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Lecture Notes, Part III

19 Replicating Contingent Claims

With this section, we begin Chapter 5 of Nielsen, the Martingale Valuation
Principle. This is the heart of the book, and represents the current state of
the art of the theory on pricing contingent claims. Regardless of whether
the underlying securities price process is assumed to be an Itô process, the
standard method of pricing contingent claims, including options, is to con-
struct a state price process for the securities price process and compute the
Martingale Valuation.

De�nition 19.1 A contingent claim is a random variable Y , interpreted as a
claim which pays o� Y (!) for every ! 2 
. A self-�nancing trading strategy
�� replicates a contingent claim Y at time T in the price system �S if

P
�n
! 2 
 : ��(!; T ) �S(!; T ) = Y (!)

o�
= 1

A contingent claim Y is marketed at time T with respect to �S and � if it
is replicated at time T in the price system �S by some self-�nancing trading
strategy �� which is admissible for �S and �.

Remark 19.2 A necessary condition for Y to be replicated at T is that Y
be FT -measurable. A necessary condition for Y to be marketed at time T is
that �(T )Y 2 L1(
), i.e. E (j�(T )Y j) < 1; to see this, note that since ��
is admissible, � ���S is a martingale, and hence �(t) ��(t) �S(t) 2 L1(
) for all
t, including T .

De�nition 19.3 If Y is any contingent claim such that �(T )Y 2 L1(
),
the martingale value process of Y is the process

V (Y ; �)(t) =
1

�(t)
E(�(T )Y jFt)

for 0 � t � T .
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Proposition 19.4 If Y is marketed at time T with respect to �S and � by
the self-�nancing admissible trading strategy ��, then ���S(t) = V (Y ; �)(t).
In particular, any two admissible self-�nancing trading strategies with respect
to � and �S that replicate Y at time T must have the same value process.1

Proof: Since �� is admissible, � ���S is a martingale, hence

�(t) ��(t) �S(t) = E(�(T ) ��(T ) �S(T )jFt) = E(�(T )Y jFt)

so
��(t) �S(t) =

1

�(t)
E(�(T )Y jFt) = V (Y ; �)(t)

Remark 19.5 The martingale value process is de�ned even if Y is not mar-
keted or replicated at time T . Indeed, Y need not even be FT -measurable.

Proposition 19.6 Suppose that either

1. Y is replicated at time T by an admissible self-�nancing trading strategy
�� with respect to � and �S; or

2. �(T )Y 2 L1(
) and fFt : t 2 T g is the �ltration generated by the
Wiener process W .

Then V (Y ; �)(t) is an Itô process.

Proof: If Y is replicated by an admissible self-�nancing trading strategy �,
then V (Y ; �)(t) = ��(t) �S(t) (this is the self-�nancing condition), which is an
Itô process. If �(T )Y 2 L1(
) and fFtg is the �ltration generated by the
Wiener processW , then the martingale E(�(T )Y jFt) is an Itô process by the
Martingale Representation Theorem, so V (Y ; �)(t) = E(�(T )Y jFt)(t)=�(t)
is an Itô process (see the section on changing units of account).

1The trading strategy need not be unique. The trading strategy will be unique if
K = N + 1 and rank �� = N + 1 or there is a money-market account, K = N and
rank �� = N .

2



Proposition 19.7 (Proposition 5.1 in Nielsen) Let Y be a contingent
claim which is replicated by two self-�nancing trading strategies �� and ��
such that �� is admissible for �S and � and ����S is bounded below. Then
����S is bounded below and, with probability one,

���S(t) � ��(t) �S(t)

for all t.

Proof: See Nielsen.

Remark 19.8 In my view, this proposition is an unsuccessful attempt to
resolve the lack of uniqueness inherent in the martingale valuation princi-
ple unless markets are dynamically complete. Why is the lowest price at
which the claim can be replicated the natural candidate for the price that
will prevail for the claim in the market? Why not the highest price? More
fundamentally, if there are two replicating strategies with di�erent prices on
a set of positive measure, there will be an arbitrage; go long on the cheaper
strategy, short on the long strategy, place the di�erence in a money-market
account, then at time T close out the long and short positions on the replicat-
ing strategy, and pocket the amount invested in the money-market account,
plus interest. In other words, in a real market with a money-market account,
there can't be two di�erent prices for strategies which replicate the same
claim; the theory should provide a way to rule out one of the strategies, or to
force their prices to be equal. Proposition 19.4 does this provided there is a
unique state price process; any two admissible self-�nancing trading strate-
gies with respect to � and �S must have the same value process. However, if
� 6= �0 are state price processes, then in general V (Y ; �) 6= V (Y ; �0), and
the theory does not not provide a unique price.

20 Delta Hedging

The problem of hedging a holding is essentially the problem of replicating
the instantaneously risky part of a claim; see Nielsen.
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21 Making a Trading Strategy Self-Financing

This section is preliminary to proving the Complete Markets Theorem. The
strategy for replicating a contingent claim Y will be to calculate its martin-
gale value process V , �nd � whose disperson equals the dispersion of V , then
trade in the money-market to make � into a self-�nancing trading strategy
��.

Proposition 21.1 (Proposition 5.2 in Nielsen) Let �b be a money-market
account with value process M . Then ��b 2 L( �S=M) and

G(��b; �S=M) = �(0)

(i.e. there is no gain or loss from trading) for every 1-dimensional trading
strategy �.

Proof: This is more or less obvious. Prices are normalized so the money-
market value process is constant, hence there are no gains or losses from
holding it. Read the formal proof in Nielsen.

Proposition 21.2 (Proposition 5.3 in Nielsen) Let �b be a money-market
account with value process M . Suppose � is a trading strategy in L( �S=M)
that is not necessarily self-�nancing. Let

�� = � +D(�; �S=M)�b

Then �� is self-�nancing, has initial value �(0) �S(0) and the dispersion of the
value process ���S is ���� = ���.

Proof: Again, this is more or less obvious. Recall that D is the cumulative
net withdrawal process, so �� is self-�nancing because it puts all recognized
capital gains and losses generated by � into the Money-Market Account.
D(�; �S=M) counts up any gains or losses generated by � when prices are
normalized soM = 1. Since �b �S =M = 1, the accumulated gain buys exactly
D(�; �S=M)�b units of the money-market account. By Proposition 21.1, the
holdings in the money-market account do not generate any gains or losses
that could upset the self-�nancing constraint. It is obvious that �� has the
same dispersion as �. See Nielsen for details.

