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On Hicksian Stability

Daniel McFadden

1. Introduction
J.R. Hicks first raised the question of the stability of a general equilibrium
system in Value and Capital, and suggested as an answer his now-classic
stability conditions:
What do we mean by stability in multiple exchange ? Clearly . ..
that a fall in the price of X in terms of the [numéraire] commodity
will make the demand for X greater than the supply. But are wé to
suppose that it must have this effect (a) when the prices of other
commodities are given, or (b) when other prices are adjusted so as
to preserve equilibrium in the other markets ?. . . Strictly, we should
distinguish a series of conditions: that a rise in the price of X will
make supply greater than demand, (a) all other prices given, (b)
allowing for the price of Y being adjusted to maintain equilibrium
in the Y-market, (c) allowing for tlte prices of ¥ and Z being
adjusted, and so on, until all prices have been adjusted. . . . I propose
to call a system in which all conditions of stability are satisfied
perfectly stable (Hicks, 1946, p. 66).
However, formulating the price adjustment mechanism in the multiple
exchange model as a system of ordinary differential equations, P. A.
Samuelson (1941, 1942, 1944) showed that in general perfect stability was
neither a necessary nor sufficient condition for dynamic stability. Samuelson
went on to argue: ‘Why any system should be expected to possess perfect
stability, or why an economist should be interested in this property is by
no means clear.’
Commenting on Samuelson’s results in a note to the second edition of
Value and Capital, Hicks writes:
My discussion of static equilibrium in this book was intended as no
more than a preliminary to what I called economic dynamics; thus
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the discussion of static stability was deliberately and explicitly time-
less. And when I passed on to my dynamics, the discussion of
stability remained timeless, at least in this sense: that I assumed
the process of adjustment to a temporary equilibrium to be com-
pleted within a short period (a ‘week’), while I neglected the move-
ment of prices within the week, so that my economic system could
be thought of as taking up a series of temporary equilibria. In
adopting this device, I was following in the tradition of Marshall,
though I was of course aware that the assumption of an ‘easy pass-
age to temporary equilibrium’ required more justification when it
was applied to my problem of many markets than it did when
applied to Marshall’s case of a single market. ...

Professor Samuelson has turned some much heavier mathematical
artillery than mine onto this precise issue, and has undoubtedly
made important progress with it. He drops the assumption of a
quick and easy passage to temporary equilibrium, assuming instead
that rates of price-change are functions of differences between
demands and supplies. His whole theory thus becomes dynamic
in a different sense than mine, but one which is perhaps more accept-
able to mathematicians. . ..

In terms of this new technique, my static theory can be ‘dynam-
ized’; it is possible to inquire into the stability of the static system
in the sense of investigating whether the movements set up when
a system is initially out of equilibrium will converge upon an
equilibrium position. Since Professor Samuelson’s system has a
new degree of freedom, it is not surprising that his stability condi-
tions are different from mine and more elaborate than mine; his
system may fail of stability, not only for my reasons, but because
of a lack of adjustment between rates of adaption in different
markets, or rates of response by persons trading. All this opens
a most promising line of investigation, which is clearly by no means
exhausted by the work hitherto done on it.

Professor Samuelson’s work thus represents an important advance
in our knowledge of the mechanics of related markets; his ‘dynamiz-
ing’ of static theory is a notable achievement. But I still feel that
something is wanted which is parallel to my dynamic theory, and
I miss this in Professor Samuelson’s work. By my hypothesis of
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essentially instantaneous adjustment, I reduced the purely mechanical

parts of my dynamic theory to the simplest terms~it is now quite

evident that I oversimplified it. But in so doing I did leave myself

free to make some progress with the less mechanical parts—ex-

pectations and so on. I still feel that this procedure has its uses,

and I should be sorry to abandon it altogether in favor of a pure

concentration on mechanism (Hicks, 1946, p. 336).

In the quotation above, Sir John Hicks alludes to the intimate connection
between his conditions of perfect stability and the basic assumptions of
Marshallian partial equilibrium analysis, and suggests that the sequential
adjustments to temporary equilibria associated with partial equilibrium
analysis capture the spirit of his ‘dynamics’. He then asks whether this
view of stability has a parallel within the framework of Samuelson’s
‘dynamic stability’. An affirmative answer is given in this paper. The
assumptions of partial equilibrium analysis are first formalized and
shown to be essentially equivalent to Hicks’s perfect stability conditions.
Then, for any economy satisfying these assumptions, a class of dynamic
processes is shown to be dynamically stable in the sense of Samuelson.
These dynamic processes are found to be ‘close’ to the sequential adjust-
ments to temporary equilibria which Hicks envisioned. Thus, a synthesis
of Hicksian and dynamic stability conditions can be achieved, providing
a justification, within the framework of dynamic stability theory, for the
application of Hicksian stability conditions in economic problems.

The assumptions of partial equilibrium analysis are formalized in
Section 11 of the paper. Section 111 relates the partial equilibrium assump-
tions to the properties of Hicksian matrices. Sections 1v and v give,
respectively, local and global stability theorems.

