Economics 204
Lecture 3—Wednesday, July 29, 2009
Section 2.1, Metric Spaces and Normed Spaces

Generalization of distance notion in R"

Definition 1 A metric space is a pair (X, d), where X is a set and d : X x X — R, satisfying

L. vﬂfvyEX d(x,y) >0, d(x,y) =0&xrx=y

2. vac,yEX d(l',y) = d(y,l')

3. (triangle inequality)

vx,y,zEX d(l', y) + d(ya Z) 2 d(l', Z)
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Definition 2 Let V' be a vector space over R. A norm on V is a function | - || : V' — Ry satisfying

1. Vaev ||z]| >0

2. Vaey |z =0 2=0

3. (triangle inequality)

Vayev 12 +yll <zl + ]l
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4. Vaergev [zl = |afl|z|

A normed vector space is a vector space over R equipped with a norm.

Theorem 3 Let (V.| - ||) be a normed vector space. Let d:V x V = R, be defined by

d(v, w) = |lv —w]|

Then (V,d) is a metric space.

Proof: We must verify that d satisfies all the properties of a metric.

d(v,w) = [lv —wl > 0
dv,w) =0 & Jv-w|=0
& v-w=
& (v+(-w)+w=w
S v+ ((-w)+w)=w

&S v+ 0=w

2. First, note that for any x € V,0-2 = (040) 2 =0-24+0-2,500-2 =0. Then0 =0 -2 =

1-1)-z=1-2+(-1)- 2 =x+(—1) -z, so we have (—1) -z = (—x).
d(v,w) = |lv—w]
= | =1f[Jo = w]]
= [(=D(v+ (=w))|
= [(=Dv+ (=1)(=w)]

= [ —v+wl



= Jw+ (=)

= w =l
= d(w,v)

3.
d(u,w) = lu—wl

= |lu+ (—v+v)—w
= |lu—v+v—w|
< u—=olf+ flv—wl

= d(u,v)+d(v,w)

m Examples of Normed Vector Spaces

e " n-dimensional Euclidean space.

n

V=R" [zl =z = | > (z:)*

=1

V=R" |Jz]i =) |z

i—1
V =R", ||7]lc = max{|z1],..., |xa|}

C((0,1]), l[fllee = sup{[f(£)] - t € [0, 1]}

C(0.1), 171 = [ (702



C(]0,1]

~—

el = [ 1ar

Theorem 4 (Cauchy-Schwarz Inequality)

If v,w € R, then

(&) = (£) (B5v0)

v w* < ol

[v-w] < Jolfuwl

Read the proof in De La Fuente. The Cauchy-Schwarz Inequality is essential in proving the triangle

inequality in E™. Note that v - w = |v||w|cosf where 0 is the angle between v and w:
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Definition 5 Two norms || - || and || - ||" on the same vector space V are said to be Lipschitz-equivalent if

Fmar > 0 Vaey mllz| < |lz]" < M|jz|

Equivalently,

/
[
o]

E|m,M >0 vacEV,ac#O m <
Theorem 6 (Not in De La Fuente) All norms on R™ are Lipschitz-equivalent.

However, infinite-dimensional spaces support norms which are not Lipschitz-equivalent. For example, on

C([0,1]), let f,, be the function

1—nt ifte [0,
fn(t> =
0 ift € (%,1}



Then
Ifalh 5 1

= — = — —> 0
Ifalloo 1 20
Definition 7 In a metric space (X, d), define
B.(x) = open ball with center x and radius e

= {ye X dy.x) <e}
B:.[x] = closed ball with center x and radius e

= {yeX:dly,z) <e}

SCX is bounded if

Joex perVses d(s,z) < 3
diam (S) = sup{d(s,s’):s,s' €S}
d(A,z) = érelij d(a,x)
d(A,B) = érelij d(B,a)

= inf{d(a,b):a € A,be B}

Note that d(A, z) cannot be a metric (since a metric is a function on X x X, the first and second arguments
must be objects of the same type); in addition, d(A, B) does not define a metric on the space of subsets of
X. Another, more useful notion of the distance between sets is the Hausdorff distance, will probably see it
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Section 2.2: Convergence of sequences in metric spaces

Definition 8 Let (X, d) be a metric space. A sequence {z,} convergesto x (written z,, — x or lim,, o T, =
x) if

Vesodn@en n > N(e) = d(zp,v) < ¢



This is exactly the same as the definition of convergence of a sequence of real numbers, except we replace

| - | in R by the metric d.

Theorem 9 (Uniqueness of Limits) In a metric space (X,d), if x, — © and z,, — &', then x = z'.

Proof:

.x/

Suppose {z,} is a sequence in X, x, — z, x,, — &', © # 2. Since z # 2/, d(x,2') > 0. Let

Then there exist N(g) and N’(g) such that

n>N() = dz,,z)<e
n>N() = dz,2) <e
Choose
n > max{N(e), N'(e)}
Then
d(z, ) < d(z,z,)+ d(x,,x")

< e€+¢

= 2¢



d(z,z") < d(z,a)

a contradiction.m

c is a cluster point of a sequence {x,} in a metric space (X, d) if
Veso {n: x, € B:(c)} is an infinite set.

