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Lecture Notes

1 The Random Walk Model

The random walk model is a simple model of the evolution of a stock price.
The increments in the random walk process are additive, while we normally
think that changes in a stock price function multiplicatively. For this reason,
we think of the random walk model as representing the natural logarithm of
the stock price; equivalently, the stock price is the exponential of the random
walk.

In the random walk model, information accrues in small discrete steps.
Consider the time interval [0, T ]. For n ∈ N, divide the time interval into
nT subintervals, each of length 1

n
. At time 0, the random walk process starts

out at 0. At the beginning of each interval, toss a coin; if it comes out heads,
the random walk process increases by 1√

n
over the course of the interval; if

the coin comes out tails, the random walk process decreases by 1√
n

over the
course of the interval.

Formally, the random walk model is specified as follows. The event space
is Ω = {−1, 1}nT . Thus, every ω ∈ Ω is a vector of +1s and −1s. Observe
that Ω is finite, indeed |Ω| = 2nT . The collection of measurable events is F ,

the collection of all subsets of Ω. The probability measure is P (A) = |A|
|Ω| =

|A|
2nT ; thus, we assign equal probability 1

2nT to every ω ∈ Ω. We consider two
closely-related versions of the random walk process:

Xn(ω, t) =
�nt�∑
k=1

ωk√
n

+
(nt − �nt�)ω�nt�+1√

n

X̂n(ω, t) =
�nt�∑
k=1

ωk√
n

When dealing with a fixed n, we will typically omit the subscript n and write
the random walk process as X(ω, t) or X̂(ω, t).

Each ω ∈ Ω corresponds one of the possible paths the random walk
process might follow. X(ω, ·) denotes the function from [0, T ] to R defined
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by X(ω, ·)(t) = X(ω, t); this is the sample path of the random walk process
corresponding to ω. At time 0, we don’t know which ω will occur, and thus
we don’t know which path X(ω, ·) the random walk will follow; we only know
that one of the possible paths will occur. When we get to time T , we have
been able to observe the full path of the random walk, and thus we know
precisely which ω occurred.

The second term in the definition of Xn is a linear interpolation term
which makes the paths Xn(ω, ·) into continuous functions; since the paths
of Brownian motion are continuous functions, this has the mathematical
advantage of putting Xn and Brownian motion into the same space. However,
Xn has the disadvantage that for every small ε > 0, the evolution of the path
Xn(ω, ·) over the interval

[
k
n
, k+1

n

)
is completely known at the time k

n
+ ε.

The paths X̂n(ω, ·) of X̂n are step functions, constant across time intervals

of the form
[

k
n
, k+1

n

)
and discontinuous at the times k

n
.

Suppose t ∈ [0, T ]. The information revealed up to time t is ω1, ω2, . . . , ω�nt�.
Thus, the collection of measurable events at time t is

Ft = {A ∈ F : ω ∈ A, ω′
k = ωk for k ≤ nt ⇒ ω′ ∈ A}

X̂n is adapted to the filtration {Ft}, i.e. X̂n(·, t) is Ft-measurable for all t; Xn

is not adapted, because ωk+1 is revealed by Xn

(
ω, k

n
+ ε

)
for every positive

ε.
The random walk has the following qualitative properties:

1. Approximate Normality: Fix t = k
n
. Let M(ω, t) be the number of +1s

in the first k coin tosses. M(ω, t) has the binomial distribution b
(
k, 1

2

)
.

X(ω, t) =
M(ω, t) − (k − (M(ω, t)))√

n

=
2
(
M(ω, t) − k

2

)
√

n

Since the expected value E(M(·, t)) = k
2
, E(X(·, t)) = 0. Since the

variance Var(M(·, t)) = k
(

1
2

) (
1 − 1

2

)
= k

4
, Var(X(·, t)) =

4×k
4

(
√

n)
2 = k

n
=

t. By the Central Limit Theorem, the distribution of X(·, t) is very
nearly N(0, t), normal with mean zero and variance t, hence standard
deviation

√
t.
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2. Independent Increments: Suppose t1 < t2 < · · · < tm. Then

{X̂(·, t2) − X̂(·, t1), . . . X̂(·, tm) − X̂(·, tm−1)}

are independent random variables because they’re determined by dis-
joint sets of coin tosses

{ω�nt1�+1, . . . , ω�nt2�}, . . . , {ω�ntm−1�+1, . . . , ω�ntm�}

The same is true of the increments of X, provided we restrict the times
to the form ti = ki

n
.

3. Tightness: This is technical and you don’t need a full understanding.
The random walk paths are obviously continuous, since they are given
by functions that are linear on each of the intervals

[
k
n
, k+1

n

]
. However,

as n increases, each of these linear functions, which has slope
√

n,
becomes steeper. Roughly speaking, tightness says that the random
walk paths nonetheless have continuous limits, with probability one.
Technically, the condition is

∀ε>0 ∃δ>0 ∀n P ({ω : ∃s,t |s − t| < δ, |Xn(ω, t)− Xn(ω, s)| > ε}) < ε

4. Variation of Paths: Given a function f : [0, T ] → R, the variation of f
is

sup
m∈N

sup
0=t0<t1<···<tm=T

m∑
k=1

|f(tk) − f(tk−1)|

f is said to be of bounded variation if the variation of f is finite. For
all ω, the variation of the path X(ω, ·) is nT

(
1√
n

)
=

√
nT → ∞ as

n → ∞. In other words, all of the random walk paths are of variation
tending to infinity as n → ∞.

5. Quadratic Variation: By analogy with the variation, it would be natural
to try to define quadratic variation pathwise: given a function f :
[0, T ] → R, we could define the quadratic variation of f to be

sup
m∈N

sup
0=t0<t1<···<tm=T

m∑
k=1

(f(tk) − f(tk−1))
2
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For all ω, if we take tk = k
n
,
∑m

k=1 (f(tk) − f(tk−1))
2 = nT

(
1

(
√

n)2

)
= T .

As you will see in Problem Set 1, problems arise if we attempt to
define the quadratic variation one path at a time, in particular if we
are allowed to choose the partition 0 = t0 < t1 < · · · < tm = T as a
function of ω. Thus, the quadratic variation needs to be defined taking
the whole process into account, not one path at a time.

2 The Brownian Motion Model

The Brownian Motion Model is the limit of the random walk model as n →
∞. This can be made precise in a number of ways.1

Let (Ω,F , P ) be a probability space, T a time set, with either a finite
time horizon (i.e. T = [0, T ] for some T ∈ R) infinite time horizon (i.e.
T = [0,∞)).

A K-dimensional stochastic process is X : Ω×T → RK such that X(·, t) :
Ω → RK is measurable in ω for all t ∈ T . X(ω, ·) is the function from T to
RK defined by X(ω, ·)(t) = X(ω, t). X(ω, ·) is called a sample path of the
process; it is one of the (usually infinitely) many possible paths the process
could follow.

You will need to distinguish three different measures floating around:

1. P , the probability measure on Ω.

2. λ, Lebesgue measure on T .

3. P⊗λ, the product measure on Ω × T generated by P and λ.

For more information, see sections Appendices A.2 and B.2 of Nielsen.

1One of the natural ways is Donsker’s Theorem. Let Xn(ω, t) denote the random walk
model of Section 1 for a specific n ∈ N. View Xn(ω, ·) as a random variable taking
values in C([0, T ]), the space of continuous functions from [0, T ] into R, with the metric
d(f, g) = supt∈[0,T ] |f(t)−g(t)|. Donsker’s Theorem asserts that Brownian motion B(ω, t)
is the limit in distribution of Xn as n → ∞. The notion of convergence in distribution of
random variables taking values in C([0, T ]) is the following: for every bounded continous
function F : C([0, T ]) → R, E(F (xn(ω, ·))) → E(F (B(ω, ·))). It is not hard to see that
this is a generalization of the definition of convergence in distribution for random variables
taking values in R. For details, see Billingsley [2]. An alternative is to use nonstandard
analysis to show that B(ω, t) can be constructed directly from a so-called “hyperfinite”
random walk, as in Anderson [1].
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Definition 2.1 A K-dimensional standard Brownian motion is a K-dimensional
stochastic process B such that2

1. B(ω, 0) = 0 almost surely (i.e. P ({ω : B(ω, 0) = 0}) = 1)

2. Continuity: B(ω, ·) is continuous almost surely. If Brownian motion is
constructed as a limit of the random walk, this property comes from
the tightness property of the random walk.

3. Independent Increments: If 0 ≤ t0 < t1 < · · · < tm ∈ T ,

{B(·, t1) − B(·, t0), . . . , B(·, tm) − B(·, tm−1)}

is an independent family of random variables. If Brownian motion is
constructed as a limit of the random walk, this property comes from
the independent increments property of the random walk.

4. Normality: If 0 ≤ s ≤ t, B(·, t)− B(·, s) is normal with mean 0 ∈ RK

and covariance matrix (t− s)I , where I is the K ×K identity matrix.
If Brownian motion is constructed as a limit of the random walk, this
property comes from the approximate normality of the random walk.

Theorem 2.2 There is a probability space on which a K-dimensional stan-
dard Brownian motion exists.