Up until now, we have shown how to take a (not necessarily self-�nancing)
trading strategy and make it self-�nancing, while keeping the same initial
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value and not changing the dispersion. It is natural to ask whether the
strategy is unique. In general, the answer is no, but the value process is
uniquely de�ned, given a particular securities price process �S and state-price
process �.

Proposition 21.3 (Proposition 5.4 in Nielsen) Let � be a state price
process for �S. Let V be an Itô process and let �� be a self-�nancing trading
strategy. Then V is the value process of �� if and only if

1. �V has zero drift

2. ��(0) �S(0) = V (0)

3. the dispersion coe�cient of V equals ���� almost everywhere.

Proof: If V = ���S, then (2) is immediate and (1) follows because �� is
self-�nancing, from the argument on the top of page 131 of Nielsen (Propo-
sition 15.3 of these Lecture Notes). (3) follows from the uniqueness of Itô
coe�cients.

Conversely, suppose we have (1)-(3). We will show that V
M

and
���S
M

have

the same Itô coe�cients, hence V
M

=
���S
M
, hence V = ���S. Since V is an Itô

process,
dV = aV dt+ bV dW

for some aV 2 L1 and bV 2 L2. The self-�nancing constraint implies that

d( �� �S) = ���� dt+ ���� dW

Recall (see page 132 of Nielsen, dividing by M sets r = 0) that

� = �(0)M(0)
�[0;��]
M

so

�[0;��]V=M =
�V

�(0)M(0)

has zero drift by assumption. From Itô's Formula for Quotients (page 69 of
Nielsen), since the dispersion of M is zero,

d
�
V

M

�
=

1

m
[aV � V rM ] dt+

bV
M

dW
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so the drift of �[0;��]V=M is

�[0;��]
"
av � V rM

M
� bV
M
�T
#

�[0;��] > 0, so the drift of �[0;��]V=M is zero if and only if

aV
M
� V r =

bV �
T

M

Since the drift of V=M is aV�V rM
M

, the drift of V=M equals bV �
T

M
.

Since the process

�[0;��] ���S=M =
����S

�(0)M(0)

has zero drift (since �� is self-�nancing), an analogous caculation (using the
fact that ���� is the dispersion of ���S) shows that the drift of ���S=M is

�����T=M

By (3), bV = ����, so
bV �

T

M
=

�����T

M

so V
M

and
���S
M

have the same drift. The dispersion of V
M

is
����
M
, which equals

the dispersion of
���S
M
. By (2),

��(0) �S(0) = V (0)

Therefore, V=M and ���S=M have the same Itô coe�cients, and hence are
equal, so V and ���S are equal.

22 The Complete Markets Theorem

De�nition 22.1 We say markets are dynamically complete with respect to
�S and � if every contingent claim Y which is measurable with respect to FT

and satis�ed �(T )Y 2 L1(
) is marketed at time T with respect to �S and
�, i.e. Y can be replicated by an admissible, self-�nancing trading strategy.
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Remark 22.2 Dynamic completeness depends, of course, on �S; you can't
talk about what claims are replicable until you know the trading and capital
gain opportunities, which obviously depend on �S. Changing the state price
process � changes the set of contingent claims that �(T )Y 2 L1(
), and it
changes the set of admissible trading strategies. Surprisingly, the Complete
Markets Theorem shows that dynamic completeness depends only on �S and
not on �. This is tempered by the fact that if Y is marketed at time T with
respect to � and �0, there is no obvious reason why the martingale value
processes �(Y ; �) and �(Y ; �0) should agree. Note also that markets are
necessarily dynamically incomplete if N < K.

Theorem 22.3 (Complete Markets Theorem, Theorem 5.6 in Nielsen)
Assume that F = FW , i.e. the �ltration is the �ltration generated by the
Wiener process. Assume there is a money-market account, and let � be a
state price process for �S. Then markets are dynamically complete with respect
to �S and � if and only if �� has rank K almost everywhere.

Before we prove the Complete Markets Theorem, we prove the following
proposition:

Proposition 22.4 (Proposition 5.5 in Nielsen) Assume there is a money-
market account. Let V be an Itô process such that �V has zero drift.

1. If �� has rank K almost everywhere, then V is the value process of a
self-�nancing trading strategy.

2. If, in addition, N = K, the trading strategy is unique.

Proof: Since V is an Itô process,

dV = aV dt+ bV dW

with aV 2 L1 and bV 2 L2. Let �b 2 L( �S) be a money-market account,
M = �b �S. We need to construct a self-�nancing trading strategy whose value
process equals V . First, we match the volatility. Let

� = bV
�
��T ��

��1
��T
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��T �� is invertible by the argument given in these notes in the proof of Propo-
sition 4.4 of Nielsen.) We need to show that � 2 L( �S=M).

���

M
=
bV
�
��T ��

��1
��T ��

M
=
bV
M

2 L2

since M is a positive Itô process, hence almost surely uniformly bounded
away from zero on each �nite time interval [0; T ]. Since M is a money-
market account, by item 4 in Remark 18.5 in these Lecture Notes, the drift
of �S=M is

�(��� r �S)

M
=

����T

M

=
bV �

T

M
2 L1

since bV , �T 2 L2. � +D(�; �S=M)�b is self-�nancing and has the same initial
value and dispersion as �, by Proposition 5.3 in Nielsen. Let

�� = � +D(�; �S=M)�b +
V (0) � �(0) �S(0)

M(0)
�b

so

��(0) �S(0)

= �(0) �S(0) +

 
D
 
�;

�S

M

!
(0)

!
�b(0) �S(0) +

V (0) � �(0) �S(0)

M(0)
�b(0) �S(0)

= �(0) �S(0) +
V (0) � �(0) �S(0)

M(0)
M(0)

 
since D

 
�;

�S

M

!
(0) = 0

!

= V (0)
���� = ���

= bV

so V is the value process of ��, by Proposition 5.4 of Nielsen; this completes
the proof of (1).

(2) is a simple exercise in linear algebra. Let �, � be two self-�nancing
trading strategies in L( �S), with ���S = �� �S. Since �b �S = M > 0, and �b�� = 0,
�S is not in the span of the columns of ��, so the rank of the matrix ( �S; ��)
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(formed by adjoining an additional column vector, equal to �S, on the right
side of ��) is K + 1 = N + 1. Since ���S = �� �S, their dispersions must also
agree by the uniqueness of Itô coe�cients, so

( ��� ��) �S = 0

( ��� ��)�� = 0

( ��� ��)( �S; ��) = 0

which implies that ��� �� = 0.
Proof of the Complete Markets Theorem: First, suppose that

rank �� = K almost everywhere. Let Y be a contingent claim which is
Ft-measurable and �(T )Y 2 L1(
). Let X(t) = E(�(T )Y jFt); X is a mar-
tingale. Since F = FW , the Martingale Representation Theorem implies that
X is an Itô process, and in particular has zero drift. De�ne V = X=�. �
is positive, hence almost surely uniformly bounded away from zero on [0; T ]
for each T , so V is an Itô Process. Since �V = X, �V has zero drift. By
Proposition 5.5 in Nielsen, V is the value process of a self-�nancing trading
strategy ��. Since �V is a martingale, � ���S = �V is a martingale, so �� is
admissible.