11. Hicksian Stability and Partial Equilibrium Analysis

Although the issue of Hicksian versus dynamic stability can be raised
in any dynamic system, we shall for concreteness consider the multiple
exchange model. Consider an economy with #n commodities, labeled
1, 2,...,n. The price of commodity i, assumed to bE non-negative, is
denoted by p;.! The aggregate excess demand for commodity i is denoted
by x;, and is given by an excess demand function x, = #,(py, . . ., pn). In
vector notation, p = (py, ... Pu), X = (X4, ..., X,), and

x =h(p)=(hy(p),....h(p)). (1)
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The ith market is in equilibrium if it has zero excess demand or if com-
modity i is a free good in excess supply.

The dynamic price adjustment mechanism formulated by Samuelson
states that the rate of change in the price of the ith commodity is positive
when that commodity is in excess demand, and negative when it is non-free
and in excess supply. This dynamic process can then be described by a
series of difference equations of the form 2

Ap(t) = pi(t+1)—pi () =c;H;(p(1)) (i=1,...,n), (2)

where p(£) = (p1(2), . . ., pn(2)) denotes the price vector prevailing at the
point of time #; ¢, is a positive rate of accommodation in market i; and
H;(p(?)) satisfies the conditions:

(a) x; = hy (p(t)) > 0 implies H,(p(¢)) > 0;

(b) x; = h,(p(#)) <0 and p, () > 0 imply 0 > H,(p(#)) [and p,(t+1)
= ¢,H,(p(2))—p:(t) > 0]; and

(c) if market i is in equilibrium, then H,(p(¢)) = 0.
We shall term H,(p) the market demand index for commodity i. An often-
analyzed case is one in which the market demand index for a commodity

equals its excess demand or is a sign-preserving function of its excess
demand. In vector notation, the system (2) will be written

Ap(t) = H(p(1))C, (3)

where C is a diagonal matrix of the rates of accommodation ¢;, and H
is a row vector of the functions H;. In the case that the market demand
indices are continuously differentiable, an analysis of the stability of this
system in a neighborhood of the general equilibrium is conveniently
carried out using a Taylor’s expansion of (3),

Ap(t) = (p(t)—p)A(p)C+remainder, (4)

where p denotes a general equilibrium price vector satisfying H (p) =0,
and A(p) denotes the Jacobian matrix of H(p) evaluated at p:

a;;(p) =0H;(p)/op; (i,j=1,...,n). (5)

A partial equilibrium price vector for a given subset of markets is one which
achieves equilibrium in the subset markets, given fixed prices in the re-
maining markets. Consider a single primary market i, and suppose that
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the remaining markets can be divided into two subsets such that prices
are fixed for the markets in one subset, and are adjusted to maintain
partial equilibrium in the other subset for each primary market price.
The resulting excess demand in the primary market depends only on its
own price and the fixed prices, and is termed the compensated excess
demand for the primary market i, conditioned on the subset of markets
which adjust to partial equilibrium.

Marshallian partial equilibrium analysis studies price behavior in a
single primary market, postulating that price behavior in remaining markets
can be ignored. Two types of external market behavior are consistent with
this postulate:

(1) The structure of the primary market varies smoothly with the

external market price, and this external price does not change signi-

ficantly over the period of analysis.

(2) The external price effectively adjusts to maintain partial equili-

brium in its market, so that the compensated primary market can be

analyzed.
Even more basic to the Marshallian analysis are the assumptions that a
unique partial equilibrium price exists in the compensated primary market,
and that excess demand in this market is positive when its price falls below
its partial equilibrium level. The conditions for perfect stability by Hicks
correspond precisely to these assumptions. ,

A dynamic price adjustment mechanism which is consistent with the
partial equilbrium assumptions above for a given primary market i must
have, relative to the rate of price adjustment in this market, a very rapid
rate of adjustment in markets where ‘partial equilibrium is maintained’,
and a very slow rate of adjustment in markets where prices are ‘fixed’.
Hence, if we require that partial equilibrium analysis be applicable to each
market i = 1,..., n, then we should be able to rank these markets in
order of decreasing ‘rates of accommodation’. Then, the dynamic adjust-
ment process would be essentially ‘sequential’: the first market would be
brought into approximate equilibrium, maintained there while the second
market was adjusted, and so forth.

The geometry of the Marshallian assumptions in the case of two
commodities is illustrated in Figure 1. The contours of zero excess demand
in each of the markets 1 and 2 are plotted, and the sign of excess demand
on each side of each of these curves is indicated. For each value of p,,
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Figure 1 Structure of Partial Equilibrium Analysis

the locus x,; = 0 determines a unique partial equilibrium price in market 1.
The compensated excess demand for market 2, conditioned on partial
equilibrium in market 1, is given by values of x, for prices in the locus
x; = 0, and has the property that this excess demand is negative when p,
is above the market 2 equilibrium price p,. One can see clearly in this
diagram that the dynamic price adjustment mechanism suggested above
should be stable under the Marshallian assumptions: Starting from an
initial price vector p(0), the price in market 1 will adjust rapidly toward
the locus x, = 0. After p, is close to this locus, prices will move, much
more slowly, along the locus to equilibrium. In the remainder of this
paper, we shall verify formally this intuitive result.

A formalization of the assumptions of partial equilibrium analysis which
will be shown to admit stable dynamic processes of the type just described
is summarized in the following postulate:
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Assumption 1 (Hicks’s Perfect Stability) The markets of the economy

can be ranked (and this ranking can be taken, without loss of general-

ity, to be their labeling 1, 2, . . ., n) such that for each market i

(i =1,...,n), the following conditions hold:

(1) given any fixed prices in markets i+1, . . ., n, there exists a unique

partial equilibrium price vector for markets 1, . . ., i. Further, these

partial equilibrium prices for the first i markets can be written as

continuously differentiable functions of the remaining prices.