Example 2.3 Time Change: Given a K-dimensional standard Brownian
motion B, let Z(ω, t) = B(ω, σ2t). Thus, Z is obtained from B by speeding
up time by a factor of σ2. It is easy to see that Z satisfies all the properties of
a standard Brownian motion, except that the covariance matrix of B(·, t)−
B(·, s) is σ2(t− s)I when s < t. If we let Ẑ(ω, t) = Z(ω,t)

σ
, then Ẑ satisfies all

the properties of standard Brownian motion. Thus, a constant time change
of a standard Brownian motion is a scalar multiple of a (different) standard
Brownian motion on the same probability space.

Theorem 2.4 The sample paths of standard Brownian motion have the fol-
lowing qualitative properties:

2There is some redundancy among the conditions: continuity and independent incre-
ments imply normality (though not the specific mean and covariances given here), while
independent increments and normality imply continuity.

5



1. Almost Sure Unbounded Variation3:

P ({ω : ∃s<t B(ω, ·) is of bounded variation on [s, t]}) = 0

2. Almost Sure Nowhere Differentiability4:

P ({ω : ∃t∈T B(ω, ·) is differentiable at t}) = 0

3. Iterated Logarithm Laws

(a) Long Run:

P

({
ω : lim sup

t→∞

B(ω, t)√
2t ln ln t

= 1

})
= 1

(b) Short Run:5 For all t ∈ T

P

⎛
⎝
⎧⎨
⎩ω : lim sup

s↘t

B(ω, s)− B(ω, t)√
2(s − t) ln | ln(s − t)|

= 1

⎫⎬
⎭
⎞
⎠ = 1

Remark 2.5 The Iterated Logarithm Laws are key to understanding the
qualitative short-run and long-run behavior of Brownian motion. We will
model stock prices by processes like e(μ−σ2/2)t+σB(ω,t). Consider first the short
run. If s is close to t, then

√
s − t is much bigger than s− t. ln | ln s− t| goes

to infinity as s → t, but the growth rate is very slow. The Iterated Logarithm
Law tells us that at times s arbitrarily close to t, B(ω, s)−B(ω, t) will nearly

hit both the upper and lower envelopes ±
√

2(s − t) ln | ln(s − t)| infinitely
often. In particular, in the short run, only the the volatility matters; the
drift term e(μ−σ2/2)t is completely unimportant. On the other hand, in the
long run, as t → ∞,

√
t → ∞ much slower than t; ln ln t → ∞, but very

slowly. We will see that E(Z(·, t)) = eμt. This explains why we choose to
write μ − σ2/2, rather than incorporate the −σ2/2 into μ. In the long run,
if μ > 0, the volatility is overwhelmed in importance by the drift term eμt.

3This property can be derived from the variation of the random walk, but the argument
is a bit subtle, as the variation is not continuous in C([0, T ]).

4This property shows that, although Brownian motion paths are continuous, they are
only barely continuous. A slightly weaker property (Brownian motion paths are almost
surely not continuously differentiable on any open interval) follows immediately from al-
most sure unbounded variation.

5In Problem Set 1, you are asked to derive this from the Iterated Logarithm Law in
the Long Run.
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You will see, in Problem Set 1, that the Quadratic Variation of the Random
Walk cannot be defined pathwise; if the partition is allowed to depend in an
arbitrary way on the path, the Quadratic Variation need not converge as n →
∞. For the same reason, the Quadratic Variation of Brownian Motion is not
defined pathwise. The following theorem says the the Quadratic Variation
of Brownian Motion over every interval [s, t] with s < t is t− s:

Theorem 2.6 Let B be a standard 1-dimensional Brownian Motion. Con-
sider a sequence of partitions

s = tn
0 < tn

1 < · · · < tn
mn

= t

indexed by n with

max
{∣∣∣tn

k − tn
k−1

∣∣∣ : 1 ≤ k ≤ mn

}
→ 0

Then
mn∑
k=1

(
B (ω, tn

k) − B
(
ω, tn

k−1

))2
→ t − s a.s.

as n → ∞.

The theorem follows from the Strong Law of Large Numbers, using the fact
that B (·, tn

k) − B
(
ω, tn

k−1

)
is distributed as N

(
0, tn

k − tn
k−1

)
, so

E
((

B (·, tn
k) − B

(
·, tn

k−1

))2
)

= tn
k − tn

k−1

Proposition 2.7 (Proposition 1.5 in Neilsen) If B is standard Brownian

motion, B(ω,t)
t

→ 0 almost surely, i.e.

P

({
ω : lim

t→∞

B(ω, t)

t
= 0

})
= 1

Proof: Notice that from the definition of standard Brownian motion,

Var

(
B(·, t)

t

)
=

VarB(·, t)
t2

=
t

t2
→ 0
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so B(·,t)
t

converges to zero in distribution. However, convergence almost surely
is stronger than convergence in distribution. Thus, we apply the Iterated
Logarithm Law in the Long Run.

lim sup
t→∞

B(ω, t)

t
≤ lim sup

t→∞

B(ω, t)√
2t ln ln t

× lim sup
t→∞

√
2t ln ln t

t
= 1 × 0 = 0

almost surely. Since −B is standard Brownian motion,

lim inf
B(ω, t)

t
= − lim sup

t→∞
−B(ω, t)

t
= 0

almost surely. Therefore, lim supt→∞
B(ω,t)

t
= 0 almost surely.

Proposition 2.8 (Proposition 1.6 in Nielsen) If B is a standard Brownian
motion, then the process B̂ defined by

B̂(ω, t) =

{
tB(ω, 1/t) if t > 0
0 if t = 0

is also a standard Brownian motion.

Proof: Note that

VarB̂(·, t) = t2VarB(·, 1/t) = t2 × 1

t
= t

so B̂(·, t) is normal with mean zero and variance t. The other properties
of standard Brownian motion follow immediately from the corresponding
properties for B.

3 Generalized Brownian Motion and Corre-

lated Brownian Motion

A generalized Brownian motion allows more freedom than a standard Brow-
nian motion, in the following respects:

1. it may start at an arbitrary level, not just at zero;

2. it may incorporate a deterministic drift term; and
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3. the covariance among different components can be nonzero, and the
variance of each component may grow at its own deterministic rate.

Definition 3.1 A K-dimensional process Z is a K-dimensional generalized
Brownian motion if

1. Z(ω, 0) is deterministic (i.e. independent of ω)

2. Z(ω, ·) is continuous almost surely

3. If 0 ≤ t0 < · · · < tn, then

{Z(·, t1) − Z(·, t0), . . . , Z(·, tn) − Z(·, tn−1)}

are independent

4. There exist μ ∈ RK and a matrix Σ ∈ RK×K such that if 0 ≤ s < t,
Z(·, t) − Z(·, s) is normal with mean (t − s)μ and covariance matrix
(t − s)Σ.

Notice that since Σ is a covariance matrix, it must be symmetric. μ is called
the increment mean vector and Σ the increment covariance matrix.

The following theorem is important because it lets us write a generalized
Brownian motion as a linear transformation of a standard Brownian motion,
hence allowing us to reduce computations concerning generalized Brownian
motions to standard Brownian motions.

Theorem 3.2 Z is a generalized N-dimensional Brownian motion with pos-
itive semidefinite increment covariance matrix Σ if and only if there is a
constant Z0 ∈ RN , μ ∈ RN , σ ∈ RN×K and a K-dimensional standard
Brownian motion B such that

Z(ω, t) = Z0 + tμ + σB(ω, t)

In this case, the increment mean vector of Z is μ and the increment covari-
ance matrix of Z is Σ = σσT .
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Remark 3.3 Note that we may have N > K, N = K, or N < K. Sup-
pose we think of the components of the generalized Brownian motion as the
available securities. If N > K, this corresponds to a case in which securities
are redundant; there are more securities than there are underlying sources of
uncertainty. Σ will be positive semi-definite, but cannot be positive definite.
If N < K, there are fewer securities than there are underlying sources of
uncertainty, and markets will necessarily be incomplete. If N = K, then
markets are potentially dynamically complete. If N ≤ K, then Σ may be
either positive definite, but it may also be just positive semi-definite. To see
that Σ is always at least postive semi-definite, note that

xT Σx = xTσσTx = (xTσ)(xTσ)T = |xTσ|2 ≥ 0

Nielsen also defines a correlated Brownian motion as a gneralized Brow-
nian motion in which Z(·, 0) = 0, μ = 0, and Σii = 1 for each i, i.e. the
diagonal elements of Σ are all one. There is a representation theorem for
correlated Brownian motions. See Nielsen for details.