�(T )V (T ) = X(T )

= E(�(T )Y jFT )

= �(T )Y

so Y = V (T ) = ��(T ) �S(T )

so Y is marketed at time T .
Conversely, suppose markets are dynamically complete with respect to �S

and �. It is obvious that �� must have rank K almost everywhere; if not,
you can't replicate the components of the Wiener process. See Nielsen for
details.

23 How to Replicate

The strategy is as follows:

1. Find a state price process and the martingale value process V of a
claim.
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2. Hope that V depends only on t and �S(t). Nielsen says this is \usually"
true. I think a fair statement is there are few examples in the literature
in which people have successfully calculated the replicating trading
strategy if the value process depends on things other than t and �S(t). In
economies with more than one agent, equilibrium prices will de�nitely
not be functions of t and �S(t) alone. With more than one agent, the
equilibriumvalue of claims depends on the wealths of individuals, which
at time t will depend on the whole history of prices �S(s); s 2 [0; t].

3. Choose �� so that it has the same derivatives as V with respect to
the security prices �S; then �� prescribes that the number of shares in
security n should be the partial derivative of V with respect to �Sn.

The following proposition is a little hard to digest. The following com-
ments should help in understanding it, and appreciating its limitations.

1. The proposition shows that, if one calculates a trading strategy by the
method just outlined, it will in fact be a replicating strategy. This looks
circular, because we assume in item (2) that V is the value process of
some self-�nancing trading strategy on [0; T ]. Often, we will know in
advance that (2) is satis�ed because markets are dynamically complete.
Even if we don't know that markets are dynamically complete, we can
use the recipe given by Item (6) to compute ��, then try to show that
(2) is satis�ed by ��.

2. � is assumed to be de�ned and di�erentiable on O� (0; T ) rather than
on O � [0; T ]. The distinction is important; for example, if the claim
is a standard call option with exercise price X at time T , then �(S; T )
has a kink at S = X.

3. The construction of � requires solving a partial di�erential equation
(PDE). The existence of solutions of PDEs is not well developed. The
literature contains papers in which authors assert the existence of so-
lutions of PDEs without citing a theorem that covers the case at hand;
such assertions should be treated with skepticism.

4. Recall that S is the vector of prices of the risky securities.

Proposition 23.1 (Proposition 5.7 in Nielsen) Suppose
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0. there is a state prices process � for �S;

1. the zeroth security is a money-market account with value process M ;

2. V is the value process of some self-�nancing trading strategy on [0; T ];

3. O � RN is an open set such that

P
�n
! : 8t2[0;T ]S(t) 2 O

o�
= 1

4. � : O� (0; T )! R is C2 with respect to S 2 O and C1 with respect to
t 2 (0; T );

5. P
�n
! : 8t2[0;T ]V (!; t) = �(S(!; t); t)

�o
= 1;

6. �� = (�0;�) is a process such that

� �(t) = �S(S(t); t) for t 2 (0; T ) i.e. �n(t) =
@�(S(t);t)

@Sn
;

� �(0) is F0-measurable and �(T ) is FT -measurable;

� �0(t) =
V (t)��(t)S(t)

M(t)
for all t 2 [0; T ]

Then �� is a self-�nancing trading stragegy in L( �S) and V (t) = ��(t) �S(t) for
all t 2 [0; T ]. If in addition

7. V is the value process of some admissible self-�nancing trading strategy

then �� is admissible.

Proof: The only hard part of this is showing that �� 2 L1( �S). As de�ned, ��
is adapted. �� is measurable, since it is measurable on 
�f0g and 
�fTg by
assumption; and it is measurable in (!; t) 2 
�(0; t) because it is continuous
in (S(t); t) and S(t) is measurable in (!; t). By assumption, V is the value
process of some self-�nancing �� 2 L(S), i.e. V = �� �S, so V is an Itô Process.

dV = d(�� �S) = ���� dt+ ���� dW

by the self-�nancing constraint.

��(t) �S(t) = �0(t)M(t) + �(t)S(t) = V (t)��(t)S(t) + �(t)S(t) = V = �� �S
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In particular, V is the value process of �� on [0; T ].
� = �[�r;��] for some r 2 L1 and � 2 L2; moreover, �� = r �S + ���T .

By Itô's Lemma, the dispersion of V (t) = �(S(t); t) is �S(S(t); t)��. For
t 2 (0; T ), since the �rst row of �� is zero,

��(t)��(t) = (0;�(t))��(t)

= (0;�S(S(t); t))��(t)

= ��(t)��(t) 2 L2

���� = r ���S + �����T

= rV + �����T

= r�� �S + �����T

= ���� 2 L1

Thus, �� 2 L(�s). Since ���� = ���� and ���� = ����, �� and �� have the same
cumulative gains process; since �� is self-�nancing, so is ��.

If V is the value process of an admissible self-�nancing trading strategy,
then �V is a martingale, so ���S is a martingale, so � is admissible.

24 Example on Cash-or-Nothing Options

It would be nice to do an example carefully at this point, but I think the
exposition in Section 5.6 of Nielsen is reasonably complete, and I think the
cash-or-nothing option (which pays $1 if S(T ) � X, zero otherwise) is a
weird option. In Chapter 6, Nielsen computes the price of a standard call
option by piecing together two exotic options (the Cash-or-Nothing Option
being one of them). Rather than doing this, I prefer to compute the price
of the standard call option directly. Therefore, I will leave this Example for
you to read.

25 The State Price Process as Primiative

So far, we have followed the following strategy:

1. Begin with a securities price process �S

2. Compute a state price process �
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3. Value all claims from � alone; �S is not needed for this

4. If a replicating portfolio is desired, compute this from � and �S.

In this section, we explore an alternative process:

1. Begin with any positive Itô process �. We will think of � as a state
price process, but notice that since we don't have a securities price
process �S speci�ed, we can't require that � �S have zero drift; any pos-
itive Itô process � will do.