(2) the compensated excess demand function for commodity i, con-

ditioned on the subset of markets 1, . . ., i—1 adjusting to partial

equilibrium, is negative when its price is above its partial equilibrium

level and is positive when its price is below its partial equilibrium level.
Several features of our form of the Hicks conditions should be emphasized.
First, the assumption is on the szatic structure of the economy and involves
no dynamics, even though it was motivated by dynamic considerations.
Second, the assumption imposes conditions on the sign of excess demands
and the regularity of the equilibrium, but imposes no conditions of con-
tinuity or differentiability on the excess demand functions or demand
indices away from partial equilibria. Third, the conditions are assumed to
hold only for a single ranking of the markets, rather than for all possible
rankings of markets, as in Hicks’s original formulation.

111. Perfect Stability and Hicksian Matrices
Consider a square matrix 4 of order n, and let 4; denote the upper left-
hand principal minor of 4 with order i:

all L ali

Ay .- Gy

The matrix A is called Hicksian if A, is negative and the principal minors
alternate in sign; i.e. (—1)!4, is positive fori = 1,.. ., n.

- In the case that the market demand indices are continuously differenti-
able in a neighborhood of the general equilibrium price vector p, Assump-
tion 1 will be shown to imply that the Jacobian matrix A(p) of H is
Hicksian at some price vector p® which is as close as one pleases to p.
The upper left-hand principal minor of A(p) of order i will be denoted
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by A;(p). Throughout the remainder of the paper, the notation T will
be used as a subscript on a vector to denote the subvector with components
from i through n;e.g., py = (pys - - -, p,). Similarly, the subscripts “r, <l
and ‘]i> will be used to denote subvectors with components i] = (1, . . ., i),
i[ =(+1,...,n),and Ji = (1,...,i—1), respectively. Under Assump-
tion 1, there exist unique partial equilibrium prices in the first i markets
which can be written as continuously differentiable functions of the prices
in the remaining markets. Denote these functions by
Pj=fi,j(Pif1a---aPn) j=1,...,1i, (6)
or more compactly, p;; = fy(p;). By assumption, the system (6) is a
unique solution for (py, . . ., p;) in the system of equations
O0=H,(p) Jj=1,...i. (7
Suppose H(p) is continuously differentiable in a neighborhood N of p.
Then, for any solution (f;(pi), pi) of (7) which is contained in N, a
converse of the implicit function theorem due to Bernstein and Toupin
(1962) can be applied to establish that A,(p), the Jacobian of (7) with
respect to p,[, assumes non-singular values for some price vector (p}y, pi)
with pjy as close as one pleases to f;( p;). Starting with i = n, a recursive
argument then establishes the existence of points p® arbitrarily close to P
where A(p°) has all principal minors 4,( p®) non-zero. With little loss of
economic generality, Assumption 1 can then be strengthened to
Assumption 1* The conditions of Assumption 1 hold, the market
demand index functions H are continuously differentiable in a neigh-
borhood of the general equilibrium price vector p, and all the principal
minors A;(p) of the Jacobian of H are non-zero at P
Under this assumption, the own price derivative of the compensated
market demand index function for commodity 7, conditioned on achieve-
ment of partial equilibrium in markets 1, ..., i~1, is negative. Further,
when the price vector p;; attains its general equilibrium level p,;, this
derivative, evaluated at p,, equals A4, ,( P)/Ai(p), with 4o(p) =1 by
convention. Hence, A(p) is Hicksian under Assumption 1*.

1V. A Local Stability Theorem

A remarkable theorem by Fisher and Fuller (1958) on the stabilization
of matrices allows us to establish immediately the local stability of the
dynamic process (2), provided the rates of accommodation ¢, are small
and are ranked in size in the manner suggested in our discussion of
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Marshallian analysis. The relevance of the Fisher-Fuller theorem for
stability analysis was first noted by P. Newman (1959). The local stability
theorem given below was communicated to me in essentially its present
form by J. Quirk.
Theorem 1. Suppose Assumption 1* holds. Then, there exists a positive
scalar €, such that if (a) the positive rates of accommodation c;
satisfy ¢y <& and ¢;{¢;_y <& fori = 2,...,n, and (b) the initial
price vector satisfies | p(0)— P | < &,,* then the dynamic process (2)
is stable, and all the characteristic roots of the matrix A(p)C in the
Taylor’s expansion (4) of the dynamic process (2) are real, negative,
distinct, and less than one in modulus.
Proof. Since A(p) is Hicksian and A(p) is continuous in a neighborhood
of p, there exists &, > 0 such that A(p) is Hicksian for | p—p | <é&,. The
corollary to the Fisher-Fuller theorem given in Appendix A then establishes
the existence of a scalar g, > 0 such that for C satisfying c¢;/c;—; <&,
A(p)C has real, distinct characteristic roots which are bounded negative.
Choosing ¢; <1/n| A(p) | for all p in the &;-neighborhood ensures that
the roots will have modulus less than one. Take ¢ = min (&, &;).
For | p(#)—p | <e, the dynamic process (2) can be written in the form
Ap(1) = H(p(1))C = (p()—p)A(p*())C,
where p2(t) = 8p+(1—0)p(t) for some scalar 6 satisfying 0 <6 <1.
The norm | p(t)—p | then satisfies

| p(t+1)=p 12— p()—F |*> = (p(t)—P)[24(p*(1))C+
+ A(p*)CC'A(p*)'1(p(t) —p)' <0

for p(t) # p, since the matrix in square brackets is negative definite.
Hence, the solution is contained in the neighborhood |p—p|<e and
converges to p. Q.E.D. -

When the system of market demand index functions H(p) is linear,
Theorem 1 establishes stability globally (i.e., for arbitrary p(0)).