Example 3.4 [Black-Scholes Model] (Example 1.7 in Nielsen) There is one
stock, whose price is

S(ω, t) = S(0)e

(
μ−σ2

2

)
t+σB(ω,t)

where B is a one-dimensional standard Brownian motion, S(0) > 0, μ ∈ R,
σ > 0. Notice that

lnS(ω, t) = lnS(0) +

(
μ − σ2

2

)
t + σB(ω, t)

is a generalized Brownian motion. The continuously compounded rate of
return over [t, t + τ ] is

1

τ
ln

(
S(ω, t + τ )

S(ω, t)

)

=
1

τ

[
lnS(0) +

(
μ − σ2

2

)
(t + τ ) + σB(ω, t + τ ) − lnS(0) −

(
μ − σ2

2

)
t − σB(ω, t)

]

=
1

τ

[(
μ − σ2

2

)
τ + σ(B(ω, t + τ ) − B(ω, t))

]

=

(
μ − σ2

2

)
+ σ

B(ω, t + τ ) −B(ω, t)

τ

10



If we define Z(ω, τ ) = B(ω, t + τ ) = B(ω, t), then Z is a standard Brownian
motion, so

σ
B(ω, t + τ )− B(ω, t)

τ
→ 0

almost surely; thus, the continuously compounded rate of return converges
to a constant μ − σ2

2
as t → ∞.

4 Information Structures

Recall that in the random walk, we defined Ft to be the collection of events
definable in terms ofcoin tosses that had occurred up to time �nt�

n
; it simply

represents the information available at time t. Equivalently, Ft is the σ-
algebra determined by X̂ up to time t, or by X up to time �nt�

n
. We need

to extend this definition to continuous-time processes where the probability
space is infinite.

Definition 4.1 A filtration is a family (Ft)t∈T of σ-algebras Ft ⊂ F such
that Fs ⊂ Ft whenever s ≤ t. A filtration is augmented (sometimes called
complete) if

C ⊂ B, P (B) = 0 ⇒ ∀t∈T C ∈ Ft

A stochastic process Z is adapted to (Ft)t∈T if Z(·, t) is Ft-measurable for
all t ∈ T . Every stochastic process Z generates a filtration: Ft is, roughly
speaking, the σ-algebra of events revealed by Z up to and including time t.
More formally, Ft is the smallest σ-algebra containing

{{ω : Z(·, s) ∈ (a, b)}, s ≤ t, a, b ∈ R}

Every stochastic process Z is adapted to the filtration it generates. X̂ is
adapted to the filtration we defined in the random walk model, but X is not
adapted to that filtration.

Remark 4.2 Ft is interpreted as the information which has been revealed by
time t. Suppose Z is a trading strategy, i.e. Z(ω, t) specified how many shares
of each stock an individual will hold at (ω, t). Then Z must be adapted;
the individual can’t make decisions based on information that hasn’t yet
been revealed. There is another reason to insist that trading strategies must
be adapted. If we allowed trading strategies that are not adapted, there
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would be arbitrage. An example of a non-adapted trading strategy would
be “buy the stock today if its price will be higher tomorrow, but sell it
short today if its price will be lower tomorrow.” Its clear that this strategy
guarantees a profit, and the profit can be made arbitrarily large by increasing
the number of shares that are bought or sold short; thus, if nonadapted
trading strategies were allowed, individuals would take actions that would
force the price today to change to eliminate the arbitrage, and this price
change would reveal the information on which the individuals were basing
their trades, enlarging the filtration. Notice, however, that requiring that
trading strategies be adapted imposes a fundamental limitation, because it
does not allow us to study situations with asymmetric information. In reality,
the information possessed varies considerably from one individual to another.
Market microstructure focusses on how agents that are better informed than
others use that information, and how the information is incorporated into
prices as a result. The continuous-time formulation makes it difficult or
impossible to address those kinds of questions; in effect, it is assumed that
all agents see the same information at any given time.

Definition 4.3 Let (Ω,F , P ) be a probability space. A stochastic process
Z is measurable if it is measurable with respect to the product σ-algebra on
Ω⊗T . Z is integrable if Z(·, t) is integrable for all t ∈ T . Suppose Y is a
random variable which is integrable and G ⊂ F . The conditional expectation
of Y with respect to G is a random variable W = E(Y |G) such that W is
G-measurable, and

∫
G WdP (ω) =

∫
G Y dP (ω) for all G ∈ G. The existence of

the conditional expectation is proven using the Radon-Nikodym Theorem;
any two conditional expectations agree almost surely.

Remark 4.4 When Ω is finite, as in the random walk model, any σ-algebra
G must be the collection of all unions of elements of a partition of Ω. For
example, given t < T , we can define the partition of Ω determined by
ω1, ω2, . . . , ω�nt�. The partition sets are sets of the form

{ω′ ∈ Ω : ω′
k = ωk (1 ≤ k ≤ nt)}

Define ω′ ∼t ω if ω′
k = ωk for k ≤ nt. This partition generates the σ-

algebra Ft in the sense that Ft consists precisely of all unions of partition
sets. E(W |Ft) is computed by taking the average value of W over each of
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the partition sets:

E(W |Ft)(ω) =

∑
{ω′:ω′∼tω} W (ω)

|{ω′ : ω′ ∼t ω}|

Definition 4.5 Z is a martingale with respect to a filtration (Ft)t∈T if

1. Z is integrable

2. Z is adapted to (Ft)t∈T

3. For all s, t ∈ T with s ≤ t

E (Z(·, t)|FS) = Z(·, s)

almost surely.

Example 4.6 If we let T = [0, T ], the random walk X̂n(ω, t) is a martingale
with respect to (Ft)t∈T . To see this, compute

E(X̂n(·, t)|Fs)(ω0)

=
∑

ω∼sω0

X̂n(ω, t)

2n(t−s)

= X̂n(ω0, s) +
∑

ω∼sω0

nt∑
k=ns+1

ωk

2n(t−s)
√

n

= X̂n(ω0, s) +
nt∑

k=ns+1

∑
ω∼sω0

ωk

2n(t−s)
√

n

= X̂n(ω0, s) +
nt∑

k=ns+1

0

2n(t−s)
√

n

= X̂n(ω0, s)

since each ωk is 1 exactly half the time and −1 exactly half the time. Note
that Xn is not a martingale on [0, T ]; it is not adapted to the filtration
{Ft}t∈[0,T ], and it is not a martingale with respect to the filtration it gener-

ates. If we restrict the time set to the set of points
{
0, 1

n
, . . . , T

}
, Xn is a

martingale on this restricted time set.
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Example 4.7 If B is standard Brownian motion, then B is a martingale
with respect to the filtration it generates. This follows from the fact that
the increment B(·, t)−B(·, s) has mean zero and is independent of Fs, while
B(·, s) is measurable with respect to Fs:

E (B(·, t)|Fs) (ω0)

= E (B(ω0, s) + B(·, t)−B(·, s)|Fs) (ω0)

= B(ω0, s) + E (B(·, t)−B(·, s)|Fs) (ω0)

= B(ω0, s) + 0

5 Wiener Processes

This is section 1.5 in Nielsen.

Definition 5.1 We take as given a filtration (Ft)t∈T . A standard Wiener
process is a stochastic process such that

1. W (·, 0) = 0 almost surely.

2. W (ω, ·) is continuous almost surely.

3. W is adapted to (Ft)t∈T .

4. W (·, t)− W (·, s) is independent of Fs if s ≤ t

5. W (·, t)− W (·, s) is normal with mean zero and variance (t − s)I

The essential difference between a Wiener process W (as defined by Nielsen)
and a standard Brownian motion is that the filtration (Ft)t∈T is given in
advance; it may well be bigger than the filtration generated by W . This is
useful for formulating continuous-time finance, since we want to allow for
the possibility that there is uncertainty in the model beyond that which is
captured in the available securities.

In addition, there are generalized and correlated Wiener processes cor-
responding to generalized and correlated Brownian motions; see Nielsen for
details.

In the lecture, I showed you how to evaluate the integrals in Nielsen’s
Example 1.15 by completing the square in the exponential, in order to help
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you do the second question on Problem Set 2. If you succeeded in solving
that question, you understand Example 1.15.

You can read or skip Nielsen’s Section 1.7, at your option.

6 Stochastic Integrals and Capital Gains

In sections 1.8 and 1.9, Nielsen motivates time integrals and stochastic in-
tegrals as ways of generating new kinds of processes. This is certainly true,
but there is a much stronger finance motivation for studying them: they are
essential to defining the capital gains generated by a trading strategy. In this
section, we motivate the stochastic integral by considering the random walk
model.

As we have seen, the most common model for stock prices is the exponen-
tial of a generalized Brownian motion. Since we’re just trying to motivate the
stochastic integral, we pretend that the stock price is given by the random
walk process Xn, rather than eXn or eB. In particular, we assume there is
only one stock. Let T = {0, 1/n, . . . , nT}.

Suppose an individual uses the trading strategy Δ̄(ω, t). In other words,
Δ̄ is a stochastic process which tells the individual how many shares to hold
at time t, when the state is ω. We require that Δ̄ be adapted with respect
to the filtration (Ft)t∈T . This will be true if and only if Δ̄(ω, t) depends
only on ω1, . . . , ω�nt�. We assume that Δ̄(ω, t) is constant on intervals of the

form
[

k
n
, k+1

n

)
; thus, the individual changes his/her portfolio holdings only

at times t ∈ T ; this assumption does not alter the set of possible portfolio
returns available to the individual.

