, where $C \subseteq \mathbf{R}^{1}$. Let $\Psi(\omega)=\left\{x \in \mathbf{R}^{n}: F(x, \omega)=\right.$ $0\}$ be a correspondence. Show directly from the definition that if C is compact, then Ψ is an upper hemicontinuous correspondence. (Hint: The proof is by contradiction. Suppose that Ψ is not upper hemicontinuous at some ω_{0}; this tells you that there is a sequence $\omega_{n} \rightarrow \omega_{0}$ with certain properties.)
Solution:
Suppose that Ψ is not an upper hemicontinuous at some ω_{0}. Then there exists an open set V such that $V \supseteq \Psi\left(\omega_{0}\right)$ and we can find a sequence $\omega_{n} \rightarrow \omega_{0}$ and $x_{n} \in \Psi\left(\omega_{n}\right)$ such that $x_{n} \notin V$. Since C is compact, so we can find a convergent subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\lim _{n_{k} \rightarrow \infty} x_{n_{k}}=x^{\prime}$.Note that $\lim _{n_{k} \rightarrow \infty} \omega_{n_{k}}=\omega_{0}$. Since F is a continuous function, $F\left(x^{\prime}, \omega_{0}\right)=$ $\lim _{n_{k} \rightarrow \infty} F\left(x_{n_{k}}, \omega_{n_{k}}\right)=0$. So $x^{\prime} \in \Psi\left(\omega_{0}\right)$ thus $x^{\prime} \in V$. Since V is an open set, there exists an $\varepsilon>0$ such that $B_{\varepsilon}\left(x^{\prime}\right) \subseteq V$. Hence $x_{n_{k}} \in V$ for n_{k} sufficiently large, a contradiction. Thus Ψ is an upper hemicontinuous.