V. A Global Stability Theorem
A global stability result analogous to the local stability theorem proved
above can be established using the geometry of the partial equilibrium
system. The class of dynamic processes which are proved stable again are
of the type illustrated in Figure 1, with the markets adjusting to partial
equilibrium essentially in a sequential fashion.

22
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Theorem 2. Suppose Assumption 1* holds, and assume that the market
demand index functions H(p) are continuous for all non-negative p.
Given a positive bound M, there exists a positive scalar € (which
depends in general on M) such that if (a) the positive rates of accom-
modation c, satisfy ¢, <eand c¢;[c,y <& fori=2,...,n, and(b)

the initial price vector satisfies | p(0)—p | < M, then the dynamic

process (2) is stable.

Discussion of the Proof. The formal proof of this theorem will follow closely
the geometric argument for stability given in Figure 1. The first market
price in the solution is shown to monotonically approach its corresponding
partial equilibrium value until the solution is trapped in a neighborhood
of the locus of partial equilibria for market 1. Then, the second market
price vector approaches its compensated partial equilibrium value, and so
forth, until the price vector is trapped in a neighborhood of general
equilibrium.

The theorem will be proved in five steps: Step 1 constructs a rectangle

which is later shown to contain the solution when hypothesis (a) of the
theorem is satisfied. Step 2 introduces a system of notation which is used
in the proof, and Step 3 establishes several geometric implications of the
partial equilibrium assumptions. Step 4 establishes the value of ¢ required
in the hypothesis of the theorem. Step 5 establishes a basic induction step
which guarantees that after some time ¢,, the solution will be trapped in a
small neighborhood of the general equilibrium. Theorem 1 is then applied
to complete the proof that the system is stable.
Proof. Step 1. First, a rectangle R* is constructed in such a way that it
contains the partial equilibrium values of any component which might
result when succeeding components are in R*. In particular, all non-
negative prices satisfying | p— p | < M will be contained in R*. Define the
functions

b;(8) = Max{ | Jii(pyg)—Dil I | P— P <90}

n—1
for>0andi=1,... n—1. Define a scalar0,+; =nM+  b(M)+1.
i=1

Then define scalars 6,, 6,_5, . . ., 0; by the recursion formula 6, = 6, +
40,,1+3b,(0,,1). Define abox R* = {p=0| | pi—p. |1<0,i=1,...,n}
and let R = {p>0||p;—p,1 <26, i = 1,...,n} be a larger box con-
taining R*.
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Step 2. We now introduce a system of notation for neighborhoods of
partial equilibrium price vectors. The structure of these neighborhoods is
illustrated in Figures 2 and 3. Let « denote a positive scalar. The sets

S;(0)={pin R|H(p)<—0a},
D;(a)={pinR l H(=p},
E(x)={pinR||H(p)| <o}

denote, respectively, points in R where excess demand in market i is

bounded negative, bounded positive, and near zero. The set
Ti(a)={pin R || pa—Li(pp) | <a}

P2
/6:%\
7 "z x1=0
/
7N N
s 07
s, N/~
(0, s NN/
CEBY X7 AN\ S (B N
X, \
% 7 X s
\&? AYS \
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_- \
N\
\ N,
N /
ANAN
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N +
\\+\\ X2=0
N
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Figure 2 Sets E .(B) (shaded northeast—southwest),
Ty () (shaded northwest—southeast), S, (8) (northeast
ofthe H, = — B contour), and D 2(B) (southwest of

the H, = - f contour)
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fz,z(pz)

] P
Figure 3 Sets E.*(8) (shaded), S.*(8) (above the
shaded area), and D.*($8) (below the shaded area)

denotes a neighborhood of the locus of joint partial equilibria in the first i
markets. (T,(a) is a a-neighborhood of the general equilibrium price
vector p.) The sets

Sf(a) = {P in R l b2 fii(py)+a},

Df(a) = {P in R I pisfi,i(Pi[)_“} >

Ef()={pin R|| p;—f,(px) | <}
denote, respectively, price vectors in which the price of commodity i is
bounded above, bounded below, or near its partial equilibrium price
which would prevail if the first i markets were in partial equilibrium.