What is the capital gain generated by the trading strategy Δ̄(ω, t)? The
capital gain between time k/n and k+1

n
is

Δ̄

(
ω,

k

n

)(
X

(
ω,

k + 1

n

)
− X

(
ω,

k

n

))

so the capital gains process up to time t ∈ T is

G(ω, t) =
nt−1∑
k=0

Δ̄

(
ω,

k

n

)(
X

(
ω,

k + 1

n

)
− X

(
ω,

k

n

))

=
nt−1∑
k=0

Δ̄

(
ω,

k

n

)
ωk+1√

n
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This is called a Riemann-Stieltjes integral with respect to the integrator
X(ω, ·); it is formed by taking values of the integrand Δ̄ and multiplying by
changes in the value of the integrator X.

Riemann-Stieltjes integrals are normally defined provided that the inte-
grand is continuous and the integrator is of bounded variation; the integrand
Δ̄ is not continuous, but it is a step function, and the Riemann-Stieltjes in-
tegral is also defined in this case. The definition of

∫ b
a f(t)dg(t) begins with

partitions: Suppose a = t0 < t1 < · · · < tn = b, then the Riemann-Stieltjes
sum with respect to this partition is

n−1∑
i=0

f(ti)(g(ti+1) − g(ti))

The Riemann-Stieltjes integral is defined as the limit of the Riemann-Stieltjes
sums as the partition gets finer and finer, provided the limit exists. Note that
in defining the Riemann-Stieltjes integral with respect to the random walk,
we need to consider partitions finer than the time points k

n
at which the

random walk coins are tossed. The Riemann-Stieltjes integral makes perfect
sense in the random walk model because the integrators (the paths of the
random walk) are of bounded variation. It is true that the variation of the
paths goes to infinity as n grows, but for each fixed n, every random walk
path is piecewise linear, hence of bounded variation.

However, the paths of Brownian motion are almost surely not of bounded
variation, so one cannot define the capital gain simply by taking a Riemann-
Stieltjes integral. Itô finessed this problem by approximating the integrand
by simple functions (functions which are piecewise constant over time). The
Stieltjes integral makes sense if the integand is a simple function, even if the
integrator is not of bounded variation. The properties of Brownian motion
allowed Itô to extend this Stieltjes integral from adapted simple stochas-
tic processes to adapted square-integrable stochastic processes. In the next
section, we will give Itô’s definition of the stochastic integral.6

6An alternative approach is to use nonstandard analysis and construct Brownian motion
as a hyperfinite random walk. The Itô integral with respect to the Brownian motion can
be recovered from the Stieltjes integral with respect to the hyperfinite random walk; see
Anderson [1] for details.

16



7 Formal Definition of the Stochastic Integral

We begin with some preliminary material.
Suppose (A,A, μ) is a measure space. We have three main examples in

mind:

• (Ω,F , P ), the probability space representing the uncertainty

• (T , C, λ), the Lebesgue measure space on the time set T

• (Ω⊗T ,F⊗C, P⊗λ), the product of the space of uncertainty and time.

Definition 7.1

L1(A) = {f : A → R, f measurable,
∫

A
|f |dμ < ∞}

L2(A) = {f : A → R, f measurable,
∫

A
f2dμ < ∞}

We identify two elements f, g of L1(A) or L2(A) if f = g except on a set of
μ measure zero. Note that if A = Ω, L2 is the set of random variables with
finite variances, and L1 is the set of random variables with finite means. If
A = Ω⊗T , L1(A) and L2(A) are sets of stochastic processes. By Fubini’s
Theorem, if Z is a measurable process, then∫

Ω⊗T
Z2(ω, t)d(P × λ)

=
∫
T

(∫
Ω

Z2(ω, t)dP
)

dλ

=
∫
Ω

(∫
T

Z2(ω, t)dλ
)

dP

L1(A) and L2(A) are Banach spaces under the norms ‖f‖1 =
∫
A |f |dμ on

L1(A) and ‖f‖2 = (
∫
A f2dμ)

1/2
on L2(A). In other words, if we let d1(f, g) =

‖f − g‖1 and d2(f, g) = ‖f − g‖2 be the metrics induced by these norms,
then (L1(A), d1) and (L2(A), d2) are complete metric spaces. A complete
metric space is one with the property that every Cauchy sequence converges
to an element of the metric space. Thus, if we have a sequence of functions
fn ∈ L2(A) and fn is Cauchy, i.e.

∀ε>0 ∃N ∀m,n>N‖fm − fn‖2 < ε
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then
∃f∈L2(A) ‖fn − f‖2 → 0

The analogous property is true for L1(A).
We say that fn converges to f in probability if, for every ε > 0,

P ({ω : |fn(ω) − f(ω)| > ε}) → 0

We first turn to time integrals. Fix a probability space (Ω,F , P ) and a
filtration (Ft)t∈T . Let L1 be the set of adapted, measurable processes a such
that, for all t ∈ T , ∫ t

0
‖a(ω, s)‖ds < ∞ (1)

almost surely. Here, a(ω, s) may either be a scalar or a vector.7 The condition
in Equation (1) says that a(ω, ·) ∈ L1(T ) for almost all ω; this is weaker than
saying a ∈ L1(Ω⊗[0, T ]), which requires

∫
Ω

∫ T

0
‖a(ω, s)‖dsdP < ∞

If a ∈ L1, we write
∫ t
0 a(ω, s)ds as shorthand for

∫
[0,t] a(ω, s)dλ(s), the integral

of a(ω, ·) over [0, t] with respect to Lebesgue measure.

Proposition 7.2 (Proposition 1.25 in Nielsen) If a ∈ L1, then
∫ t
0 a(ω, s)ds

is adapted, continuous in t almost surely in ω, and hence measurable.

Remark 7.3 a itself can be quite discontinuous in time. But since for all t,
a(ω, ·) ∈ L1([0, t]) almost surely,

lim
ε↘0

(∫ t+ε

0
a(ω, s)ds −

∫ t

0
a(ω, s)ds

)

= lim
ε↘0

∫ t+ε

t
a(ω, s)ds = 0

because of the countable additivity of Lebesgue measure, the fact that λ({t}) =
0, and the fact that a(ω, ·) ∈ L2([0, T ]) almost surely. This shows that the

7If a(ω, s) is a scalar, ‖a(ω, s)‖ = |a(ω, s)‖, the absolute value. If a(ω, s) is a vector,
Nielsen takes ‖a(ω, s)‖ = ‖a(ω, s)‖2 to be the Euclidean length of a(ω, s), one could also
take ‖a(ω, s)‖ = ‖a(ω, s)‖1 =

∑
j |aj(ω, s)|, which meshes better with L1, but does not

change the set of processes in L1.
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integral is almost surely (in ω) continuous (in t). If b(ω, ·) has a discontinu-
ity at t0, this will typically introduce a kink, but never a discontinuity, in∫ t
0 b(ω, s)ds at t = t0.

We now turn to the definition of the Itô Integral. The physical interpretation
of the Itô Integral arises from diffusion processes. The change dW of a
Wiener process gives a standard diffusion, occurring at a constant rate. The
integrand b specifies how fast the diffusion is occurring at a particular time
s and state ω; for a smoke particle being bombarded by air molecules, the
rate is a function of the temperature and pressure of the air, and the mass
of the smoke particle. In finance, dW represents the volatility of the stock
price, while the integrand b represents the portfolio holding. The class L2

in the following definition is the set of stochastic processes which can be Itô
integrated.

Definition 7.4 Fix a filtration (Ft)t∈T and a K-dimensional Wiener process
W with respect to (Ft)t∈T . Let L2 denote the set of adapted, measurable
processes b : Ω⊗T → Rm (where Rm may denote R1, RK , or RN×K) such
that ∫ t

0
‖b(ω, s)‖2ds < ∞

almost surely.8 Let H2 = L2 ∩ L2(Ω⊗T ).

The definition of the Itô proceeds in stages, starting first with simple func-
tions, then extending to H2, and finally extending to L2.

Step 1: First suppose K = 1, b : Ω × T → R, and T ∈ T . Fix
0 = t0 < t1 < · · · < tn = T . Assume that b ∈ H2, and b is simple9, i.e.

b(ω, s) = b(ω, tk) for all s ∈ [tk, tk+1)

Define ∫ T

0
bdW (ω) =

n−1∑
k=0

b(ω, tk)(W (ω, tk+1) − W (ω, tk))

Observe that this is a Stieltjes integral; it makes sense, even though W (ω, ·)
is not of bounded variation, because b is simple.

8‖b(ω, s)‖ denotes the Euclidean length of the scalar, vector, or matrix b(ω, s). For
example, if b(ω, s) is an N × K matrix, ‖b(ω, s)‖2 =

∑
ij (bij(ω, s))2.

9Our convention is different from that of Nielsen; his simple functions are left-
continuous, while ours are right-continuous.
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Lemma 7.5 (Itô Isometry) If b ∈ H2 and b is simple, then

∫
Ω

(∫ T

0
bdW

)2

dP =
∫
Ω

∫ T

0
|b(ω, s)|2 ds dP

In other words, ∥∥∥∥∥
∫ T

0
bdW

∥∥∥∥∥
2

= ‖b‖2

where the norm on the left side is the norm in L2(Ω) and the norm on the
right side is the norm in L2(Ω × [0, T ]).