Equivalently,

Veso,NeNTnsN Tn € Be(c)
Ezxample:

1—L ifneven
% if n odd

For n large and odd, x, is close to zero; for n large and even, x, is close to one. The sequence does not
converge; the set of cluster points is {0, 1}.
If {z,} is a sequence and ny < ny < ng < ---, then {z,, } is called a subsequence.
Note that we take some of the elements of the parent sequence, in the same order.
Ezample: x, =+, so {z,} = (1, TR ) If ny, = 2k, then {z,, } = (%, A )
Theorem 10 (2.4 in De La Fuente, plus ...) Let (X,d) be a metric space, c € X, and {z,} a sequence

in X. Then c is a cluster point of {x,} if and only if there is a subsequence {x,, } such that limy_. x,, = c.

Proof: Suppose ¢ is a cluster point of {z,}. We inductively construct a subsequence that converges to c.

For k=1, {n: z, € Bi(c)} is infinite, so nonempty; let

ny = min{n : z, € Bi(c)}



Now, suppose we have chosen n; < ng < --- < ny such that
Ty, € Bi(c) for j=1,...,k
J
{n:z, € Bk%(c)} is infinite, so it contains at least one element bigger than ny, so let

Npr1 = min{n in >Nk, Ty € Bﬁl(c)}

Thus, we have chosen ny < ng < --- < ng < ngsq such that
T, EB%(C) for j=1,....kk+1
Thus, by induction, we obtain a subsequence {x,, } such that
T, € B%(c)
Given any € > 0, by the Archimedean property, there exists N(g) > 1/e.

k>N() = z, € B%(c)

= In, € B:(c)

SO

T, — cas k — oo

Conversely, suppose that there is a subsequence {x,, } converging to c¢. Given any ¢ > 0, there exists
K € N such that

k> K = d(xy,,c) <e= x, € B:c)

Therefore,

{n:x, € B-(¢)} D {nki1,NK+2, Nict3, .-}

Since ngi1 < Ngio < Ngis < ---, this set is infinite, so ¢ is a cluster point of {x,}. m

Section 2.3: Sequences in R and R™



Definition 11 A sequence of real number {z,} is increasing (decreasing) if xp41 > 2, (Tp1 < ) for all

n.
Definition 12 If {z,} is a sequence of real numbers, {z,} tends to infinity (written z,, — oo or limz,, =
o0) if

erRaN(K) n > N(K) =z, > K

Similarly define lim x,, = —o0.

We don’t say the sequence converges to infinity; the term “converge” is limited to the case of finite limts.

Theorem 13 (Theorem 3.1°) Let {x,} be an increasing (decreasing) sequence of real numbers. Then

limy, o0 T, = sup{z, : n € N} (lim, o ©,, = inf{x, : n € N} ). In particular, the limit exists.

Proof: Read the proof in the book, and figure out how to handle the unbounded case. m
Lim Sups and Lim Infs Handout:

Consider a sequence {x,} of real numbers. Let

a, = sup{zg:k>n}
= sup{Tn, Tni1, Tni2,. .-}
Bn = inf{xy:k>n}
Either a,, = +o0o for all n, or a,, € R and a1 > ay > a3 > ---. Either (6, = —oco for all n, or 3, € R and

Bi <P <Pz < -

Definition 14

+o00 if ey, = 400 for all n
limsupz, =
e lim «v,, otherwise.
—o0 if B, = —oc for all n
liminfx, =
lim 3, otherwise.




Theorem 15 Let {x,} be a sequence of real numbers. Then

lim,, 00 T, =7 € RU{—00, 00}
& limsup,,_, . ¢, = liminf, .z, =7

Return to Section 2.3:

Theorem 16 (Theorem 3.2, Rising Sun Lemma) Fvery sequence of real numbers contains an in-

creasing subsequence or a decreasing subsequence or both.

O 4 ¢ 4 4 — — — — «— «— «— «— S

° ° ° @ O — — — — — — «— «— U
b ° ° e o o0 — <« « N
° ° °
°

Proof: Let

S={s€N:Vyss T5s > T}

Either S is infinite, or S' is finite.

If S is infinite, let

ny = minS
ny = min(S\ {n1})

ny = min(S\ {ni,n2})

Ng+1 = min(S\{nth,---,nk})

Then n1 < ng < ng < ---.

Ty > Ty since n; € S and ne > ny

10



Ty > Ty since ny € S and nz > ne

Ty, > Ty,  since ng € S and ngp > 0y,

so {xn, } is a strictly decreasing subsequence of {x,,}.

If S is finite and nonempty, let n; = (max S) + 1; if S =0, let n; = 1. Then

ni ¢ S S0 E|n2>n1 xng 2 x?’u

ng ¢ S SO E|n3>n2 xng 2 xng

N ¢ S SO Elnk+1>nk xnk+1 2 xnk

so {xn, } is a (weakly) increasing subsequence of {x,}. m

Theorem 17 (Thm. 3.3, Bolzano-Weierstrass) Every

bounded sequence of real numbers contains a convergent subsequence.

Proof: Let {x,} be a bounded sequence of real numbers. By the Rising Sun Lemma, find an increasing or
decreasing subsequence {z,, }. If {z,, } is increasing, then by Theorem 3.1°, limz,, = sup{z,, : k € N} <
sup{x, : n € N} < 00, since the sequence is bounded; since the limit is finite, the subsequence converges.

Similarly, if the subsequence is decreasing, it converges. m
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