Step 3. Several ‘geometrically obvious’ relations between the various

sets defined above will now be established. By hypothesis, H,(p) is con-
tinuous, and if the first i—1 markets are in partial equilibrium and p,

is bounded above its partial equilibrium level, then H;(p) is negative (by
Assumption 1). Then, H, (p) is uniformly continuous on the compact
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set R, and is bounded negative on the set S¥(e)n T;_;(8) for sufficiently
small 6. Hence, we can conclude

Given &> 0, there exist 8, y>0(5 <¢&) such that S¥(&)n I1(5)
is contained in S;(y). The result holds when S is replaced by D. (8)

By Assumption 1, the partial equilibrium prices fi(py) are con-
tinuously differentiable on the compact set R. Hence, there exists a scalar
u(p > 1) such that [Note: f,_1 (fuu(pir)s pi)=fi1,(pi)]

| .ﬁ—z(Pt:Pi[)_.fi,]i(Pi[) | <pl Pi—fi,i(Bi[) |
for pin R. If pis in T;_, (¢) n E¥(v), then

| p—=Li3(p) | < | Pu—Ji-1(Pupi) | + | fi—l(piaBi[)_fi,]i(Bi[) |

<etu | pi—fi.(py) | <e+wpv,
and we conclude

T,_1(e)nE¥ (v) is contained in T,(e+ uv). (9)

Step 4. A series of bounds will now be established, among them the
value of & required in the hypothesis of Theorem 2. Choose a positive
scalar ¢,(e, <1 and &, <6,,,/4) which satisfies Theorem 1. Then, define
a series of scalars v,, &, s, U,_y, . . ., U5, & recursively as follows:

Given ¢ >0, choose v,(¢;/2u<v,<¢/u) such that S (v /2) n
Ti.:(&—pv;) is contained in S,(6) and D}(v,/2) NT_(gg—pv;) is
contained in D,;(§,) for some §,>0 and then choose &i_1 = &— ;.
(The scalar u is given in (9). That this recursive definition is possible
follows from (8) and the observation that & — uv; can be made as close to
zero as we please.) Finally, define v, = ¢, /2y, and choose &, such that
S1(v;) and D¥(v,) are contained in S,(8,) and D,(d,), respectively.
Define 6 = min {4,,...,6,}, where the §, are given by the recursive
procedure above. .

Let G> 1 be a upper bound on | H, (p) | forpinRandi=1,...,n
Now, choose ¢ to be the smallest of the numbers v, /8nGp, §/2nGy,
01 /0G, and v(8 [6nGO,. The matrix C will now be assumed to satisfy
the hypotheses of the theorem for this ¢.

Using (9) and the condition ¢, = ¢,_,; + v, given by the recursion above,
one obtains the useful condition

T;—1(&-1)NEF(v;) is contained in Ti(s;) . (10)
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Step 5. Suppose a given matrix C satisfies the hypotheses of Theorem 2
for the ¢ given in the previous step. Define a sequence of times t,i=1,
... 1, by the following recursive procedure (define #, = 0 and topg =
+00): Given f,_,, define ¢, as the largest integer which is less than
ti—1+30, /éc,.

We shall now give an induction argument which shows that (a) up until
time #,_,, market i exhibits ‘insignificant’ price changes, so that the solution
remains in the rectangle R*, (b) after time ¢,_,, the price in market i
approaches its partial equilibrium value monotonically until, by time ¢, or
before, it is trapped in a neighborhood E¥*(v,) of this equilibrium value,
and (c) after time #,, the price vector is trapped in a neighborhood T,(e)
of the locus of partial equilibrium price vectors for the first i markets.

We shall require the following bound: for k > i

F30, 364i v,6 v,

t.c, < < — <—=. 11
‘c"\c"j; 3¢, > 8 6nGO,~G (1)

Define a norm ¥;(p) = | pi—/fi,:(pir) | for i = 1,...,n, and note that
Ef(v;)) = {p in R|Vi(p)<v,;}. The basic induction step can now be
stated:
Lemma. If the Induction Hypothesis below holds for time t', then it
remains valid when t' is replaced by t'+1.
Induction Hypothesis. At the time t (with i defined so that t;_; <t <t,),
the following conditions hold: '
(a) p(r)isin R* for 1<t

j
(b) p(e)isin n Ef(v)<=T(s;) for LSTSEjyy
k=1

i—1
Jorj=1....,i—=2and is in kr_wlg,’f(vk)gl‘,-_l(e‘-_l) fort,_,<t<t;

(¢) Vi(p(ti-1))<0,—26,.,~ bi(0;+1);
0
(d) Vj(p(t)KMax{v,-,V,-(p(t,-_l))—%—(t—t,-_l)}

forj=1,...i,

Proof of the lemma. Suppose the induction hypothesis holds for ¢. Then
| pi(¢4+1)—p;(2) | € Ge; < 0,,1/2 <8, for each i, and p(t+1) is in R.
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The proof will now be carried out in three phases. In Phase 1, (b), (c), (d)
will be shown to hold for #+1 < ¢, with the index i held fixed. Phase 2
will verify condition (a). Finally, Phase 3 will verify that (b), (c), (d)
continue to hold when ¢#+1 = ¢, and the index i is advanced in (b), (¢),
(d). This will prove the lemma.

Phase 1. Consider the case where ¢+1< ¢, and (b), (¢), (d) are con-
sidered without advancing the subscript i for t+1 = #,. Condition (c)
continues to hold without induction. The next chain of arguments will
establish that condition (d) holds in this case.

Suppose first that for some j < i, we have p(#) in S¥(v;/2) A T)_1(g;_1).
From Step 4, p(¢) is then in S,(8;), implying H,(p(#)) < —9¢,. Further,
pi(t+1)=f; (e (t+1)) 2 v, [2—| p;(t4+1)—p;(2) | —pl py(t+1)—
Li(t)| = v;/2—Gc;—puGney 4 > v;/4 > 0. Hence,

Vi(p(t+1))=V;(p(t)) = p;(t+1)—p;(t)—
=L (paCt+ 1) = £ :(pa ()] (12)
S—0;c;+plpr(t+1)—py(2)]

0
<—5ch+ancj+1<_ —2CJ-,

using the inequalities satisfied by &. If p(#) is in D¥(v,/2) N T)_,(g,_,),
a similar argument again establishes that V,(p(¢+1))—V;( p() <
—oc; /2.