Proof:

∫
Ω

(∫ T

0
b dW

)2

dP

=
∫
Ω

(
n−1∑
k=0

b(ω, tk) (W (ω, tk+1) − W (ω, tk))

)2

dP

=
∫
Ω

[
n−1∑
k=0

b2(ω, tk) (W (ω, tk+1) − W (ω, tk))
2

+ 2
∑
j<k

b(ω, tj)b(ω, tk) (W (ω, tj+1) − W (ω, tj)) (W (ω, tk+1) − W (ω, tk))

⎤
⎦ dP

=
n−1∑
k=0

(∫
Ω

b2(ω, tk) dP
)(∫

Ω
(W (ω, tk+1) −W (ω, tk))

2 dP
)

(2)

+2
∑
j<k

(∫
Ω

b(ω, tj)b(ω, tk) (W (ω, tj+1) − W (ω, tj)) dP
) (∫

Ω
(W (ω, tk+1) − W (ω, tk)) dP

)

=
n−1∑
k=0

((∫
Ω

b2(ω, tk) dP
)

(tk+1 − tk)
)

+ 0 (3)

=
∫
Ω

n−1∑
k=0

b2(ω, tk)(tk+1 − tk)) dP

=
∫
Ω

∫ T

0
b2(ω, t) dt dP

=
∫
Ω×[0,T ]

∫ T

0
b2 d(P⊗λ)
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Equation (2) follows because b(·, tj), b(·, tk) and W (·, tj+1) − W (·, tj)are in-
dependent of W (·, tk+1) − W (·, tk), while Equation (3) follows from the fact
that W (·, tk+1) − W (·, tk) has mean zero and variance tk+1 − tk.

Step 2: Extend the Itô Integral to H2. If b ∈ H2, fix n and let tk = k
n
,

then define

bn(ω, t) = n
∫ tk

tk−1

b(ω, s) ds if t ∈ [tk, tk+1)

For each time interval [tk, tk+1), bn(ω, t) is the average of b(ω, ·) over the pre-
vious interval [tk−1, tk); this ensures that bn is simple and adapted. Lusin’s
Theorem (which states, roughly speaking, that measurable functions are con-
tinuous functions on the complement of a set of arbitrarily small measure)
then can be used to show that ‖b − bn‖2 → 0, so the sequence bn is Cauchy
in L2(Ω × [0, T ]). Thus, given ε > 0, there exists N such that if m, n > N ,
‖bm − bn‖2 < ε. But by the Itô Isometry, if m, n > N

∥∥∥∥∥
∫ T

0
bm dW −

∫ T

0
bn dW

∥∥∥∥∥
2

=

∥∥∥∥∥
∫ T

0
(bm − bn) dW

∥∥∥∥∥
2

= ‖bm − bn‖2

< ε

so the sequence
∫ T
0 bm dW is a Cauchy sequence in L2(Ω), hence converges to

a unique limit; we define
∫ T
0 b dW to be this limit.

Step 3: Now suppose b ∈ L2, so
∫ T
0 |b(ω, s)|2 ds < ∞ almost surely in ω.

Let

bn(ω, s) =

⎧⎪⎨
⎪⎩

n if b(ω, s) > n
b(ω, s) if − n ≤ b(ω, s) ≤ n
−n if b(ω, s) < −n

Then bn ∈ H2 and that
∫ T
0 |bn−b|2 ds → 0 almost surely (specifically, for each

ω such that b(ω, ·) ∈ L2([0, T ])). One can show that
∫ T
0 bm dW converges in

probability;
∫ T
0 b dW is defined to be the limit.

Step 4: If W is K-dimensional, and b(ω, s) ∈ RK , define

∫ T

0
b dW =

K∑
k=1

∫ T

0
bk dWk
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Notice that if we think of W as the price process of K stocks and b as the
portfolio strategy, then

∫ T
0 b dW is the capital gain from the portfolio, the

sum of the capital gains on the individual stocks.
If W is K-dimensional, and b(ω, s) ∈ RN×K , define

(∫ T

0
b dW

)
j

=
K∑

k=1

∫ T

0
bjk dWk

Think of there being N stocks, each of whose price movements is determined
by the components of the underlying Wiener process. bjk give the coefficient
of stock j on the kth component of the Wiener process and

∫
b dW gives the

movement of the N -dimensional vector of stock prices. Note that if b is a
K-dimensional vector process, the stochastic integral is a scalar process; if
b is an N × K matrix process, the stochastic integral is an N -dimensional
vector process.

The stochastic integral is better behaved mathematically for integrands
b ∈ H2 than for integrands in L2. However, H2 is not closed under the
manipulations we need to do in Finance, while L2 is; hence, we need to
consider integrands in L2.

We have the following facts concerning the Itô Integral for integrands
b ∈ L2:

• Our definition of
∫ T
0 b dW was given for a single T , and is defined only

up to a set of probability zero. Since the set of probability zero can be
different for different choices of T , the paths of

∫ T
0 b dW could be badly

behaved. Fortunately, it is possible to choose a continuous version of
the the integral, i.e. we may assume that except for a set of ω of
probability zero,

∫ t
0 b(ω, s) dW (ω, s) is continuous in t.

• Linearity:

γ
∫ t

0
a dW + δ

∫ t

0
b dW =

∫ t

0
(γa + δb) dW

• Time consistency: If 0 ≤ s ≤ t, then

∫ s

0
b dW =

∫ t

0
(1ω×[0,s]b) dW

where 1B denotes the indicator function of the set B.
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• The Itô Integral is adapted, i.e.
∫ t
0 b dW is an adapted process. This is

easily seen to be true for simple processes in H2, and it is inherited as
the integral is defined by limits.

• If Y is a Fs-measurable random variable,

∫ t

s
(Y b) dW = Y

∫ t

s
b dW

This would be trivial if the Itô were defined pathwise, but as we have
seen, it is not. However, one can verify the property for simple processes
in H2, and verify it is preserved when one takes limits.

The following proposition provides important additional properties of the
Itô Integral when the integrand is in H2.

Proposition 7.6 (Proposition 1.37 in Nielsen) Let W be a K-dimensional
Wiener process.

1. If b : Ω × T → RK and b ∈ H2, then
∫ t
0 b dW is a martingale.10

2. If b, β : Ω × T → RK, and b, β ∈ H2, then11

Cov
(∫ t

s
b dW,

∫ t

s
β dW

∣∣∣∣Fs

)
= E

((∫ t

s
b dW

)(∫ t

s
β dW

)∣∣∣∣Fs

)

= E
(∫ t

s
b · β du

∣∣∣∣Fs

)

=
∫ t

s
E (b(u) · β(u)|Fs) du

10If b ∈ L2, it is not necessarily the case that
∫

b dW is a martingale; indeed, there is
no guarantee that

∫ t

0
b dW ∈ L1(Ω), so the integrals in the definition of a martingale may

not even be defined.
11Nielsen writes these expressions in integral form, but they are covariances since the

means are zero. The kth components of b and β are the coefficients of the stochastic
integrals on the kth components of the Wiender process. Because distinct components of
the Wiener process are independent, the covariance of Wk and W� is zero when k �= �, so
the terms bkβ� disappear from the expression, leaving only b · β = b1β1 + · · ·+ bKβK .
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3. If b : Ω × T → RN×K, and b ∈ H2, then

Cov
(∫ t

s
b dW,

∫ t

s
b dW

∣∣∣∣Fs

)
= E

((∫ t

s
b dW

) (∫ t

s
b dW

)T
∣∣∣∣∣Fs

)

= E
(∫ t

s
bbT du

∣∣∣∣Fs

)

=
∫ t

s
E

(
b(u)b(u)T

∣∣∣Fs

)
du

Thus, bbT is called the instantaneous covariance matrix of the stochastic
integral.

Corollary 7.7 (Corollary 1.38 in Nielsen) If b, β : Ω × T → RK, and
b, β ∈ H2, and 0 ≤ s ≤ t ≤ u, then

Cov
(∫ t

s
b dW,

∫ u

t
β dW

∣∣∣∣Fs

)
= 0

and

Cov
(∫ t

s
b dW,

∫ u

t
β dW

)
= 0

The previous Corollary shows that increments of stochastic integrals over
disjoint time intervals are uncorrelated. As the following example shows,
they are not generally independent.

Example 7.8 Let W be a 1-dimensional standard Wiener process, and

b(ω, t) =

{
1 if W (ω, s) < 1 for all s < t
0 otherwise

Then Z(ω, t) =
∫ t
0 b(ω, s)dW (ω, s) follows the path W (ω, ·) up until the first

time t at which W (ω, t) = 1, at which point it stops. More formally, define
τ (ω) = min{t : X(ω, t) = 1}; τ (ω) is defined almost surely because X(ω, ·)
is continuous almost surely. Then

Z(ω, t) = W (ω, t ∧ τ (ω))

where t ∧ s denotes min{t, s}. Notice that the increments of Z are not
independent. Indeed, if 0 < s < t and Z(ω, s) = Z(ω, s) − Z(ω, 0) = 1, then
the conditional probability that Z(ω, t) − Z(ω, s) = 0 is one. On the other
hand, if Z(ω, s) = Z(ω, s) − Z(ω, 0) < 1, the conditional probability that
Z(ω, t) − Z(ω, s) = 0 is zero.
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Example 7.9 You found in Problem Set 2 that∫ T

0
X̂n dXn =

1

2

(
X2

n(ω, T ) − T
)

A slightly more elaborate argument shows that if W is a one-dimensional
Wiener process, ∫ T

0
W dW =

1

2

(
W 2(ω, T ) − T

)
Remember that the approximations to the integrand W used in defining the
integral are always adapted. Because the increments in the Wiener process
are normally distributed, whereas the increments in the random walk are
always ±1/

√
n, the argument needs to rely on the Law of Large Numbers.