2. Given a claim Y which is FT -measurable and such that �(T )Y 2 L1(
),
Y has a unique martingale value process V (Y ; �) given �.

3. Choose a set of claims Y0; : : : ; YN satisfying the conditions in the pre-
vious paragraph, and de�ne �Sn = V (Yn : �) This de�nes a securities
price process �S for which � is a state price process.

The process just described is closely related to equilibrium methods. Sup-
pose the securities pay exogenously speci�ed dividends, only at time T ; by
arbitrage, �Sn(T ) must be the vector of dividends. A state price process is
constructed as the marginal utility of consumption in period T . Then the
equilibrium value of the securities will, by the �rst order conditions, be given
by the martingale value process

�Sn(t) =
E
�
�Sn(T )�(T )jFt

�
�(t)

The next proposition proceeds in a slightly di�erent way. We start with
the state price process �. This allows us to price all claims such that Y
is FT -measurable and �(T )Y 2 L1(
). In order to replicate claims, we
need to de�ne basic securities. Rather than de�ning these as the martingale
value processes of speci�c chosen claims, we construct securities with a given
invertible relative dispersion matrix �̂. Then the Complete Markets Theorem
assures us that all claims that are priced by � can be replicated using the
constructed basic securities.

Proposition 25.1 Given any positive Itô process � = �(0)�[�r;��] and
any invertible K �K process �̂ 2 L2, there exists a K-dimensional vector S
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of positive price processes with relative dispersion matrix �̂ such that if M is
the money market account M(0)�[r; 0], then � is a state price process for

�S =

 
M
S

!

Proof: � = �(0)�[�r;��] for some r 2 L1 and some 1 � K-dimensional
� 2 L2. Let N = K. We'll construct S = (S1; : : : ; SN)T . Set

�̂ =

0
BB@

1
...
1

1
CCA
N�1

; �̂ = r�̂ + �̂�T ;

� =

0
BB@

1
...
1

1
CCA
(N+1)�1

; �� =

 
r
�̂

!
; �� =

 
0 � � � 0

�̂

!

�̂; � 2 L2, r 2 L1, so �� 2 L1. Choose initial prices M(0) > 0, Sn(0) > 0(n =
1; : : : ; N = K) and let

M =M(0)�[r; 0]; Sn = Sn(0)�[�̂n; �̂n]; S =

0
BB@

S1
...
SN

1
CCA ; �S =

 
M
S

!

where �̂n is the nth row of �̂. Notice that

dM = Mr dt

dSn = Sn�̂n dt+ Sn�̂n dW

�� = r� + ���T

Thus, � is a state price proces for �S (recall from Problem Set 7 the de�ning
relation for a state price process in terms of a geometric process).

26 Risk-Adjusted Probabilities

In this section, we show how to incorporate the risk-adjustment into the
probabilities, so the only explicit adjustment is the time-discounting. The
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advantage of this is that the computation of the value of claims is often easier;
the disadvantage is that it is less general as we must assume that � satis�es
the Novikov condition (or, more generally, that �[0;��] is a martingale), and
this is often di�cult to verify. Our goal is to �nd conditions under which
the risk-adjusted probability measure Q (with Radon-Nikodym derivative
�[0;��](T )) makes

�S
M

into a martingale.
Let � be a state price process. Recall the following two facts:

� V = ���S; �� admissible, self-�nancing

) �V is a martingale

) V (t) =
1

�(t)
E (�(T )V (T )jFt)

� � = �(0)M(0)
�[0;��]
M

(see page 132 of Nielsen)

The second fact shows it is possible to split � into the risk-adjustment
�[0;��] and the time-discounting M .

De�nition 26.1 Let T = [0; T ]. If E(�[0;��](T )) = 1, the risk-adjusted
probability measureQ (on the horizon T ) is the probability measure on (
;F)
whose density with respect to P is �[0;��](T ). �[0;��] is called the density
process of the risk-adjusted probability measure, or the likelihood process.

Remark 26.2 Remember that E(�[0;��](T )) = 1 if and only if �[0;��] is
a martingale; we need this to assure that the density �[0;��](T ) de�nes a
probability measure Q. It may be painful to check this in speci�c examples.
Nielsen says that this is not a particularly objectionable assumption because
it amounts to saying that buying and holding the money-market account
is an admissible trading strategy. I �nd this argument hard to evaluate.
Certainly, if we have a state price process for which buying and holding
the money-market account is not an admissible strategy, it will be hard to
replicate interesting claims with admissible trading strategies. But it seems
to me Nielsen's argument is backwards. One would really like to characterize
the set of price processes that have a state price process � = �[�r;��] for
which �[0;��] is a martingale; in my view, it is the size and nature of this
set of securities price processes that should determine how reasonable the
assumption is.
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Given a claim Y at time T , we can discount back to time t by taking

X(t) =
M(t)

M(T )
Y

Notice that X is FT -measurable, but usually not Ft-measurable.

Proposition 26.3 Let X be any random variable. Then

X 2 L1(
; Q), X�[0;��](T ) 2 L1(
; P )

In this case,

EQ(XjFt) = EP

 
X�[0;��](T )
�[0;��](t)

�����Ft

!

Proof:

X 2 L1(
; Q) , EQ(jXj) <1
$

Z


jXj�[0;��](T )dP <1

$ X�[0;��](T ) 2 L1(
; P )

Suppose X 2 L1(
; Q) and B 2 Ft. ThenZ
B
EQ(XjFt) dQ =

Z
B
X dQ

=
Z
B
X�[0;��](T ) dP

=
Z
B
EP (X�[0;��](T )jFt) dP

=
Z
B

EP (X�[0;��](T )jFt)

�[0;��](t) �[0;��](t) dP

=
Z
B
EP

 
X�[0;��](T )
�[0;��](t)

�����Ft

!
�[0;��](t) dP

since �[0;��](t) is Ft-measurable (Nielsen, Prop. B.26.4)

=
Z
B
EP

 
X�[0;��](T )
�[0;��](t)

�����Ft

!
�[0;��](T ) dP

since E(X�[0;��](T )jFt) is Ft-measurable

and �[0;��] is a martingale

16



=
Z
B
EP

 
X�[0;��](T )
�[0;��](t)

�����Ft

!
dQ

so

EQ(XjFt) = EP

 
X�[0;��](T )
�[0;��](t)

�����Ft

!