Next suppose that for some j < i, we have p(#)in E¥ (v;/2) 0 Tj_,(&;-y).
Then,

Vi(p(1+1)) < Vi(p())+ | p;(t+1)—p;(1) | +
+ 1 [+ 1)) = f; :(pin(D)) |
<; /240 [4+p | pr(t+1)—p;y(t) | vy,

where the bounds on ¢ have again been utilized.

But under the induction hypothesis, p(¢) is in one of the cases we have
just considered. Hence, for each j<i, either Vi(p(t+1))<v; or
Vi(p(¢+1))=V,(p(2))< —&;¢;/2. Therefore, condition (d) of the
induction hypothesis holds.

From condition (d), one then has p(¢+1) in the intersection of Ef(v))
forj=1,...,i—1, which implies by an application of (10) that p(z+ 1)
is in T;_, (&-,). Hence, condition (b) holds.
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Phase 2. Condition (a) will now be verified. Consider first a market k
for k > i. Then, by (11),

| Pe(t+1)=pe(0) | + | p(0)—py |

| pe(t+1)—p | <
<G6k1i+9n+1<v1+9,,+1<29,,+1<9k, (14)

and the components i+1, ..., n of p(#+1) are in R*.
To establish (a)for the remainingmarkets, weshallemploy the inequality

| pi—P;l < | pi—fii(pid | + | £5,;(ps)—D; |
<Vi(p)+b;(| pr—pPir|) (15)

From condition (d) established for £+ 1 in Phase 1 above, V;(p(#+1)) <
Max {v;, V;(p(#,-1))}<0,—b;(0;11)—20,,,. Then, (15) establishes
| pi(2+1)—p, | < 6,. Aninduction argument completes the demonstration:
Suppose | p;(t+1)—p; [ <0; has been established for markets k+1 to
n (k <i). Then, condition (b) implies ¥V, (p(¢+1)) <o, and | p(t+1)—
Di | < v +b,(0,,1) < 0,. Hence, (a) holds.

Phase 3. Consider the case where t+1 = ¢,. Phase 1 established con-
ditions (c) and (d) at 7, when the subscript i— 1 is maintained. The second
term in the bound on the right-hand side of (d) then satisfies

c;0 c;0(36,
. . ——(t—t_)L0,— —| — —
Vl(P(tl 1)) 2 ( i tl 1) 91 2 (5ci 1)

by the construction of the #; and the bounds on &. Hence V;(p(t,)) < vy,
and (b) holds with i replaced by i+ 1.
To show (c) in this case, we make the expansion

Vis 1(pCt))S Ve 1 (PO + | fit1,i41(Pir1,0(0))=Dis g | +

F 118 =P 1 (O | + | fis vt (Riw 1,0 (8))=Bist 1+

(16)

From Step 1 of the theorem proof, the first two terms on the right-hand-

side of (16) are bounded by 0,,;. By (11), the term | p;,{(#;)~p;+1(0) ]

is bounded by v,. By (a), established for ¢, in Phase 2 above, the last term

is bounded by b,,,(8;.,). Hence,

Vier (p(6)) <0p1 1+ 01+ b1 1(6:42)
<6i+1_29n+1 _bi+1(9i+2) ’
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since 041 —20,11—b;41(0142) = 20,414+ 2b;,;(6;4,) and v; < 0,,,. Hence,
(c) holds when iis advanced to i+1, t+1 = ¢,.

Finally, note that (d) holds at ¢t+1 = ¢, and i not advanced by the
results of Phase 1. Then, it holds by definition when i is advanced to i+ 1.
Q.E.D. Lemma.

From condition (b) of the induction hypothesis, the solution will be
contained in T;(s,) after time #,. Hence, Theorem 1 can be applied to
establish that the solution converges to the general equilibrium price
vector p. Q.E.D. Theorem 2.

Theorem 2 may be generalized in several directions:

(1) If there are sub-groups of markets which are stable for more general
dynamic processes than the essentially sequential processes we have con=
sidered, then Theorem 2 can be generalized to establish the stability of a
process which is essentially sequential between subgroups.

(2) In more general dynamic systems than the multiple market model,
transformations of the dynamic system, Ap(¢) = H(p(¢))BC, where B is
an nxn matrix, may be possible and may result in a system which is
Hicksian. Theorem 2 can then be applied to establish the stability of this
modified system. For example, in the case that H(p (¢)) = (p(2)—p) 4 (p)
is linear and 4 (p) is non-singular, there always exists a sequence of column
permutations and sign changes which reduces 4 (p) to a Hicksian matrix.
Then Theorem 1 would establish the stability of the transformed system.

(3) If the bounds (8) and (9) on the structure of the neighborhoods of
partial equilibria and the upper bound G on the market demand index
functions hold uniformly in M, then Theorem 2 holds for a value of ¢
independent of M.

(4) If no continuity assumptions are imposed on the market demand
index functions H; other than the condition that they be bounded away
from zero when their own prices are bounded away from their partial
equilibrium values, the proof of Theorem 2 still establishes that, given
any small neighborhood of the general equilibrium, there exists ¢ > 0 such
that for C satisfying the hypotheses of Theorem 2, the dynamic process (2)
will converge to the given neighborhood. This result could be applied,
for example, to the case where the levels of excess demand for some com-
modities are discrete, leading always to finite jumps in some prices.