Theorem 7.10 (Kunita-Watanabe Theorem, Theorem 1.39 in Nielsen)
Let W be a K-dimensional standard Brownian motion. If Z is a martingale
with respect to the filtration generated by W , then there exists b ∈ L2 such
that

Z(ω, t) = Z(ω, 0) +
∫ t

0
bdW (ω, s)

If Z(·, T ) ∈ L2, then b ∈ H2 on Ω × [0, T ].

Remark 7.11 This is a truly remarkable result.

1. It is hard to give a discrete intuition for it because, in essence, it is a
theorem about the filtration generated by a Brownian motion. Note
that the theorem implies that Z has a continuous version, so every
martingale with respect to the filtration generated by a Brownian mo-
tion is continuous. There is something about the filtration that forces
the release of new information to be done in a continuous way. You
cannot capture sudden events (whether anticipated, such as the press
release which follows each meeting of the Federal Reserve Open Market
Committee changes the discount rate, or unanticipated, such as a large
corporation announcing that it is retracting the last several years of its
audited income statements) in a stock price model based on Brownian
motion. It should be emphasized that the theorem assumes that Z is
a martingale with respect to the filtration generated by W ; it is not
enough that Z be a martingale with respect to the filtration associated
with a Wiener process, since that filtration may be larger than the
filtration generated by the Wiener process.
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2. It is very useful for Finance. Since Z is an Itô process, we can do
Itô Calculus on Z. The theorem is essential in proving the Complete
Markets Theorem, where it allows us to extract a trading strategy
whose value process is a given martingale.

8 Itô Calculus

We want to study stock price processes of the form eZ(ω,t) where Z is a
generalized Brownian motion. In particular, we need to compute

∫ T

0
Δ̄(ω, t) deZ(ω,t)

the capital gain generated by a trading strategy Δ̄. Itô’s Lemma gives us the
key to defining the stochastic integral with respect to processes like eZ(ω,t).

Fix a K-dimensional standard Wiener process W .

Definition 8.1 An N -dimensional Itô process is a stochastic process of the
form

Z(ω, t) = Z(ω, 0) +
∫ t

0
a(ω, s) ds +

∫ t

0
b(ω, s)dW (ω, s) (4)

where a ∈ L1 is an N × 1 vector-valued process and b ∈ L2 is an N × K
matrix-valued process. Note that a and b are allowed to depend on both ω
and t. Itô processes are continuous and adapted. Every generalized Wiener
process is an Itô process. a is called the drift, b the dispersion, and bbT the in-
stantaneous covariance matrix of Z. The following symbolic representations
are all shorthand for Equation (4):

Z(t) = X0 +
∫ t

0
a ds +

∫ t

0
b dW

dZ(t) = a(t) dt + b(t) dW (t)

dZ = a dt + b dW

If D ⊂ RN is and f : D → R is C2, let

fx(x) = �f |x =

(
∂f

∂x1
, . . . ,

∂f

∂xN

)
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denote the gradiant of f , viewed as a row vector, and let

fxx(x) = Hf |x =

(
∂2f(x)

∂xi∂xj

)

denote the Hessian matrix of f .

Theorem 8.2 (Itô’s Lemma, Theorem 2.2 in Nielsen) Let D ⊂ RN

be an open set, and Z an N-dimensional Itô process

Z(t) = Z(0) +
∫ t

0
a ds +

∫ t

0
b dW

such that
P ({ω : Z(ω, t) ∈ D for all t ∈ [0, T ]}) = 1

and f : D → Ris C2. Then f(Z) is an Itô process, specifically f(Z(t)) =

f(Z(0)) +
∫ t

0

[
fx(Z)a +

1

2
tr
(
bTfxx(Z)b

)]
ds +

∫ t

0
fx(Z)b dW (5)

Remark 8.3 By analogy with the Fundamental Theorem of Calculus, the
terms involving fx(Z) are expected, but the term involving tr

(
bTfxx(Z)b

)
is

at first sight surprising. Note that

tr(bTfxx(Z)b) =
N∑

i,j=1

K∑
k=1

∂2f

∂xi∂xj

(Z)bikbjk

bik is the coefficient of Xi on Wk, so bikbjk is the product of the coefficients
of Xi and Xj on the same component k of the Wiener process W . Since

∂2f

∂xi∂xj
(Z)bikbjk

is integrated with respect to time t, the formula is saying, in effect that
(dWk)

2 = dt, but this is just reasserting that the quadratic variation of
a Wiener process grows linearly with time. The term arises because the
quadratic variation of the Wiener process is not zero, and hence the sec-
ond order terms in the Taylor expansion of f matter. There are no terms
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corresponding to bikbj� with k �= �, so the formula is saying, in effect, that
(dWk)(dW�) = 0 if k �= �. Itô’s Lemma is often summarized by saying

(dWk)(dW�) = δk�dt

where

δk� =

{
1 if k = �
0 if k �= �

Example 8.4 [Black-Scholes Stock Price, Example 2.3 in Nielsen] The stock
price in the Black-Scholes model is

S(t) = S(0)e(μ−σ2/2)t+σW (t)

Let

Z(t) = lnS(t)

= lnS(0) +

(
μ − σ2

2

)
t + σW (t)

= lnS(0) +
∫ t

0

(
μ − σ2

2

)
ds +

∫ t

0
σ dW (s)

so Z is an Itô process, and

dZ =

(
μ − σ2

2

)
ds + σ dW

S(t) = eZ(t)

dS = deZ

=

[
eZ

(
μ − σ2

2

)
+

σ2

2
eZ

]
dt + eZσ dW

= eZμdt + eZσ dW

= Sμdt + Sσ dW

so
dS

S
= μdt + σ dW

dS
S

is the proportional change in S, so the proportional change in S has
drift μ and instantaneous variance σ. This provides another explanation of
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why we write S = S(0)e(μ−σ2/2)t+σW (t); the −σ2/2 is needed to cancel out a
σ2/2 that comes from Itô’s Lemma, resulting in instantaneous drift μ in the
proportional change of S.

Plausibility Argument for Itô’s Lemma: Here, we give a conceptually
simple, but admittedly notationally messy, calculation verifying Itô’s Lemma
for Stieltjes integrals of simple integrands integrated with respect to a ran-
dom walk. The intuition behind the standard proof of Itô’s Lemma is very
close to this argument, but complications arise because the Itô Integral is
defined for general integrands by approximation, and because the relation
(ΔWj)(ΔWk) = δjkdt is not true over finite time intervals. However, it is
easy to see this relation holds for the random walk, The argument given
here can be turned into a rigorous proof of Itô’s Lemma using nonstandard
analysis (Anderson [1]). Let

Y (t) = Y (0) +
∫ t

0
a ds +

∫ T

0
b dX

where X is a 2-dimensional n-step random walk. In other words, Ω =
{−1, 1}nT × {−1, 1}nT , ω = (ω�k : � = 1, 2, k = 1, . . . , nT ), N = 2 and
K = 2. Suppose also that a and b are simple processes which are measurable
in the filtration generated by the random walk; for simplicity, we assume here
that a and b are uniformly bounded as n → ∞. O(h) denotes a quantity
which is a bounded multiple of h as h → 0, while o(h) denotes a quantity
which goes to zero faster than h as h → h. For example, Taylor’s Theorem
says that if g : R → R is a C2 function,

g(x + h) = g(x) + g′(x)h +
1

2
g′′(x)h2 + o(h2)

Let

ΔY

(
ω,

k

n

)
= Y

(
ω,

k + 1

n

)
−

(
ω,

k

n

)

=

⎛
⎝ a1(ω,k/n)

n
+

b11(ω,k/n)ω1(k+1)+b12(ω,k/n)ω2(k+1)√
n

a2(ω,k/n)
n

+
b21(ω,k/n)ω1(k+1)+b22(ω,k/n)ω2(k+1)√

n

⎞
⎠

Thus,

f(Y (ω, T )) − f(Y (ω, 0))
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=
nT−1∑
k=0

(
f

(
Y

(
ω,

k + 1

n

))
− f

(
Y

(
ω,

k

n

)))

=
nT−1∑
k=0

�f |Y (ω,k/n) · ΔY

(
ω,

k

n

)
+

1

2

nT−1∑
k=0

(
ΔY

(
ω,

k

n

))T

Hf |Y (ω,k/n)ΔY

(
ω,

k

n

)

+no
(

1

n

)

nT−1∑
k=0

�f |Y (ω,k/n)ΔY

(
ω,

k

n

)

=
nT−1∑
k=0

∂f

∂x1

∣∣∣∣∣
Y (ω,k/n)

(
a1(ω, k/n)

n
+

b11(ω, k/n)ω1(k+1) + b12(ω, k/n)ω2(k+1)√
n

)