Proposition 26.4 If V = ���S is the value process of a self-�nancing trading
strategy with ��(T ) �S(T ) = Y , then �� is admissible if and only if V=M is a
martingale with respect to Q, in which case

��(t) �S(t)

M(t)
= EQ

"
Y

M(T )

�����Ft

#

Proof: �� is admissible if and only if �V = �(0)M(0)�[0;��](t)
M

V is a P -

martingale if and only if �[0;��](T )
M

V is a P -martingale if and only if V=M is
a Q-martingale.

De�nition 26.5 Suppose that Q (with Radon-Nikodym derivative �[0;��])
is an equivalent martingale measure. Then � = �[�r;��] is a state price
process for �S, so that �[0;��] is a state price process for

�S
M
. We introduce

the notation

V (Y=M(T );Q)(t) = V (Y=M(T ); �[0;��])(t)

Notice that

V (Y=M(T );Q)(t) = V (Y=M(T ); �[0;��])(t)
=

1

�[0;��](t)E
"
�[0;��](T ) Y

M(T )

�����Ft

#

=
�[0;��](t)
�[0;��](t)E

 
Y

M(T )

�����Ft

!
(since �[0;��] is a martingale)

= EQ

"
Y

M(T )

�����Ft

#

so V (Y=M(T );Q) = V (Y ; �)=M .
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Since P and Q are equivalent measures, they have the same null sets, so
(
;F ; Q) is complete, fFt : t 2 T g is agumented with respect to Q, and L1

and L2 are the same for P as for Q.

De�nition 26.6 Recall

W �(t) =
Z t

0
�T ds+W (t)

If �[0;��] is a martingale,W � is called the risk-adjusted Wiener process (note
that by Girsanov's Theorem, it is a standard Wiener process with respect to
Q).

Proposition 26.7 If X is an Itô process with

dX = a dt+ b dW

then the drift of �[0;��]X is zero if and only if a = b�T if and only if
dX = b dW �.

Proof: The drift of �[0;��]X is zero if and only if �[0;��] is a state price
process for X if and only if (�� � r �S) = ���T (see page 132 of Nielsen) if and
only if a = b�T , since r = 0. Since

dX = a dt+ b dW

= a dt+ b(dW � � �T dt)

= (a� b�T ) dt+ b dW �

a = b�T if and only if dX = b dW �.
In particular, if S is normalized (recall this means there is a self-�nancing

trading strategy �b such that �b �S = 1, so r = 0),

�� = ���T

d �S = ���t dt+ �� dW

= �� dW �

If �S is not necessarily normalized,

�� � r �S = ���T

18



d

 
�S

M

!
=

1

M
d �S � �S

r

M
dt

=
1

M
(��� r �S) dt +

1

M
�� dW

=
1

M
���T dt+

1

M
�� dW

=
1

M
�� dW �

This proves the following proposition:

Proposition 26.8 If �� is a self-�nancing trading strategy in L( �S=M), then

d

 
���S

M

!
= �� d

 
�S

M

!
=

1

M
���� dW �

Remark 26.9 In my view, Propositions 5.8 and 5.9 of Nielsen are addi-
tional unsatisfactory attempts to deal with the nonuniqueness of state price
processes. You may read these on your own.

Example 26.10 [Example 5.10 in Nielsen] Let's calculate the risk-adjusted
probability measure Q in the Black-Scholes Model.

K = 1

M = M(0)�[r; 0] =M(0)ert

S = S(0)�[�; �] = S(0)e(���
2=2)t+�W

� � r = �� so � =
�� r

�
dQ

dP
= �[0;��](T ) = e(��

2=2)T��W (T )

Let Y be any claim such that Y is Ft-measurable.

Y

M(T )
2 L1(
; Q) , �(T )Y 2 L1(
; P )

V

 
Y

M(T )
;Q

!
(t) = EQ

"
Y

M(T )

�����Ft

#

=
1

M(T )
EQ[Y jFt]
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The last equality is true because M(T ) is independent of ! in the Black-
Scholes model, and hence Ft-measurable. Notice that V (Y=M(T );Q) is a
martingale because it does not reect time-discounting. In terms of units of
account, the value of the claim is

M(t)V (Y=M(T );Q)(t)

=
M(t)

M(T )
EQ[Y jFt]

= e�r(T�t)EQ[Y jFt]

Read through the calculation of the value of the Cash-or-Nothing Option,
and note that it is easier to do it through the Risk-Adjusted Probability Q
than through the state price process �.

27 The Black-Scholes Model

The model is laid out in the previous example, so we will not repeat the
model here. Note that markets are dynamically complete by Theorem 5.6 in
Nielsen.

In the original Black-Scholes Model, �, � and r are all constants. We will
follow Nielsen in including a little more generality: we assume � and r are
constants, but

� = ��+ r

for some � 2 L2 such that EP �[0;��](T ) = 1.
By Girsanov's Theorem, if Q has density �[0;��](T ) with respect to P ,

then

W �(t) =
Z t

0
� ds +W (t)

is a standard Wiener process with respect to Q. In terms of dW �, the
di�erential of S(t) and S(t)=M(T ) are the same as before; they are not
a�ected by the fact that � is not constant.

28 Valuing The Standard Call Option

We now have all the ingredients to compute the value process of the standard
call option in the Black-Scholes Model. First, we need a preliminary lemma:
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Lemma 28.1 If N is the cumulative distribution function of the standard
normal distribution, then

Z b

a
e�y dN(y) = e�

2=2 (N(b� �) �N(a� �))

Proof: Z b

a
e�ydN(y) =

1p
2�

Z b

a
e�ye�y

2=2dy

=
1p
2�

Z b

a
e(2�y�y

2)=2dx

=
e�

2=2

p
2�

Z b

a
e(��

2+2�y�y2)=2dy

=
e�

2=2

p
2�

Z b

a
e�(y��)

2=2dy

=
e�

2=2

p
2�

Z b��

a��
e�y

2=2dy

= e�
2=2 (N(b� �)�N(a� �))

Theorem 28.2 In the Black-Scholes Model, consider a call option on the
stock, with exercise price X at date T , where the stock price at time t is S.
Then the martingale value process of the call option is

C = SN(d1)� e�r(T�t)XN(d2)

where

d1 =
ln(S=X) +

�
r + �2

2

�
(T � t)

�
p
T � t

d2 =
ln(S=X) +

�
r � �2

2

�
(T � t)

�
p
T � t

= d1 � �
p
T � t

Proof:

S(t) = S(0)e
R t
0
(�(s)��2=2)ds+�W
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= S(0)e(r��
2=2)te(�(s)�r)t+�W

= S(0)e(r��
2=2)te�(�t+W )