(5) Theorem 2 continues to hold if the market demand index functions
and rates of accommodation are no longer autonomous, but depend on
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time, provided the bounds used on these functions hold uniformly in time.
In particular, if the rates of accommodation converge to zero, but converge
at a slow enough rate so that their partial sums diverge, then the dynamic
system (2) can be made stable even under the relaxed assumptions on the
H,; suggested in the previous paragraph.

The assumption of the existence of partial equilibria employed in obtain-
ing the stability results of this paper is intuitively reasonable in many
economic models. Further, it is an implication of some of the conditions
commonly imposed in the analysis of multi-market stability. In particular,
if a condition of strong gross substitutability holds globally or if the Jacob-
ian matrix of H has a negative dominant diagonal,* then the partial
equilibrium conditions will be satisfied. We now demonstrate these pro-
positions rigorously: |

Theorem 3. Suppose an economy satisfies the following conditions

(for commoditiesi =1, ..., n):

(a) the excess demand functions are homogeneous of degree zero and

continuously differentiable,

(b) the differential form of the gross substitutability condition holds,’

and

(c) Walras’s law holds and the supplies of commodities are bounded.

Then, Assumption 1 holds.

Proof. Assume p, > 0. The theorem is proved by induction. Suppose we
have established that partial equilibria exist in markets 1,...,7i—1, and
satisfy Assumption 1. Let py; = fi_; (ppi) denote these equilibrium prices,
as before, and let

z; =h;j(fi-1(pu)pu) = &i-1,i(Pu) » J';""- lyosnnt

denote the compensated excess demand functions in the remaining markets.
Suppose further that the compensated demand functions &;_y,;(Pu)
satisfy the differential gross substitutability assumption, are homogeneous
of degree zero in prices, and satisfy the ‘modified’ Walras’s law,

_Z_iji-q,j(P[i) =0.
j=i

We now demonstrate that these conditions hold for markets 1,..., 1.
Applying a lemma established by Arrow and Hurwicz (1959, Lemma 1,
p.89), one has &, (0,p;) = +oco. The homogeneity and gross
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substitutability properties imply that 0¢;,_; ;(p;, pi)/dp<0. By the
modified Walras’s law,

n

fi-1,i(1,Pi[/Pi) = - Z 1(Pj/P’i)éi—1,1'(1,&'[/1’:)-

j=i+
But the Arrow-Hurwicz lemma implies &;_y ;(1, pyr/p;) >0 for py;/p:
sufficiently small, j = i+1, ..., n. Hence, &_; ,;(+ 00, p;) <0. By con-
tinuity, there then exists p; = f; ;(pi() such that & _, ;(fi,:(pir), pir) = 0.
Applying an implicit function theorem, we establish that f; ;(p;) is con-
tinuously differentiable, and

__afi—u/afi—l,i
op; 0

op;
where f;, is evaluated at p,; and &;_;; is evaluated at (f},;, py). Now
consider the compensated excess demand functions

0f.:[0p; = >0forj=i+1,...,n,

zj=&1,j(fi(pa)s i) =&, i(pa)s J=i+1,...,n.
The modified Walras’s law and homogeneity of degree zero are easily
verified for these functions. Further, for j, k = i+1,...,nandj # k,

0y _ Oi-1,,00 Oini,s

>0,
opy op; Op opy

where £, is evaluated at p,; and &, ; is evaluated at (£, ;(pi), Pur)s
establishing the gross substitutability property for market i, and proving
the induction step. Q.E.D. Theorem 3.

Theorem 4. Suppose an economy has market demand index functions

H (p) which are continuously differentiable and suppose that a general

equilibrium price vector p exists. Suppose further that the Jacobian

matrix A(p) of H(p) has a negative dominant diagonal for all non-

negative prices.® Then, the system satisfies Assumption 1.
Proof. Under the hypotheses, every principal sub-matrix of 4(p) also
has a negative dominant diagonal. Two theorems of McKenzie (1960,
Theorems 1 and 2, p. 49) establish that these principal submatrices are
non-singular and negative definite. Hence, the matrix 4(p) is Hicksian
for all p. A strong implicit function theorem (the global univalence theorem
of Gale and Nikaido (1965)) then establishes the existence of a unique
solution for a partial equilibrium price vector in any subset of markets.
Q.E.D. Theorem 4,
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v1. Conclusions

Theorems 1 and 2 above verify formally the suggestion made by Sir John
Hicks that his perfect stability conditions should be sufficient for the dyna-
mic stability of a price adjustment process which is ‘close’ to the Marshallian
concept of movement through a series of temporary equilibria. The class
of essentially sequential price adjustment mechanisms we have studied
cannot be put forth seriously as a model of empirical price behavior
(except possibly in certain systems where one market is known to adjust
much more rapidly than another: as, for example, in the case of a rapidly
adjusting bond market and a slowly adjusting durables market, or in the
case of a rapidly adjusting domestic market and slowly adjusting inter-
national market). On the other hand, the results have theoretical value in
that they provide a dynamic framework in which partial equilibrium
analysis can be rigorously justified. Further, they allow the model builder
to verify satisfaction of stability conditions (and meet the requirements
of Samuelson’s correspondence principle) with minimum effort, freeing
him to pursue more complex representations of the static structure. While
the cost in terms of realism is high in restricting one’s analysis to models
satisfying the partial equilibrium assumptions, the literature of economics
attests to the value of added descriptive detail for particular markets.
Finally, the possibility of stabilization of a variety of dynamic systems
is suggested by Theorems 1 and 2 in the case that the matrix C is an
instrument of the economic planner or programmer.