+
nT−1∑
k=0

∂f

∂x2

∣∣∣∣∣
Y (ω,k/n)

(
a2(ω, k/n)

n
+

b21(ω, k/n)ω1(k+1) + b22(ω, k/n)ω2(k+1)√
n

)

=
∫ T

0

∂f

∂x1

∣∣∣∣∣
Y (ω,t)

a1(ω, t) dt +
∫ T

0

∂f

∂x1

∣∣∣∣∣
Y (ω,t)

b11(ω, t) dX1(ω, t)

+
∫ T

0

∂f

∂x1

∣∣∣∣∣
Y (ω,t)

b12(ω, t) dX2(ω, t) +
∫ T

0

∂f

∂x2

∣∣∣∣∣
Y (ω,t)

a2(ω, t) dt

+
∫ T

0

∂f

∂x2

∣∣∣∣∣
Y (ω,t)

b21(ω, t) dX1(ω, t) +
∫ T

0

∂f

∂x2

∣∣∣∣∣
Y (ω,t)

b22(ω, t) dX2(ω, t)

=
∫ T

0
�f |Y (ω,t) a(ω, t) dt

+
∫ T

0

⎛
⎝ ∂f

∂x1

∣∣∣∣∣
Y (ω,t)

b11(ω, t) +
∂f

∂x2

∣∣∣∣∣
Y (ω,t)

b21(ω, t)

⎞
⎠ dX1(ω, t)

+
∫ T

0

⎛
⎝ ∂f

∂x1

∣∣∣∣∣
Y (ω,t)

b12(ω, t) +
∂f

∂x2

∣∣∣∣∣
Y (ω,t)

b22(ω, t)

⎞
⎠ dX2(ω, t)

=
∫ T

0
�f |Y (ω,t) a(ω, t) dt +

∫ T

0
�f |Y (ω,t) b(ω, t) dX(ω, t)

Since ω1k and ω2k are independent, the product ω1kω2k equals +1 with prob-
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ability 1/2 and −1 with probability 1/2, so we can form a random walk

X̄

(
ω,

k

n

)
=

k∑
j=1

ω1jω2j√
n

X̄ is a standard random walk, which in the limit is standard Brownian mo-
tion.

1

2

nT−1∑
k=0

(
ΔY

(
ω,

k

n

))T

Hf |Y (ω,k/n)ΔY

(
ω,

k

n

)

=
1

2

nT−1∑
k=0

(
ΔY1

(
ω,

k

n

)
, ΔY2

(
ω,

k

n

))⎛
⎜⎝

∂2f
∂x2

1

∣∣∣
Y (ω,t)

∂2f
∂x1∂x2

∣∣∣
Y (ω,t)

∂2f
∂x1∂x2

∣∣∣
Y (ω,t)

∂2f
∂x2

2

∣∣∣
Y (ω,t)

⎞
⎟⎠
⎛
⎝ ΔY1

(
ω, k

n

)
ΔY2

(
ω, k

n

)
⎞
⎠

=
1

2

nT−1∑
k=0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

(
ΔY1

(
ω,

k

n

))2

+
∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

(
ΔY2

(
ω,

k

n

))2

+2
∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

(
ΔY1

(
ω,

k

n

))(
ΔY2

(
ω,

k

n

))⎞⎠

=
1

2

nT−1∑
k=0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

(
a1(ω, k/n)

n
+

b11(ω, k/n)ω1(k+1) + b12(ω, k/n)ω2(k+1)√
n

)2

+
∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

(
a2(ω, k/n)

n
+

b21(ω, k/n)ω1(k+1) + b22(ω, k/n)ω2(k+1)√
n

)2

+2
∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

(
a1(ω, k/n)

n
+

b11(ω, k/n)ω1(k+1) + b12(ω, k/n)ω2(k+1)√
n

)

×
(

a2(ω, k/n)

n
+

b21(ω, k/n)ω1(k+1) + b22(ω, k/n)ω2(k+1)√
n

))

1

2

nT−1∑
k=0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

(
a1(ω, k/n)

n
+

b11(ω, k/n)ω1(k+1) + b12(ω, k/n)ω2(k+1)√
n

)2

=
1

2

nT−1∑
k=0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

(
O(1)

n2
+

O(1)

n3/2

+
(b11(ω, k/n)ω1(k+1))

2 + (b12(ω, k/n)ω2(k+1))
2 + 2b11(ω, k/n)b12(ω, k/n)ω1(k+1)ω2(k+1)

n

)
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= O
(

1

n1/2

)
+

1√
n

nT−1∑
k=0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

b11(ω, k/n)b12(ω, k/n)ω1(k+1)ω2(k+1)√
n

+
1

2

nT−1∑
k=0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

b11(ω, k/n)2 + b12(ω, k/n)2

n

= O
(

1

n1/2

)
+

1√
n

∫ T

0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

b11(ω, k/n)b12(ω, k/n)dX̄

+
1

2

∫ T

0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

(
b11(ω, t)2 + b12(ω, t)2

)
dt

= O

(
1√
n

)
+

1

2

∫ T

0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

(
b11(ω, t)2 + b12(ω, t)2

)
dt

because the stochastic integral with respect to X̄ is finite almost surely.
Similarly,

1

2

nT−1∑
k=0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

(
a2(ω, k/n)

n
+

b21(ω, k/n)ω1(k+1) + b22(ω, k/n)ω2(k+1)√
n

)2

= O

(
1√
n

)
+

1

2

∫ T

0

∂2f

∂x2
2

∣∣∣∣∣
Y (ω,t)

(
b21(ω, t)2 + b22(ω, t)2

)
dt

Finally,

1

2

nT−1∑
k=0

2
∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

((
a1(ω, k/n)

n
+

b11(ω, k/n)ω1(k+1) + b12(ω, k/n)ω2(k+1)√
n

)

×
(

a2(ω, k/n)

n
+

b21(ω, k/n)ω1(k+1) + b22(ω, k/n)ω2(k+1)√
n

)

=
nT−1∑
k=0

∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

(
O

(
1

n3/2

)
+

b11(ω, k/n)b21(ω, k/n)(ω1(k+1))
2

n

+
b12(ω, k/n)b22(ω, k/n)(ω2(k+1))

2

n

+
(b11(ω, k/n)b22(ω, k/n) + b12(ω, k/n)b21(ω, k/n))ω1(k+1)ω2(k+1)

n

)

= O

(
1√
n

)
+

nT−1∑
k=0

∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

b11(ω, k/n)b21(ω, k/n) + b12(ω, k/n)b22(ω, k/n)

n
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+
1√
n

nT−1∑
k=0

∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

(b11(ω, k/n)b22(ω, k/n) + b12(ω, k/n)b21(ω, k/n))ω1(k+1)ω2(k+1)√
n

= O

(
1√
n

)
+

∫ T

0

∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

(b11(ω, t)b21(ω, t) + b12(ω, t)b22(ω, t)) dt

+
1√
n

∫ T

0

∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

(b11(ω, t)b22(ω, t) + b12(ω, t)b21(ω, t)) dX̄

= O

(
1√
n

)
+

∫ T

0

∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

(b11(ω, t)b21(ω, t) + b12(ω, t)b22(ω, t)) dt

Combining the above calculations, and taking the limit as n → ∞, we have

f(Y (ω, T )) = f(Y (ω, 0))

+
∫ T

0
�f |Y (ω,t) a(ω, t) dt +

∫ T

0
�f |Y (ω,t) b(ω, t) dX(ω, t)

+
1

2

∫ T

0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

b11(ω, t)2 + b12(ω, t)2 dt

+
1

2

∫ T

0

∂2f

∂x2
2

∣∣∣∣∣
Y (ω,t)

b21(ω, t)2 + b22(ω, t)2 dt

+
1

2

∫ T

0
2

∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

(b11(ω, t)b21(ω, t) + b12(ω, t)b22(ω, t)) dt

=
∫ T

0

(
�f |Y (ω,t) a(ω, t) +

1

2
tr(b(ω, t)T (Hf |Y (ω,t))b(ω, t))

)
dt

+
∫ T

0
�f |Y (ω,t) b(ω, t) dW (ω, t)

Proposition 8.5 (Uniqueness of Coefficients of Itô Processes) 12 Let
a, α ∈ L1 be N-dimensional, b, β ∈ L2 be N × K-dimensional, and X0, Y0 ∈
L2 be N-dimensional.13 If

X0 +
∫ t

0
a ds +

∫ t

0
b dW = Y0 +

∫ t

0
α ds +

∫ t

0
β dW

12This is a slight generalization of Proposition 2.6 in Nielsen.
13Nielsen assumes X0, Y0 are constants, but there is no reason for them not to be random

variables.
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for all t, almost surely in ω, then

X0(ω) = Y0(ω) P almost surely

a(ω, t) = α(ω, t) λ⊗P almost everywhere

b(ω, t) = β(ω, t) λ⊗P almost everywhere

Proof: If b, β ∈ H2, this follows immediately from the Itô Isometry. Since
we need the result when b, β ∈ L2, we use Itô’s Lemma. It is sufficient to
consider the case N = 1. Let

Z(ω, t) = X0 +
∫ t

0
a ds +

∫ t

0
b dW −

(
Y0 +

∫ t

0
αds +

∫ t

0
β dW

)

= X0 − Y0 +
∫ t

0
(a − α) ds +

∫ t

0
(b− β) dW

= X0 − Y0 +
∫ t

0
γ ds +

∫ t

0
δ dW

where γ = a − α and δ = b − β. Z(ω, ·) = 0 almost surely, so X0(ω) −
Y0(ω) = Z(ω, 0) = 0 almost surely. We show γ = 0 and δ = 0 λ⊗P -almost
everywhere.