= S(0)e(r��
2=2)te�W

�

= S(0)et+�W
�

where  = r � �2

2
and W � is a standard Wiener process with respect to the

risk-adjusted probability measure Q. Therefore, the conditional distribution
of S(T ) conditional on the information at time t, is the distribution of

S(t)e(T�t)+�
p
T�ty

where y is standard normal. The martingale value process is given by

�(S; t) = e�r(T�t)EQ(maxfS(T )�X; 0gjS(t) = S)

= e�r(T�t)
Z 1

�1
maxf0; Se(T�t)+�

p
T�ty �Xg dN(y)

= e�r(T�t)
Z 1

ln(X=S)�(T�t)
�
p
T�t

Se(T�t)+�
p
T�ty dN(y)

�e�r(T�t)
Z 1

ln(X=S)�(T�t)
�
p
T�t

X dN(y)

= Se(�r)(T�t)
Z 1

ln(X=S)�(T�t)
�
p
T�t

e�
p
T�ty dN(y)

�Xe�r(T�t)
Z 1

ln(X=S)�(T�t)
�
p
T�t

dN(y)

= Se(�r+�
2=2)(T�t)

 
1 �N

 
ln(X=S)� (T � t)

�
p
T � t

� �
p
T � t

!!

�Xe�r(T�t)
 
1 �N

 
ln(X=S)� (T � t)

�
p
T � t

!!

= SN

0
@ ln(S=X) +

�
r + �2

2

�
(T � t)

�
p
T � t

1
A

�Xe�r(T�t)N

0
@ ln(S=X) +

�
r � �2

2

�
(T � t)

�
p
T � t

1
A

(since  � r + �2=2 = 0 and 1�N(a) = N(�a))
= SN(d1)� e�r(T�t)XN(d2)
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29 Replicating the Standard Call Option

C = SN(d1)� e�r(T�t)XN(d2)

where

C is the value of the call option

S is the current price of the stock

X is the exercise price of the option at date T

N is the standard normal cumulative distribution function

d1 =
ln(S=X) +

�
r + �2

2

�
(T � t)

�
p
T � t

d2 =
ln(S=X) +

�
r � �2

2

�
(T � t)

�
p
T � t

= d1 � �
p
T � t

Let's calculate the replicating strategy.

�� = �S(S; t)

= N(d1) + SN 0(d1)
@d1
@S

� e�r(T�t)XN 0(d2)
@d2
@S

= N(d1) +
�
SN 0(d1)� e�r(T�t)XN 0(d2)

� @d1
@S

since d1 � d2 does not depend on S. We will show that

SN 0(d1)� e�r(T�t)XN 0(d2) = 0

and hence �� = N(d1). To this end, compute

ln

 
SN 0(d1)

e�r(T�t)XN 0(d1 � �
p
T � t)

!

= lnS + lnN 0(d1) + r(T � t)� lnX � lnN 0(d1 � �
p
T � t)

= lnS � ln
p
2� � d21

2
+ r(T � t)� lnX + ln

p
2� +

(d1 � �
p
T � t)2

2
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= lnS � d21
2
+ r(T � t)� lnX +

(d1)2

2
� d1�

p
T � t+

�2(T � t)

2

= lnS � lnX +

 
r +

�2

2

!
(T � t)� d1�

p
T � t

= d1�
p
T � t� d1�

p
T � t

= 0

Therefore,
SN 0(d1)� e�r(T�t)XN 0(d1 � �

p
T � t) = 0

so
�� = N(d1)

Now, we apply Nielsen's much-maligned Proposition 5.7. Note that

� There is a state price process �(t) = �[�r;��](t).
� There is a money-market account.

� C(T ) = maxfS(T )�X; 0g is FT -measurable. Assume E(�(T )S(T )) <
1.2 By the Complete Markets Theorem, the value of the call option
is the value process of an admissible self-�nancing trading strategy.

2As Nielsen points out in other places, this assumption says that buying-and-holding
the stock S(T ) is an admissible trading strategy. Since

0 � E(�(T )C(T )) � E(�(T )S(T ))

our assumption implies that E(�(T )C(T )) <1. Note that

E(�(T )S(T )) = E

�
e

R
T

0

(�r��2=2)dt��W+
R
T

0

(���2=2)dt+�W
�

= E

�
e

R
T

0

(��r�(�2+�2)=2)dt
�

= E

�
e

R
T

0

(���(�2+�2)=2)dt
�

= E

�
e

R
T

0

(����)2=2)dt
�

Since � = ��r
� , it su�ces to know that � is bounded. In particular, if � is constant

as in the original Black-Scholes model, then E(�(T )C(T )) < 1. More generally, if we
strengthen the assumptionE(�[0;��](T )) = 1 to the Novikov condition (Nielsen page 77),

24



� If we let �� = (�0;�), where �0 is as speci�ed in Proposition 5.7, then
�� is an admissible, self-�nancing trading strategy replicating C.

30 The Value Function{Executive Summary

In this and the next section. we will cover the material in Section 6.2 in
Nielsen, except for the material on the Black-Scholes PDE. As Nielsen notes,
the Black-Scholes PDE played a critical role in the development of the theory,
but has been largely superseded in the theory by the martingale valuation
method. Nielsen asserts the Black-Scholes PDE is useful in computation,
presumably because it can be solved numerically; I have no reason to doubt
this, but I know absolutely nothing about numerical solutions of PDEs, so I
would not have anything useful to say on that subject.

In this section, Nielsen sets up a formula for evaluating a wide class of
contingent claims in the Black-Scholes model. The notation is quite cumber-
some. Hence, we provide a summary in this section, and the details in the
next section.

De�nition 30.1 A contingent claim Y is path-independent if

Y = g(S(T ))

for some function g : (0;1) ! R. In other words, Y depends only on the
terminal value of S, rather than on the whole history of the price process.

We need some conditions on g to ensure that the integrals we need to
evaluate the martingale value of the claim make sense. We know that the
tails of the distribution of S(T ) are small, but if g grows su�ciently rapidly
as S(T )! 0 or S(T )! 0, then g(S(T )) might not be integrable.

Assumption 30.2 We assume

then ��� � will also satisfy the Novikov condition, which says that

E

�
e

R
T

0

(����)2=2)dt
�
<1
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1. g is locally integrable, i.e. for any bounded interval [c; d],
R
[c;d] jgj d� <

1, where here � denotes Lebesgue measure.

2. g satis�es the following polynomial growth condition:

9�>09y0�08y2(y0;1)jg(y)j � 1 + y�

Remark 30.3 Obviously, standard options like puts and call satisfy the
polynomial growth condition.