APPENDIX : STABILIZATION OF MATRICES
A fundamental theorem due to Fisher and Fuller (1958) forms the basis
for our analysis of local stability. A slightly strengthened version of this
result is the
Fisher-Fuller Theorem (Strong Form)—Suppose A is a real nxn
matrix with the property that the upper left-hand principal minor A,
of each order i = 1, .. ., n is non-zero. Then, there exists a positive
scalar € such that if the real diagonal matrix C = diag. (¢;) satisfies
ciA;[A,_1 <0 (where Ag = 1) fori=1,...,nand|c;|/| i1 ] <&
Sori=2,... n,then the characteristic roots of AC are real, negative,
and distinct.
This result is stronger than the original Fisher-Fuller theorem in that
lower bounds on the ¢; of the form ae < | ¢; | /] ¢;—; |, where « is a positive
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scalar, a < 1, are no longer required in the proof. The method of proof used
by Fisher and Fuller is to show that AC has real characteristic roots which
lie close to the values r, = ¢;4,/A,_,, provided ¢ is sufficiently small.

First, choose ¢ small enough so that | r, | > 4| r; 4 |, and choose ¢, so
that r, = —1 (the matrix C can be rescaled to any desired level of r,).
Employing a lemma on the approximation of roots of polynomials, Fisher
and Fuller establish that a sufficient condition for AC to have real charac-
teristic roots A, satisfying | 1, —r, | <} is that the following inequality be
satisfied for each k.8

n—1
ZlIrkl"_‘-lrlllrzl---lrs-lIlrs+1lms
s=
1> k—1 n =(*)’
AR H | ri—3r|. H [ dry—r;|
i=1 i=k+1

where the m; are positive constants determined by the matrix 4. This
expression can be rewritten in the form

1+k=nr k-1 r k e n—1 Pt s—1 r
— s+ i
2 24 o H — | mst Z : - ms:l
(+) = s=1|Tsl i=s+2 |71y s=k| Tk | i=k | Tk
- k—1 s n F.
1=3=1. 1 J1-22
i=1 Til i=k+1 i

(products IT over empty index sets are taken to equal one). Using the
condition | r; | > 4| #,,, |, one can establish the inequality
Tk

8 k-1 n—1
(*)<2(§) [ Te-1 ékms].

n—1 -1
For|c;yq/c;] <3=2_"_1(1+ > ms) . omin | AR Apy Ay |,
k=1

s=1 sssssn—1

k-1
Fr+1
Y Mt | ——

s=1

Py

the right-hand side of this expression will be less than one, and the sufficient
condition for the validity of the theorem holds.
The following corollary establishes that the Fisher-Fuller theorem above
holds uniformly when 4 varies continuously over a compact set.
Corollary. Suppose the matrix A(p) is a continuous function over b4
contained in a compact set N, and has A,(p) non-zero on N. Then
there exists £ > 0 such that if C satisfies the conditions of the Fisher-
Fuller theorem, then the characteristic roots of A(p)C are real,
distinct, finite, and bounded negative uniformly for pin N.
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The bound established for | ¢;,; /¢; | in the proof outline of the theorem
above is found to depend on the terms m, and A4,, which are continuous
functions of determinants of various sub-matrices of A(p). Further, the
A, (p) are bounded away from zero on N. Hence, the bound for | ¢;. /¢; |
is continuous in p, and achieves a positive minimum on N.
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NOTES AND REFERENCES

1 The prices p, may be thought of as ‘normalized’ prices, and a numé-
raire commodity n+ 1 with price one may also be present in the economy.
In our analysis, it is unnecessary to assume that such a ‘non-normalized’
system is behind our model and related to it by homogeneity and Walras’s
law. However, it is a special property of the class of dynamic processes
we consider that, when this relationship does hold, the solutions of the
‘normalized’ ( p,+, = 1) and ‘non-normalized’ (p,;, modified by the
dynamic process) systems are almost identical. The only additional
restriction required is that the rate of accommodation in market n+ 1
be low enough so that p,., remains positive.

2 The results of this paper are unchanged if the difference equations (2)
are replaced by differential equations dp,(z)/dt = c¢;H;(p(?)).

n 3 n
3 The notation | p | = (Z | p; |2) and | 4 | =( Y lay IZ)% is used
i=1 i,j=1

for the Euclidean norms of a vector p and a matrix 4.

4 A matrix 4 = (a;;) is said to have a negative dominant diagonal

if there exists a positive diagonal matrix Csuch that —a;e;> Y | a1 ¢;
J#i

for all i. For a full discussion, see McKenzie (1960).
5 Differential gross substitutability requires that 0h; (p)/dp; be positive

foris#j, while Walras’slawrequires that Y p;h;(p) beidentically zero.
i=1
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¢ The normalized price system, where commodity 7+ 1 has price
pn+t = 1, will tacitly be assumed in this theorem.

7 The expression (*) is a bound on the ratio | g((1+6)re) /| f((1£6)rs)|
used by Fisher and Fuller (1958, equations (14)-(20), p. 442), taken
withd = 3.