0 = eZ(ω,t) − 1

= eZ(ω,0) +
∫ t

0

[
e0γ +

1

2
e0δTδ

]
ds +

∫ t

0
e0δ dW − 1

=
∫ t

0

[
γ +

1

2
δTδ

]
ds +

∫ t

0
δ dW

=
∫ t

0
γ ds +

∫ t

0
δ dW +

1

2

∫ t

0
δTδ ds

= Z(ω, t) − Z(ω, 0) +
1

2

∫ t

0
δTδ ds

=
1

2

∫ t

0
δTδ ds

which implies that δ = 0 (P⊗λ-almost everywhere), so
∫ t
0 δ dW = 0 for all t,

so
∫ t
0 γ ds = 0 for all t, so γ = 0 (P⊗λ-almost everywhere).

Corollary 8.6 (Proposition 2.7) If the Itô process

X(t) = X(0) +
∫ t

0
a ds +

∫ t

0
b dW
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is a martingale with respect to the filtration generated by W , then a = 0
P⊗λ-almost everywhere.

Remark 8.7 [Caution] The converse is true if b ∈ H2, but it is not generally
true if b ∈ L2.

9 Integrals with respect to Itô Processes

Our basic model for a stock price will be geometric Brownian motion, which
is an Itô Process but not a Wiener process. In order to compute the capital
gain generated by a portfolio strategy, we need to be able to take Itô integrals
with respect to Itô processes. Nielsen defines the Itô integral with respect
to an Itô process Z as a particular Itô integral with respect to the Wiener
process W underlying Z. Here, we show why that is the correct definition.
Let

Z(t) = Z0 +
∫ t

0
a ds +

∫ t

0
b dW

where
Z0 is F0-measurable Z0(ω) ∈ RN

a ∈ L1 a(ω, t) is N × 1
b ∈ L2 b(ω, t) is N ×K

Suppose that we replace the K-dimensional standard Wiener process W with
the random walk Xn, and assume that a, b and γ are simple and adapted
with respect to the random walk filtration. To simplify notation, we take
K = 1. Then if Z = Z0 +

∫
a ds +

∫
b dXn,

Z
(
ω,

j

n

)
=

j−1∑
k=0

a
(
ω, k

n

)
n

+
j−1∑
k=0

b
(
ω, k

n

)
ωk+1√

n

so

ΔZ

(
ω,

k

n

)
= Z

(
ω,

k + 1

n

)
− Z

(
ω,

k

n

)

=
a
(
ω, k

n

)
n

+
b
(
ω, k

n

)
ωk+1√

n
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∫ T

0
γdZ =

nT∑
k=0

γ

(
ω,

k

n

)
ΔZ

(
ω,

k

n

)

=
nT∑
k=0

γ

(
ω,

k

n

)⎛
⎝a

(
ω, k

n

)
n

+
b
(
ω, k

n

)
ωk+1√

n

⎞
⎠

=
nT∑
k=0

γ
(
ω, k

n

)
a
(
ω, k

n

)
n

+
nT∑
k=0

γ
(
ω, k

n

)
b
(
ω, k

n

)
ωk+1√

n

=
∫ T

0
γ(ω, s)a(ω, s) ds +

∫ T

0
γ(ω, s)b(ω, s) dXn

=
∫ T

0
γa ds +

∫ T

0
γb dXn

Now, return to the situation in which W is a K-dimensional standard Wiener
process. We see that we want

∫ t

0
γ dZ =

∫ t

0
γa ds +

∫ t

0
γb dW

In order for this to make sense, we need to know that γa is integrable with
respect to time and γb is Itô integrable with respect to W . This motivates
the following definition:

Definition 9.1 Suppose

Z(t) = Z(0) +
∫ t

0
a ds +

∫ t

0
b dW

where W is a standard K-dimensional Wiener process, a ∈ L1 is N -dimensional
and b ∈ L2 is N × K-dimensional. Let

L(Z) = {γ : γ is adapted, measurable, M × N, γa ∈ L1, γb ∈ L2}

If γ ∈ L(Z), define

∫ t

0
γ dZ =

∫ t

0
γa ds +

∫ t

0
γb dW

Remark 9.2 Nielsen states various facts about stochastic integrals with re-
spect to Itô processes.
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1.
∫ t
0 γ dZ is an Itô Process, hence it is adapted and continuous.

2. γ may “accidentally” be in L(Z) even if it is not in L(Zi) for some i.

3.
∫

γ dZ is linear in the integrator Z as well as in the integrand γ.

4. If Y is an Ft-measurable random variable,

∫ T

t
Y dZ = Y

∫ T

t
dZ = Y (X(T )− X(t))

5. If f is C2on the range of Z and N = 1,

L(Z) ⊂ L(f(Z))

6. Nielsen’s section 2.3 contains various versions of Itô’s Lemma that you
should read on your own.

10 Detrending and Changing the Variance of

Itô Processes

This material corresponds to sections 2.4 and 2.5 of Nielsen, but we will
approach it in a different way. There are several methods for detrending or
altering the variance of an Itô Process.

1. Doob-Meyer Decomposition: This is the most natural way to de-
trend an Itô Process, but it turns out to be less useful in Finance than
some of the methods that follow. The Doob-Meyer Decomposition
takes a class of processes and represents them as the sum of a pro-
cess of bounded variation and a martingale. To take a simple example,
suppose Z is an Itô Process:

Z(ω, t) = Z(ω, 0) +
∫ t

0
a(ω, s) ds +

∫ t

0
b(ω, s) dW

with a ∈ L1 and b ∈ H2, then
∫ t
0 b dW is a martingale. To see that∫ t

0 a ds is almost surely of bounded variation, we decompose a = a+ −
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a−, where a+(ω, t) = max{a(ω, t), 0} and a−(ω, t) = −min{a(ω, t), 0}.
Then ∫ t

0
a ds =

∫ t

0
a+ ds −

∫ t

0
a− ds

and
∫ t
0 a+ ds and

∫ t
0 a− ds are both nondecreasing, hence

∫ t
0 a ds is of

bounded variation.

Proposition 10.1 Every adapted simple process on the random walk
filtration has a Doob-Meyer decomposition.

Proof: Let Z(ω, k/n) be an arbitrary adapted simple process on the
random walk filtration. Given a node (ω, k/n), define the nodes (ω+, (k+
1)/n) and (ω−, (k + 1)/n) by

(ω+)k+1 = +1 (ω+)j = ωj for j ≤ k
(ω−)k+1 = −1 (ω−)j = ωj for j ≤ k

In other words, (ω+, (k + 1)/n) and (ω−, (k + 1)/n) are the two nodes
in the random walk tree that immediately follow the node (ω, k/n).
Define

a

(
ω,

k

n

)
= n

⎛
⎝Z

(
ω+, k+1

n

)
+ Z

(
ω−, k+1

n

)
2

− Z

(
ω,

k

n

)⎞
⎠

b

(
ω,

k

n

)
=

√
n

⎛
⎝Z

(
ω+, k+1

n

)
− Z

(
ω−, k+1

n

)
2

⎞
⎠

=
√

n

⎛
⎝Z

(
ω+,

k + 1

n

)
−

⎛
⎝Z

(
ω,

k

n

)
+

a
(
ω, k

n

)
n

⎞
⎠
⎞
⎠

= −
√

n

⎛
⎝Z

(
ω−,

k + 1

n

)
−

⎛
⎝Z

(
ω,

k

n

)
+

a
(
ω, k

n

)
n

⎞
⎠
⎞
⎠

Then

Z

(
ω,

k

n

)
= Z(ω, 0) +

k−1∑
j=0

a
(
ω, j

n

)
n

+
k−1∑
j=0

b
(
ω, j

n

)
ωj+1√

n

so in the random walk filtration, an arbitrary process can be represented
as the sum of a time integral and a martingale.
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Definition 10.2 Let {Ft} be a filtration. Z is a submartingale with
respect to {Ft} if, whenever s ≤ t,

X(s) ≤ E(X(t)|Fs)

Theorem 10.3 (Doob-Meyer Decomposition) If Z(ω, t) is a right-
continuous submartingale with respect to a filtration {Ft}, then

Z(ω, t) = A(ω, t) + M(ω, t)

where A is an adapted nondecreasing process and M is a right-continuous
martingale with respect to {Ft}.

Remark 10.4 Since A is nondecreasing, it is of bounded variation
on finite time intervals. A need not be predictable; predictability in
continuous-time is a stronger condition than predictability in the ran-
dom walk model. In the random walk model, predictability means the
value of a process at time k/n is measurable with respect to F(k−1)/n;
as n → ∞, the time interval from k/n to (k + 1)/n shrinks, so in the
limit, the value of a at time t cannot be predicted from information
available at times s < t.
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