Theorem 30.4 Suppose g satis�es Assumption 30.2. The martingale value
process V of the claim g(S(T )) is

�(S; t) = e�r(T�t)v

 
ln(S=S(0)) � t

�
; T � t

!

where
v(x; T � t) = EQ

�
g
�
S0e

t+�W�(T )
����W �(t) = x

�
and

 = r � �2

2

31 The Value Process{The Gory Details

In this section, we go through the cumbersome notational exercise needed to
derive Theorem 30.4. The stock price process in the Black-Scholes model is
lognormal. It is very convenient to express the value of a contingent claim
in terms of integrals with respect to a normal distribution. The following
notation facilitates this.

Let

 = r � �2

2

For each t 2 [0; T ], de�ne

h[t] : R! (0;1)

by
h[t](x) = S(0)et+�x
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Notice that h[t] is strictly increasing in x 2 R (the stock is risky in the Black-
Scholes Model, which entails � 6= 0, and by convention, we take � > 0, since
reversing the sign of � doesn't change the Model). Thus, h[t] is a bijection
from R to (0;1). Thus, there is an inverse function

h[t]�1 : (0;1)! R

de�ned by

h[t]�1(S) =
1

�
(lnS � lnS(0) � t)

The point of all this is as follows. Since

dS

S
= �dt + � dW

= (� � ��) dt+ �dW �

= r dt+ �dW �

S(t) = S(0)e(r��
2=2)t+�W�(t)

= S(0)et+�W
�(t)

S(!; t) = h[t](W �(!; t))

W �(!; t) = h[t]�1(S(!; t))

De�ne
f [g] : R! R

by
f [g] = g � h[T ]

i.e.,

f [g](x) = g
�
S(0)eT+�x

�
f [g](W �(T )) = g(h[T ](W �(!; T )))

= g(S(!; T ))

In order to know that the value of the claim in terms of the stock price
will be integrable and well-behaved, we need to have a growth condition on
g. There is no problem with moderate values of lnS; the potential problems
arise for lnS large and positive (S large and positive) and lnS large and
negative (S close to zero). Since the tails of the normal distribution fall o�
very quickly, the growth condition on g is not very stringent.
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Assumption 31.1 We assume

1. g is locally integrable, i.e. for any bounded interval [c; d],
R
[c;d] jgjd� <

1, where here � denotes Lebesgue measure.

2. f [g] 2 G0(a) for some a > 0 satisfying T < 1=2a, where

G0(�) =
n
f : R! R;9�;Cjf(y)j � Ce�y

2
for almost all y 2 R with jyj � �

o

Proposition 31.2 (Proposition 6.1 in Nielsen) A su�cient condition for
f [g] to be in G0(�) for all � > 0 is that g satis�es the following polynomial
growth condition:

9�>09y0�08y2(y0;1)jg(y)j � 1 + y�

Proof: We �nd

jf [g](x)j = jg(h[T ](x))j
� 1 + (h[T ](x))�

= 1 +
�
S(0)eT+�x

��
= 1 + S(0)�e�T+��x

� e�x
2

for x su�ciently large.

Remark 31.3 Obviously, standard options like puts and call satisfy the
polynomial growth condition.

Our goal is to �nd the value function of a claim g(S(T )), express it in
terms of the Wiener process W �, then transform it by h[t]�1. To this end,
let

p : R� (0;1)! (0;1)

be the density of the Normal with mean 0 and variance �

p(x; � ) =
e�x

2=2�

p
2��
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Let
v : R� [0; T )! R

be de�ned by

v(x; � ) =
Z 1

�1
f [g](y)p(y � x; � ) dy

= E (f [g](x+W (� )))

because x+W (� ) has density p(y � x; � )

= EQ

�
f [g](x+W �(� ))

�
because the expectation depends only the distribution, and

W � is a standard Wiener process with respect to Q

Assumption 31.1 implies that the expectation in the de�nition of v exists
(Nielsen Proposition C.2) and v is in�nitely di�erentiable (Nielsen Proposi-
tion C.3).

v(x; T � t) = EQf [g](x+W �(T )�W �(t))

since W �(T )�W �(t) is Normal, mean 0, variance T � t

= EQ(f [g](W
�(T ))jW �(t) = x)

v(W �(t); T � t) = EQ(f [g](W
�(T ))jFt)

= EQ [g(S(T ))jFt]

= er(T�t)V (t)

Thus, v expresses the martingale value V of the claim g(S(T )) as a function
of (W �(t); T � t) and as a future rather than a present value.

Let

�(S; t) = e�r(T�t)v
�
h[t]�1(S); T � t

�

= e�r(T�t)v

 
ln(S=S(0))� t

�
; T � t

!

� is C1 since v is.

Proposition 31.4 �(S(t); t) = V (t), the martingale value process of the
claim g(S(T )).
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Proof:

�(S(t); t) = e�r(T�t)v
�
h[t]�1(S(t)); T � t

�
= e�r(T�t)v

�
W �(t); T � t

�
= e�r(T�t)EQ[g(S(T ))jFt]

= V (t)

as claimed.

Remark 31.5 Notice that � doesn't enter into the formula. Hence, in the
Black-Scholes model, the martingale value process of every claim that can be
priced is independent of �, except to the extent that � determines S. Thus,
this puzzling feature of the Black-Scholes model applies in great generality
to pricing claims, not just the standard options like puts and calls. A partial
explanation is that the stock price S encodes information about �, and it
happens that S is a su�cient statistic for the e�ect of � on the martingale
value of the claim. But this really begs the question of why S is a su�cient
statistic; it falls out from the mathematics, but there does not seem to be a
clear intuition.

We have now worked through the martingale valuation method in con-
siderable detail. As we have seen, it allows us to value quite general claims
in the Black-Scholes Model. More importantly, it can be used to price stan-
dard options when the price process is not geometric Brownian motion. We
developed the machinery when the price process is an Itô process; it can be
extended to non-Itô price processes as well.

32 The Fundamental Theorem of Finance

In discrete models, the Fundamental Theorem of Finance asserts that if a
pricing process �S is arbitrage-free, and includes a money-market account
with value process M , there exists an equivalent probability measure Q such
that

�S
M

is a Q-martingale.
In this section, we explore the extent to which the Fundamental Theorem

of Finance extends to continuous-time models. We assume throughout that
�S is an Itô Process with

d �S = �� dt+ �� dW
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and �S includes a money-market account with value process M and interest
rate process r 2 L1.

1. First, we have to decide what we mean by absence of arbitrage. We
saw that even the Black-Scholes model admits arbitrage if we allow
doubling strategies. The focus of the martingale approach is on admis-
sible trading strategies, but these are de�ned in terms of a speci�c state
price process; since part of the point is to �nd conditions on which the
absence of arbitrage implies the existence of a state price process, we
cannot de�ne absence of arbitrage in terms of admissible trading strate-
gies. We could restrict attention to trading strategies �� 2 H2( �S), i.e.

���� 2 H1; ���� 2 H2

However, it's not clear that the absence of arbitrage with respect to
strategies in H( �S) gives enough information; for example, if b 62 H2,
then buy-and-hold strategies do not lie in H( �S). Here is a potential
candidate:

Candidate Theorem 32.1 Assume �S 2 H(W ), i.e. a 2 H1 and
b 2 H2. If �S admits no arbitrage strategy in H( �S), there is an equivalent
measure Q such that �S is a Q-martingale.

Is this true? Here are some potential problems. P and Q are equivalent
if and only if LP (W ) = LQ(W ). However, the equivalence of P and
Q is not enough to ensure that HP (W ) = HQ(W ). If we say that P
and Q are boundedly equivalent provided that P and Q are equivalent
and there exist 0 < m < M < 1 such that m � dQ

dP
� M , then

HP (W ) = HQ(W ) if and only if P and Q are boundedly equivalent.
However, even in the Black-Scholes model, P and Q are not boundedly
equivalent. To see this, note that

dQ

dP
= �[0;��](T ) = e�W (T )

SinceW (T ) has full support on (�1;1), dQ
dP

has full support on (0;1).
Thus, it might be the case that �S 2 HP (W ), but �S 62 HQ(W ), that �S
has zero drift with respect to Q, but �S is not a Q-martingale. Thus,
there seem to be signi�cant barriers to proving the Candidate Theorem.

31



2. The only theorem I have found on the literature that shows that ab-
sence of arbitrage implies anything connected to state price processes
or martingale measures is the following:

Theorem 32.2 (Karatzas and Shreve [4], Theorem 4.2) 3 Suppose
that �S admits no arbitrage in trading strategies such that the discounted
cumulative gains process is uniformly bounded below by a constant.
Then there is an adapted measurable process � such that

��� r �S = ��T

Recall that this does not show that there is a state price process; for
that, we need to know that � 2 L2. Thus, it does not appear to be the
case that the absence of arbitrage implies the existence of a state price
process.

3. Perhaps we should weaken the demands on the equivalent measure Q.
We could make the following de�nition:

De�nition 32.3 Qis an equivalent martingale measure (EMM) for �S
if Q is equivalent to P and

�S
M

is a Q-martingale. Q is a risk-adjusted

measure (RAM) for �S if Q is equivalent to P and
�S
M

has zero drift with
respect to Q, i.e. there exists WQ, a Wiener process with respect to Q,
such that

d

 
�S

M

!
= 0 dt + ~�dWQ

for some ~�.4

4. Does existence of an EMM or an RAM imply the existence of a state
price process?

Proposition 32.4 Suppose Q is an RAM and there exists � 2 L2 such
that

E(�[0;��](T )) = 1 and
dQ

dP
= �[0;��](T )

3This theorem appears on page 12!
4Our only recipe for constructing Q assumes we have � 2 L2 such that dQ

dP =
�[0;��](T ). However, we don't know that that is the only way an EMM or RAM could
be constructed. Hence, we can't just use W � for WQ.
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Then there is a state price process with respect to P .

Proof: Note that since
�S
M

is an Itô Process with respect to P and W ,
it is an Itô Process with respect to Q and W �. Since it has zero drift
with respect to some Q-Wiener Process WQ, it must have zero drift
with respect to W �; but this implies that �S�[�r;��] has zero drift
with respect to P , so �[�r;��] is a state price process with respect to
P .

Proposition 32.4 says that the existence of a RAM is morally stronger
than the existence of a state price process, but it does not show that
it is technically stronger. Our only recipe for constructing a RAM
or EMM is to �nd a state price process, hope that E(�[0;��](T )) =
1, and then set dQ

dP
= �[0;��](T ). But that does not rule out the

possibility that there might be an EMM or RAM which does not come
from this construction. The following proposition gives one condition
under which an EMM or RAM must come from this construction:

Proposition 32.5 Suppose Q is a probability measure absolutely con-
tinuous with respect to P and dQ

dP
is FT -meaurable, where fFtg is the

�ltration generated by the Wiener ProcessW . Then there exists � 2 L2
such that

�[0;��](T ) = dQ

dP

Proof: Let

�[t] = E

 
dQ

dP

�����Ft

!

� is a martingale; since fFtg is the �ltration generated by the Wiener
Process W , the Martingale Representation Theorem implies that

d� = b dW

for some b 2 L2, in particular � is an Itô Process. Since � > 0, � =
�[�r;��] for some r 2 L1 and � 2 L2 so

d� = �[�r dt� � dW ] = ��r dt� �� dW

By the uniqueness of Itô coe�cients, r = 0, so � = �[0;��].
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In general, it is not clear that if Q is an EMM or an RAM, that dQ
dP

=
�(T ) for an Itô Process �. The �ltration fFtg need not be the �ltration
generated by the Wiener Process, and it is not clear why dQ

dP
should be

fFTg-measurable.

5. Does existence of a state price process imply existence of an RAM or
an EMM? The following proposition sums up what we have shown on
this subject.

Proposition 32.6 Suppose there is a state price process� = �(0)�[�r;��]
for �S.

(a) If E(�[0;��](T )) = 1, then Q de�ned by dQ
dP

= �[0;��](T ) is an
RAM.

(b) If all of the buy-and-hold strategies are admissible with respect to
�, then Q is an EMM.

Proof: Part (a) is left as an exercise. Now, we turn to part (b). Let
��n be the buy-and-hold strategy which buys one unit of security n at
time 0 and holds it until time T . Suppose all buy-and-hold strategies
are admissible with respect to � = �[�r;��]. Then M(t) = �[r; 0](t),
so �(t)M(t) = �[0;��](t). Since security zero is the money-market ac-
count with value process M , the strategy ��0, buying and holding the
money-market account, is admissible; therefore, �[0; �] is a martingale,
so the measure Q with Radon-Nikodym derivative �[0; �] is a probabil-
ity measure equivalent to P . Then ��n(t) �S(t) = �Sn(t). By Proposition

26.4,
�Sn(t)
M(t) is a martingale with respect to Q. Since this is true for each

n,
�S(t)
M(t)

is a vector martingale with respect to Q.
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